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Abstract. As two important cryptanalytic methods, impossible differ-
ential and integral cryptanalysis have attracted much attention in recent
years. Although relations among other cryptanalytic approaches have
been investigated, the link between these two methods has been missing.
The motivation in this paper is to fix this gap and establish links between
impossible differential cryptanalysis and integral cryptanalysis.

Firstly, by introducing the concept of structure and dual structure,
we prove that a — b is an impossible differential of a structure £ if and
only if it is a zero correlation linear hull of the dual structure £. Mean-
while, our proof shows that the automatic search tool presented by Wu
and Wang could find all impossible differentials of both Feistel structures
with SP-type round functions and SPN structures. Secondly, by estab-
lishing some boolean equations, we show that a zero correlation linear
hull always indicates the existence of an integral distinguisher. With this
observation we improve the number of rounds of integral distinguishers of
Feistel structures, CAST-256, SMS4 and Camellia. Finally, we conclude
that an r-round impossible differential of £ always leads to an r-round
integral distinguisher of the dual structure £*. In the case that £ and
EL are linearly equivalent, we derive a direct link between impossible
differentials and integral distinguishers of £.

Our results could help to classify different cryptanalytic tools and
facilitate the task of evaluating security of block ciphers against various
cryptanalytic approaches.
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1 Introduction

Block ciphers are considered vital elements in constructing many symmetric
cryptographic schemes such as encryption algorithms, hash functions, authen-
tication schemes and pseudo-random number generators. The core security of
these schemes depends on the resistance of the underlying block ciphers to known
cryptanalytic techniques. So far a variety of cryptanalytic techniques have been
proposed such as impossible differential cryptanalysis [1, 2], integral cryptanal-
ysis [3], zero correlation linear cryptanalysis [4], etc.

Impossible differential cryptanalysis was independently proposed by Knudsen
[1] and Biham [2]. One of the most popular impossible differentials is called
a truncated impossible differential. It is independent of the choices of the S-
boxes. Several approaches have been proposed to derive truncated impossible
differentials of a block cipher/structure effectively such as the ¢/-method [5], UID-
method [6] and the extended tool of the former two methods generalized by Wu
and Wang in Indocrypt 2012 [7]. Integral cryptanalysis [3] was first proposed
by Knudsen and Wagner, and a number of these ideas have been exploited,
such as square attack [8], saturation attack [9], multi-set attack [10], and higher
order differential attack [11,12]. With some special inputs, we check whether
the sum of the corresponding ciphertexts is zero or not. Usually, we do not need
to investigate the details of the S-boxes and only view the S-boxes as some
bijective transformations over finite fields. Zero correlation linear cryptanalysis,
proposed by Bogdanov and Rijmen in [4], tries to construct some linear hulls
with correlation exactly zero. In most cases, as in impossible differential and
integral cryptanalysis, we do not need to investigate the details of the S-boxes.
Generally, though there has been lots of work concentrating on the design and
cryptanalysis of S-boxes [13], most cryptanalytic results by using impossible
differential, integral and zero correlation linear cryptanalysis are independent
of the choices of the S-boxes. If we choose some other S-boxes in a cipher, the
corresponding cryptanalytic results will remain almost the same.

Along with the growing of the list of cryptanalytic tools, the question whether
there are direct links or any connections among different tools has drawn much
attention of the cryptographic research community, since such relations can be
used to compare the effectiveness of different tools as well as to improve crypt-
analytic results on block ciphers.

Efforts to find and build the links among different cryptanalytic techniques
were initiated by Chabaud and Vaudenay in [14], where a theoretical link between
differential and linear cryptanalysis was presented. After that, many attempts
have been made to establish further relations among various cryptanalytic tools.
In [15], Sun et al. proved that from an algebraic view, integral cryptanalysis can
be seen as a special case of the interpolation attack. In [16], Leander stated that
statistical saturation distinguishers are averagely equivalent to multidimensional
linear distinguishers. In [17], Bogdanov et al. showed that an integral implies a
zero correlation linear hull unconditionally, a zero correlation linear hull indicates
an integral distinguisher under certain conditions, and a zero correlation linear
hull is actually a special case of multidimensional linear distinguishers. In [18],
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Blondeau and Nyberg further analyzed the link between differential and linear
cryptanalysis and demonstrated some new insights on this link to make it more
applicable in practice. They established new formulas between the probability
of truncated differentials and the correlation of linear hulls. This link was later
applied in [19] to provide an exact expression of the bias of a differential-linear
approximation. Moreover, they claimed that the existence of a zero correlation
linear hull is equivalent to the existence of an impossible differential in some spe-
cific cases [18]. As shown in [20], this link is usually not practical for most known
impossible differential or zero correlation linear distinguishers, since the sum of
the dimensions of input and output of each distinguisher is always the block size
of the cipher, which means if the dimension parameter for one type is small, it will
be infeasibly large for the other type. Blondeau et al. proposed a practical rela-
tion between these two distinguishers for Feistel-type and Skipjack-type ciphers
and showed some equivalence between impossible differentials and zero corre-
lation linear hulls with respect to Feistel-type and Skipjack-type ciphers [20].
In [21], Blondeau and Nyberg gave the link between truncated differential and
multidimensional linear approximation, and then applied this link to explore the
relations between the complexities of chosen-plaintext and known-plaintext dis-
tinguishing /key recovery attacks of differential and linear types. Moreover, they
showed that statistical saturation cryptanalysis is indeed equivalent to truncated
differential cryptanalysis, which could be used to estimate the data requirement
of the statistical saturation key recovery attack.

Contributions. Although there have been intriguing results with respect to
the relations among some important cryptanalytic approaches, the link between
impossible differential cryptanalysis and integral cryptanalysis is still missing. In
this paper, we aim to explore the link between these two cryptanalytic methods.
Since the fundamental step in statistical cryptanalysis of block ciphers is to con-
struct effective distinguishers, we focus on building the links among impossible
differential, zero correlation linear and integral cryptanalysis from the aspect of
distinguishers. Our main contributions are as follows (see Fig.1).

Impossible differential cryptanalysis unconditional | Zero correlation linear cryptanalysis

L
2 Section 3 &
E = A,64, l Section 5 Section 4 lunconditional
Integral cryptanalysis Section 5 Integral cryptanalysis
&) &= A4, &H

Fig. 1. Links among Impossible Differential, Integral and Zero Correlation Linear
Cryptanalysis, where £ is a structure and £ is the dual structure of £, A; and A are
linear transformations applied before the input and after the output of £.
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. We characterize what “being independent of the choices of S-boxes” means
by proposing the definition of structure £, which is a set containing some
ciphers that are “similar” to each other. Then, by introducing the dual struc-
ture £, we prove that a — b is an impossible differential of £ if and only
if it is a zero correlation linear hull of €. More specifically, let PT and
P~1 denote the transpose and inverse of P respectively. Then for a Feistel
structure with SP-type round functions where P is invertible, denoted as
Fsp, constructing an r-round zero correlation linear hull is equivalent to
constructing an impossible differential of Fgpr, which is the same structure
as Fsp with P7 instead of P; For an SPN structure Esp, constructing an
r-round zero correlation linear hull of Egp is equivalent to constructing an
impossible differential of £g(p-1)r, which is the same structure as Esp with
(P~HT instead of P. Based on this result, we find 8-round zero correlation
linear hulls of Camellia without F'L/FL~! layer and 4-round zero correlation
linear hulls of ARIA.

. We show that the automatic search tool, presented by Wu and Wang in
Indocrypt 2012, could find all impossible differentials of a cipher that are
independent of the choices of the S-boxes. This can be used in provable
security of block ciphers against impossible differential cryptanalysis.

. We find that a zero correlation linear hull always implies the existence of
an integral distinguisher, which means the conditions used for deriving in-
tegral distinguisher from zero correlation linear hull in [17] can be removed.
Meanwhile, we observe that the statement “integral unconditionally implies
zero correlation linear hull’ in [17] is correct only under the definition that
integral property is a balanced vectorial boolean function, while it does not
hold for the general case. For example, up to date we cannot use the integral
distinguisher for 4-round AES (with extra MixColumns) [4, 8] to construct
a zero correlation linear hull.

. Following the results given above, we build the link between impossible dif-
ferential cryptanalysis and integral cryptanalysis, i.e., an r-round impossible
differential of a structure £ always implies the existence of an r-round inte-
gral distinguisher of £+. Moreover, in the case that £+ = A3EA; where A,
and As are linear transformations, we could get direct links between impos-
sible differential cryptanalysis and integral cryptanalysis of £. Specifically,
an r-round impossible differential of SPN structure which adopts bit permu-
tation as the linear layer, always leads to an r-round integral distinguisher.

. We improve the integrals of Feistel structures by 1 round, build a 24-round
integral of CAST-256, present a 12-round integral of SMS4 which is 2-round
longer than previously best known ones, and construct an 8-round integral
for Camellia without FL/FL~! layers. These distinguishers could not be
obtained by the known methods for constructing integral distinguishers or
by using the link given in [17]. As an example, the best known key recovery
attack on reduced round CAST-256 in non-weak key model is given to show
the effectiveness of the newly constructed distinguishers.
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Organization. The remainder of this paper is organized as follows. Sec. 2
introduces the notations and concepts that will be used throughout the paper.
In Sec. 3, we establish the new links between impossible differential and zero
correlation linear cryptanalysis. Sec. 4 shows the refined link between integral
and zero correlation linear cryptanalysis. The link between impossible differential
and integral cryptanalysis is presented in Sec. 5. Then in Sec. 6, we give some
examples to show the effectiveness of the newly established links in constructing
new distinguishers of block ciphers. Finally, Sec. 7 concludes this paper.

2 Preliminaries

2.1 Boolean Functions

This section recalls the notations and concepts [22] which will be used throughout
this paper. Let Fo denote the finite field with two elements, and F5 be the vector
space over [Fy with dimension n. Let a = (a1, ...,a,),b = (b1,...,b,) € F. Then

a-bEa1b & - & ayb,

denotes the inner product of a and b. Note that the inner product of @ and b can
be written as ab” where b7 stands for the transpose of b and the multiplication is
defined as matrix multiplication. Given a function G : Fy — Fy, the correlation
of G is defined by

Gy 2 HESHIOE =0~ eBIGH =1} _ ooy

zeFy

Given a vectorial function H : F} — F%, the correlation of the linear approxi-
mation for a k-bit output mask b and an n-bit input mask a is defined by

cla-z®b- H(x)) 2 i Z (_1)a~;c69b.H(1‘).

If c(a-x®b-H(x)) = 0, then a — b is called a zero correlation linear hull of H[4].
This definition can be extended as follows: Let A C Fy, B C F5. If for all a € A,
be B,cla-x®b-H(x)) =0, then A — B is called a zero correlation linear hull
of H. In the case that H is a permutation on FJ, for any b # 0, ¢(b- H(x)) =0
and for any a # 0, c(a-x) = 0. We call 0 — b and a — 0 trivial zero correlation
linear hulls of H where a # 0 and b # 0. Let A C FZ. If the size of the set

Hy'(y) = {z € A|H(z) =y}

is independent of y € F%, we say H is balanced on A. Specifically, if A = F%, we
say H is a balanced function. If the sum of all images of H is 0, i.e.

> H(x) =0,

rz€Fy
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we say H has an integral-balanced (zero-sum) property[3]. Let 6 € FY and A €
F%. The differential probability of § — A is defined as

s #z eF3|H(z) o Hz©0) = A}
S o )
If p(6 - A) =0, then § — A is called an impossible differential of H[1,2]. Let
ACFy, BCFs Ifforalla € Aand b€ B, p(a— b) =0, A— B is called an

impossible differential of H. We recall the following property of balanced boolean
functions: a function G : F§ — Fy is balanced if and only if ¢(G(z)) = 0.

p(6 = A)

2.2 Block Ciphers

Feistel Ciphers. An r-round Feistel cipher F is defined as follows: Let (Lo, Ro) €
F2" be the input of E. Iterate the following transformation r times:

{Li—i-l =F,(L;,) @& R;

0<t<r—1,
Ri1=1L;

where L;, R; € F4. The output of the r-th iteration is defined as the output of
E. In this paper, we will focus on the case that F;’s are SP-type functions which
will be defined in the following.

SPN Ciphers. The SPN structure is widely used in constructing cryptographic
primitives. It iterates some SP-type round functions to achieve confusion and

diffusion. Specifically, the SP-type function f : IE‘§Xlt — IE‘§Xlt used in this paper is
defined as follows: Assume the input z is divided into ¢ pieces x = (zg, ..., 2t—1),

and each of the z;’s is an s-bit word. Then apply the nonlinear transformation
S; to x; and let y = (So(20),...,S:_1(xt_1)) € F5*'. At last, apply a linear
transformation P to y, and Py is the output of f.

The following strategies are popular in designing the diffusion layer P of a
cipher:

(1) P is a bit-wise permutation of F3*" as in PRESENT [23]. PRESENT
adopts bit permutation as the diffusion layer P, which can be defined as a per-
mutation matrix P = (P; j)eaxe4:

1 if 7 = 167 mod 63
P ;= .
0 otherwise

(2) Each bit of Py is a sum of some bits of y as in PRINCE [24]. Firstly, we will
define SR and M’ as follows:

SR permutes the 16 nibbles, therefore it is a permutation of 64 bits and we
could write SR as a permutation matrix in F5**6%,

To construct M’, we first define

Mo M1 My Ms My Ms Ms My
A0 — My M2 Ms Mo N — M M3 Mo M
| My Ms My M |’ | M3 My My M,

M3 Mo M1 Mg MO Ml M2 M3
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where
0000 1000 1000 1000
0100 0000 0100 0100
Mo="1g010]"M = 0010 M=|0000[M=]0010]"
0001 0001 0001 0000

and then we define M’ = diag(M©, M® MW N(©)) which is a 64 x 64 block
diagonal matrix.

M’ is used as the linear transformation of the middle round. The transfor-
mations M = SR o M’ and M~! are used before and after the middle round,
respectively.

(3) Each word of Py is a sum of some words of y as in Camellia [25] and ARTA
[26]. The block cipher Camellia was recommended in the NESSIE block cipher
portfolio in 2003 and selected as a new international standard by ISO/IEC in
2005. ARTIA is a 128-bit block cipher established as a Korean Standard by the
Ministry of Commerce, Industry and Energy in 2004. The linear transformations
Pc and P of Camellia and ARIA could be written as follows:

0O00EEOEOEEOO0O0FEEDO
0O0OEOOEOEEEOO0EO0OE
0OEOOEOFEOO0OOEEEO0OE
E0OOOOEOEOOEEOEEO

EOEEOEEE EOEOOEOOFEOOEOOEE
EEOEEOEE OEOEEOO0OQ0OFEEOO0O0EE
EEEOEEOE EOEOOOOEOEEOEEO0O
p._ |0OEEEEEEO po_ | VEOEO0O0EOEOO0EEEOQ
C=|EE0OODOEEE ATl EE0OO0OEOOEOO0OEOOEOE
OEE0OFEOEE EE0OO0O0OEEOO0O0OO0OEEOEO
0O0EEEEOE O0OEEOEEOEO0OO0O0O0EOE
EOOEEEEDO O0EEEOOEOEOO0EOEDO
OEEOO0OOFEEOEOEEO0O0O
EOOEOOEEEOEOO0EO0O
EOOEEEOOOEOEOOEO
OEEOEEOOEOEOO0O0O0E

where E and 0 denote 8 x 8 identity and zero matrices, respectively.

(4) Each word of Py, seen as an element of some extension fields of Fy, is
a linear combination of some other words of y as in the AES. In the following,
we will use the matrix expression of finite fields to show how to write the linear
layer of AES as a 128 x 128 binary matrix:

Since ShiftRows is a permutation on 16 bytes, it is also a permutation on
128 bits. Therefore, as in the discussion above, we can represent ShiftRows as a
permutation matrix Mgp in F%QSXHS. Let Fos = Fo[z]/ < f(x) > where Fa[x] is
the polynomial ring over Fa, f(x) = 28 + 2% + 23 + 2 + 1 € Fa[z] is the defining
polynomial of Fas. Then 1 = (00000001) € Fos can be written as the 8 x 8
identity matrix E, 2 = (00000010) € Fys can be written as the following 8 x 8



8 Bing Sun et al.

matrix:

00000001
10000001
01000000
00100001
00010001
00001000
00000100
00000010

Mo

and the matrix representation of 3 = (00000011) is M3 = E®M,. If we substitute
1, 2 and 3 in MixColumns by E, My and Ms, respectively, we get a 128 x 128
binary matrix My;c and the linear layer of AES can be written as My;cMggr
which is a 128 x 128 matrix over Fs.

Generally, no matter which linear transformation a cipher adopts, it is always
linear over 5. Therefore, P can always be written as a multiplication by a matrix
which leads to the following definition:

Definition 1. Let P be a linear transformation over F5* for some positive inte-
ger m. The matrixz representation of P over Fy is called the primitive represen-
tation of P.

2.3 Structure and Dual Structure

In many cases, when constructing impossible differentials and zero correlation
linear hulls, we are only interested in detecting whether there is a difference
(mask) of an S-box or not, regardless of the value of this difference (mask). For
example, the truncated impossible differential and zero correlation linear hull of
AES in [4,27] and Camellia in [28,29]. In other words, if these ciphers adopt
some other S-boxes, these distinguishers still hold. This leads to the following
definition:

Definition 2. Let E : F§ — 3 be a block cipher with bijective S-boxes as the
basic non-linear components.

(1) A structure EF on FY is defined as a set of block ciphers E' which is ex-
actly the same as E except that the S-boxes can take all possible bijective
transformations on the corresponding domains.

(2) Let a,b € F3. If for any E' € ¥, a — b is an impossible differential (zero
correlation linear hull) of E', a — b is called an impossible differential (zero
correlation linear hull) of EF.

Note. In the definition of £F, if E uses bijective S-boxes, then the S-boxes
in £F should be bijective. However, if S-boxes used in E are not necessarily
bijective, then £F could be defined as a set of block ciphers E’ which is exactly
the same as F except that the S-boxes can take all possible transformations
on the corresponding domains. As discussed above, the truncated impossible
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differentials and zero correlation linear hulls of AES and Camellia found so far
are actually the impossible differentials and zero correlation linear hulls of £AFS
and 5Camellia.

Definition 3. Let Fgp be a Feistel structure with SP-type round function, and
let the primitive representation of the linear transformation be P. Let o be the
operation that exchanges the left and right halves of a state. Then the dual struc-
ture Fap of Fsp is defined as 0 o Fprgoo.

Let Egp be an SPN structure with primitive representation of the linear trans-
formation being P. Then the dual structure Eé-P of Esp 1is defined as Egp-1yr.

3 Links between Impossible Differential and Zero
Correlation Linear Cryptanalysis

In this section, we will show the equivalence between impossible differentials
and zero correlation linear hulls of a structure, which will be used to establish
the link between impossible differential and integral cryptanalysis in Sec. 5. The
next theorem is stated without proof in [17].

Theorem 1. a — b is an r-round impossible differential of Fsp if and only if
it is an r-round zero correlation linear hull of Fgp.

Proof. The proof can be divided into the following two parts (See Fig.2):

Part (I) We prove that for (89, 81) — (0, 8,11), if one can find E € Fgp such
that ¢((dg,01) - @ (6r, 0r41) - E(x)) # 0, then one can find E' € Fgp such that
p((01,00) = (0r+1,6,)) > 0.

5i+1 51 61 5[+1

Differential (SP) Linear (P'S)

Fig. 2. Differential Propagation of Fsp and Linear Propagation of Fap

Assume that (dp,01) — (6r,9r4+1) is a linear hull with non-zero correlation
for some E € F é‘P, and the input to the round function could be divided into ¢
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pieces, each of which is an s-bit word. Then there exists a linear characteristic
with non-zero correlation:

(50,51) — (51'71751') — (5T;5r+1)7

where §; € (F§)". In this characteristic, the output mask of S; = (S; 1,...,S:+) is
8 = (6i1,---,0i¢) € (F3)!, and let the input mask of S; be 8; = (Bi1,...,Bit) €
(F3)t. Since for v # B;P, c(y-x® B; - (xPT)) =0, 6;31 = §;—1 ® B: P

In the following, for any (zr,2r) = (zr1,.--,2L.t,TR1,---,TRt) € (F5)! X
(F5)t, we will construct an r-round cipher E, € Fsp, such that E.(zr,zr) ®
E.(xp @ 61,2r ® 00) = (0p41,0r).

Ifr=1,foryje{l,...,t}:if 1 ; = 0, we can define S ; as any possible
transformation on F3, and if 4, ; # 0, we can define

S1(xr) =z, Si;(®L,; ®0;)=2r; P b1,
then for F; € Fgp which adopts such S-boxes,
Ey(zr,2Rr) ® E1(xr ® 61,2R @ 00) = (00 ® 1P, 61) = (d2,61).

Suppose that we have constructed E,_; such that E,_1(zr,zg) ® Er—1(zL ®
01,2 ® d0) = (6r,9,—-1). Denote by (yr,yr) = (Yr,1,-- - YLt YR15---,YR,t) the
output of E,_i(xr,zr). Then in the r-th round, if §, ; = 0, we can define S, ;
as any possible transformation on F3, otherwise, define S, ; as follows:

SriWrLi) =YL, Srj(Yr,; ©6r;) =yr,; S Brj-
Therefore E.(zr,zr) ® Er(zr ® 61,28 ® d0) = (0r—1 ® BrP,6r) = (6r+1,0r).

Part (II) We prove that for (d1,d0) — (0,41, 0,), if one can find some E € Fgp
such that p((61,80) — (6,+1,0,)) > 0, one can find some E’ € Fgp such that
((60,61) -2 & (3, 0,41) - B'(2)) # 0.

Assume that (d1,00) — (6r41,9r) is a differential of E € Fgp. Then there
exists a differential characteristic with positive probability:

(01,00) = -+ (8541, 05) = - - = (Op41,0r),

where §; € (F$)". In this characteristic, the input difference of S; = (S; 1,...,Si.t)
is 0; = (8i1,...,0,¢) € (F5), and let the output difference of S; be 3; =
(Bigs---,Bit) € (F3)', then 641 = 61 & (B P).

Taking the following fact into consideration: for (J; 5,5, ;), where §; ; # 0,
there always exists an s X s binary matrix M; ; such that 3; ; = 5i7ngj, then
for Siyj(l') = LL‘MZ'J‘, c(ﬂi,j T D 5i,j . S,Ly](l')) =1.

Now we construct an r-round cipher E, € Fzp such that ¢((6o,d1) - z @
(0r,0r41) - Er(x)) # 0. If r =1, let Sy j(x) = xM; ; for §; ; # 0 and any linear
transformation on F§ otherwise. Then all operations in E; € Fzp are linear
over [Fo, which implies that there exists a 2st x 2st binary matrix M; such that
Ey(z) = My, and

e((30,01) - 7 (31,02) - B () = 1.
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Assume that we have constructed E,_1(z) = xzM,_; with M,_; being a
2st X 2st binary matrix such that

C((507 51) T D ((57«_1, (5,«) . E,«_l(x)) =1,

and we can define S, j(z) in the r-th round similarly, then E,(x) = zM, for
some 2st X 2st binary matrix M,., and

C((50,51) -x D (57-,5r+1) : ET(I)) =1,

which ends our proof. O

Note. In the proof of Theorem 1, the S-boxes we constructed are not necessarily
bijective. If we add the bijective condition, Theorem 1 still holds. Since for a
bijective S-box, if the correlation is non-zero, 61 ; # 0 implies 51 ; # 0. Therefore,
in Part(I) of the proof, we can further define S ; as

T, D01 r=xr; D by,
Sij(@) =Sz, ®b1; T=2xL; S0,
x others,

and a similar definition can also be given to S, ;. In this case, the S-boxes
are invertible. Moreover, for a bijective S-box, if the differential probability is
positive, d; ; # 0 implies §; ; # 0, thus in Part (II) of the proof, we can always
find a non-singular binary matrix M; ; such that 3; ; = 5Z]MZTJ

Similarly, we can prove the following theorem:

Theorem 2. a — b is an r-round impossible differential of Esp if and only if
it is an r-round zero correlation linear hull of E5p.

Definition 2 implies that the “impossibility” of an impossible differential of a
structure can be caused only by a differential ; — Jo where either 6; = 0 or
d2 = 0 (but not both) over an invertible S-box, or by a differential 0 — d5 over
a non-invertible S-box. Otherwise, according to the proof of Theorem 1, we can
always find an S-box such that §; — 02 is a possible differential. Therefore, we
have the following corollary:

Corollary 1. The method presented in [7] finds all impossible differentials of
.7:313 and ESP-

As a matter of fact, this corollary can be used in the provable security of block
ciphers against impossible differential cryptanalysis, since with the help of this
corollary, the longest impossible differentials of a given structure could be given.

In case P is invertible, according to the definition of equivalent structures
given in [30], we have

Fprs = ((PT)~1,(P")™") Fgpr (P", PT), (1)

which indicates:
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Corollary 2. Let Fsp be a Feistel structure with SP-type round function, and
let the primitive representation of the linear transformation be P. If P is invert-
ible, finding zero correlation linear hulls of Fsp is equivalent to finding impossible
differentials of Fgpr.

Ezample 1. (8-Round Zero Correlation Linear Hull of Camellia With-
out FL/FL™1) Let Camellia* denote the cipher which is exactly the same as
Camellia without FL/FL~! layer except that P? is used instead of P. Then we
find that, for example:

((0,0,0,0,0,0,0,0),(0,0,0,0,a,0,0,0)) — ((0,0,0,0,0,0,0,h), (0,0,0,0,0,0,0,0))

is an 8-round impossible differential of Camellia*, where a and h denote any
non-zero values. Therefore, we can derive an 8-round zero correlation linear
distinguisher of Camellia without FL/FL™! layer as shown below:

((aya,0,0,q,0,qa,a),(0,0,0,0,0,0,0,0)) — ((0,0,0,0,0,0,0,0), (h,0,0, h,0, h, h, h)).
Furthermore, if Fsp = Fgpr and Esp = Eg(p-1yr, we have:

Corollary 3. For a Feistel structure Fsp with SP-type round function, if P is
invertible and P = PT, there is a one-to-one correspondence between impossible
differentials and zero correlation linear hulls.

For an SPN structure Esp, if P'P = E, a — b is an impossible differential
if and only if it is a zero correlation linear hull.

Ezample 2. (4-Round Zero Correlation Linear Hull of ARIA) Since the
linear layer P of ARIA satisfies PT P = E, any impossible differential of EARIA ig
automatically a zero correlation linear hull of EARIA | Therefore, the impossible
differentials of 4-round ARIA shown in [28] are also zero correlation linear hulls
of 4-round ARIA.

4 Links between Integral and Zero Correlation Linear
Cryptanalysis

Firstly, we give two fundamental statements that give links between integral
cryptanalysis and zero correlation linear cryptanalysis:

Lemma 1. Let A be a subspace of F3, A+ = {z € F}la -z = 0,a € A} be
the dual space of A and F : F} — FZ be a function on F3. For any A € F},
Ty : At — F2 is defined as Tx(x) = F(x @ \), then for any b € FY,

> (=) ela-z @b F(x)) = c(b- Ta(x)).

a€cA
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Proof.
1
Z(—l)a~/\c(a xPb- F(x)) — Z(_l)a.)\Q_n Z (_1)(1.;5@(,.15'(;8)
a€A acA z€F}
1 b-F(x) a-(A\®x) 1 b-F(z)
=52 D> (DY) =2 2 (DT (A @ )
z€Fy a€A z€Fy
1
= A 2 (CDPRY = b Ta@),
yeAL
1 zeAt
here §41(x) = . 0
where § 41 () {0 g AL

Lemma 2. Let A be a subspace of B}, F : FY — F%, and let Ty : A+ — F% be
defined as T(x) = F(x ® \) where X\ € F}. Then for any b € FYy,

2% Z (71)b.F(/\)C(b ST (x)) = Z CQ(G @b F(z)).

AEFY acA

The proof of Lemma 2 is given in the full version of this paper [31]. The conclusion
of [17] that integral unconditionally implies zero correlation linear hull, is correct
only under their definition of integral, which requires that ¢(b - Tx(z)) = 0.
Under the original, more general definition for an integral distinguisher [3], this
conclusion may not hold.

From Lemma 1, we can deduce the following;:

Corollary 4. Let F : Fy — Fy be a function on Fy, and let A be a subspace of
F% and b € T4 \ {0}. Suppose that A — b is a zero correlation linear hull of F,
then for any A € Fy, b- F(x @ \) is balanced on At.

This corollary states that if the input masks of a zero correlation linear hull form
a subspace, then a zero correlation linear hull implies an integral distinguisher.
Furthermore, the condition that input masks form a subspace can be removed,
which leads to the following result:

Theorem 3. A nontrivial zero correlation linear hull of a block cipher always
implies the existence of an integral distinguisher.

Proof. Assume that A — B is a non-trivial zero correlation linear hull of a block
cipher E. Then we can choose 0 # a € A,0 # b € B, such that {0,a} — b is also
a zero correlation linear hull of F.

Since V' = {0, a} forms a subspace on s, according to Corollary 4, b - E(x)
is balanced on V1. This implies an integral distinguisher of E. (]

Moreover, in the proof of Theorem 3, we can always assume that 0 € A. Then
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1. If A forms a subspace, an integral distinguisher can be constructed from
A — b

2. If A does not form a subspace, we can choose some A; C A such that A
forms a subspace, then an integral distinguisher can be constructed from
Al — b.

It was stated in [17] that a zero correlation linear hull indicates the existence of
an integral distinguisher under certain conditions, while Theorem 3 shows that
these conditions can be removed. This results in a more applicable link between
zero correlation linear cryptanalysis and integral cryptanalysis.

It can be seen that Theorem 3 also gives us a new approach to find integral
distinguishers of block ciphers. More specifically, an r-round zero correlation
linear hull can be used to construct an r-round integral distinguisher.

5 Links between Impossible Differential and Integral
Cryptanalysis

According to the links given in the previous sections, we establish a link between
impossible differential cryptanalysis and integral cryptanalysis:

Theorem 4. Let £ € {Fsp,Esp}. Then an impossible differential of £ always
implies the existence of an integral of E*.

Proof. This can be deduced from the following facts:

— A zero correlation linear hull of £+ always implies the existence of an integral
of &1,

— A zero correlation linear hull of £+ could be constructed by constructing an
impossible differential of £. (I

In case £+ = A3EA; where A; and A, are linear transformations, we get the
direct links between impossible differential and integral cryptanalysis:

Corollary 5. Let Fsp be a Feistel structure with SP-type round function, and
let the primitive representation of the linear transformation be P. If P is invert-
ible and there exists a permutation  ont elements such that for any (xo,...,x1—1) €

Xt
F5<,

P(xo,...,x¢1) =7 ‘Pla(xo,..., 2 1),

then for Fsp, an impossible differential always implies the existence of an inte-
gral distinguisher.

Ezample 3. SNAKE(2) is a Feistel cipher proposed by Lee and Cha at JW-
ISC’97, please refer to [32,33] for details. According to [30], the round function
of SNAKE(2) can be seen as an SP-type one with the primitive presentation of
the matrix being defined as

FEFEFE
FEOEE
EOO0OE]’
E0O00O0
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where E and 0 are the identity and zero matrices of ngs’ respectively. Let

1000
0001
0010
0100

m =

Then we have P = 7~ !PT, therefore, an impossible differential of SNAKE(2),
which is independent of the details of the S-boxes, always implies the existence
of an integral distinguisher of SNAKE(2).

Corollary 6. Let Egp be an SPN structure with the primitive representation of
the linear transformation being P. If PT P = diag(Q1, . .., Q:), where Q; € F3**,
then for Esp, an impossible differential always implies the existence of an integral
distinguisher.

Proof. Firstly, according to Theorem 4, if PTP = F, an impossible differential
of Esp always implies the existence of an integral.

Secondly, for the S-layer of Egp, if we substitute S by applying @; to the
i-th S-box, according to definition 2, the structure stays identical. Since

Po (diag(Q1,...,Q:) 0 S) = (P odiag(Q1,...,Q:)) 0 S,

an SPN structure Esp is equivalent to an SPN structure Eg(podiag(Q,...,Q:))-
Based on the above two points, we can get the conclusion.

To show applications of these links, we recall that, an n x n matrix P is called
orthogonal if and only if PTP = E, where E is the n x n identity matrix.

Ezample 4. We can check that, SR and M’ used in PRINCE are orthogonal
matrices, therefore

M*M = (SRo M")"(SRo M') = E,

where E' is the 64 x 64 identity matrix. So all the linear layers used in different
rounds of PRINCE are orthogonal based on which we could conclude that any
r-round impossible differential of PRINCE which is independent of the choices
of the S-boxes implies the existence of an r-round integral distinguisher.

Ezxample 5. Since the linear layer P of ARIA is both symmetric and involutional,
e.g. P = P~! = PT any impossible differential of ARIA which is independent
of the choices of S-boxes implies the existence of an integral distinguisher.

Ezample 6. We can check that P used in PRESENT satisfies P = (P~H)T,
therefore, an impossible differential, which is independent of the details of the
S-boxes, always leads to the existence of an integral distinguisher. In fact, since
a permutation matrix P is always orthogonal, we have the following Corollary:

Corollary 7. For an SPN structure which adopts bit permutation as the diffu-
sion layer, the existence of an r-round impossible differential implies the exis-
tence of an r-round integral distinguisher.
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6 New Integrals for Block Ciphers/Structures

6.1 New Integrals for Feistel Structures

Let &, be an r-round Feistel structure Fgp. Then for any a # 0, b # a, (a,0) —
(0, b) is a zero correlation linear hull of £; and if the round functions are bijective,
then for any a # 0, (a,0) — (0,a) is a zero correlation linear hull of &.

So far the longest integral distinguisher known for a Feistel structure with
bijective round functions counts 4 rounds, and the longest integral distinguisher
for a Feistel structure with general round functions counts 2 rounds. We improve
these distinguishers by 1 round using Theorem 3.

Proposition 1. Let &, be an r-round Feistel structure defined on F2". Then

1. If the F;’s are bijective, then for any ¢ € FY, ¢ # 0, ¢+ Rs is balanced on
{(0,0), (¢, 0)}+ with respect to Es.
2. If the F;’s are not necessarily bijective, then let {ao,...,an—1} be a base of
% over Fo. Then ay,_1 - Rs is balanced on {(0, ZZ:OQ cia)|e; € Fa}t with
respect to Es.

As a matter of fact, for any ¢ € Fy, ¢ # 0, (¢,0) — (0, ¢) is a zero correlation
linear hull of &. Thus according to Theorem 3, we can construct an integral
distinguisher of &s, i.e., let (Lo, Ro) take all values in {(0,0), (¢,0)}+, then c- Rs
is balanced.

6.2 24-Round Integral for CAST-256

The block cipher CAST-256 was proposed as a first-round AES candidate, and
we refer to [34] for details. Firstly, we recall the following zero correlation linear
property given in [17].

Property 1. (0,0,0,L1) — (0,0,0, L2) is a zero correlation linear hull of the 24-
round CAST-256 (from the 13-th round to the 36-th round of CAST-256), where
L17é0, Lg;«éOandLl#Lg.

Let Ly = {(I1,l2,...,131,0)|l; € Fo} and Ly = (0,...,0,1). Then we obtain
a zero correlation linear hull (0,0,0,Ly) — (0,0,0, L) for the 24-round CAST-
256. According to Theorem 3, we can get the following result:

Proposition 2. Let V = {(x1,z2,73,03%y)|z; € F32,y € Fo}. If the input
takes all values in 'V, and let the output of the 24-round be (Co,C1,Cq,C5) €
F32%* (from the 13-th round to 36-th round). Then (0,...,0,1) - Cs is balanced.

Based on this integral distinguisher, we present a key recovery attack on 28-
round CAST-256 which is the best known attack on CAST-256 in the non-weak
key model. The details of the attack are listed the full version of this paper[31].
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6.3 12-Round Integral for SMS4

The SMS4[35] block cipher is designed by the Chinese government as part of their
WAPI standard for wireless networks. Up to date, the longest known integral
distinguisher of SMS4 covers 10 rounds [36]. The details of SMS4 and the proof
of the following propositions are listed in the full version of this paper[31].

Proposition 3. LetV = {v € (F§)*HW (vLT) = 1}, where HW (21, 22,3, 74) =
#{x; #0,i =1,2,3,4}. For any d € V, (0,0,0,d) — (d,0,0,0) is a 12-round
zero correlation linear hull of SMS4.

Proposition 4. LetV = {v € (F§)*HW (vLT) =1}, V; = {w € (F3?)%/(0,0,0, d)-
w = 0}, and let (co,c1,c,c3) be the output of 12-round SMS/. Then for any
d €V, when the input takes all possible values in Vg, we have

#{dCOZO}:#{dC():].}

Note that most of the known integral distinguishers are independent of the
choices of the S-boxes. However, the integral distinguisher presented above is
highly related with the S-boxes, since for different S-boxes, we would find dif-
ferent zero correlation linear hulls which lead to different integral distinguishers
of SMS4.

6.4 8-Round Integral for Camellia without FL/FL~! Layer

Based on the 8-round zero correlation linear hull presented in Example 1, we get
the following 8-round integral of Camellia without FL/FL™! layer:

Proposition 5. Let V' be defined as
V= {((1’1, S ,’Jjg), (l‘g, - ,1‘16))|l‘1 BroBasParrbarg=0,x2; € Fg}

For any h € F§, h # 0, (h,0,0,h,0,h, h,h) - R;1s is balanced on V with respect
to 8-round Camellia without FL/FL™1 layer.

7 Conclusion

In this paper, we have investigated the link between impossible differential and
integral cryptanalysis. To do this, we have introduced the concept of structure
£ and dual structure £+ and established the link in the following steps:

— We derived the relation between impossible differential of £ and zero cor-
relation linear hull of £1+. We have shown that for a Feistel structure Fgp
with SP-type round functions where P is invertible, constructing a zero
correlation linear hull of Fgp is equivalent to constructing an impossible
differential of Fgpr, which is the same structure as Fsp with PT instead
of P. For an SPN structure £sp, constructing a zero correlation linear hull
of Esp is equivalent to constructing an impossible differential of Eg(p-1)r,
which is the same structure as £sp with (P~1)7 instead of P.
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— We presented the relation between zero correlation linear hull and integral
distinguisher of block ciphers. As proven in Sec. 4, a zero correlation lin-
ear hull always implies the existence of an integral distinguisher, while such
statement only holds under certain conditions in [17]. Meanwhile, we have
observed that the statement “integral unconditionally implies zero correla-
tion linear hull’ in [17] is correct only under the definition that integral
property is a balanced vectorial boolean function, while it does not hold for
the general case (i.e., integral defined in [3] is a zero-sum property).

— We built the link between impossible differential of £ and integral distin-
guisher of £+. We have demonstrated that an r-round impossible differen-
tial of £ always leads to an r-round integral distinguisher of £+. In the case
that £ and £+ are linearly equivalent, we obtained some direct links be-
tween impossible differential and integral distinguisher of £. Specifically, an
r-round impossible differential of an SPN structure, which adopts bit per-
mutation as the linear layer, always indicates the existence of an r-round
integral distinguisher.

The results and links presented in this paper not only allow to achieve a better
understanding and classifying of impossible differential cryptanalysis, integral
cryptanalysis and zero correlation linear cryptanalysis, but also provide some
new insights with respect to these cryptanalytic approaches as shown below:

— The automatic search tool presented by Wu and Wang in Indocrypt 2012
finds all impossible differentials of both Feistel structures with SP-type round
functions and SPN structures, which is useful in provable security of block
ciphers against impossible differential cryptanalysis.

— Our statement “zero correlation linear hull always implies the existence of
an integral distinguisher” provides a novel way for constructing integral dis-
tinguisher of block ciphers. With this observation, we have improved the
integral of Feistel structures by 1 round, built a 24-round integral of CAST-
256, proposed a 12-round integral of SMS4 which is 2-round longer than
previously best known ones, and present an 8-round integral of Camellia
without FL/FL~! layers. These distinguishers could not be obtained by ei-
ther the previously known methods for constructing integral distinguishers
or by using the link given in [17]. Moreover, we have presented the best
known key recovery attack on CAST-256 in non-weak key model to show
that the new links can also be used to improve cryptanalytic results of some
concrete ciphers.

By using the matrix representation given in [37], the concept of dual structure
can be extended to generalized Feistel structures, and we can get similar results
for these structures. Furthermore, we have focused on the links among the dis-
tinguishers used in impossible differential, integral and zero correlation linear
cryptanalysis since distinguishers are the essential points in the evaluation of
security margins of a block cipher against various cryptanalytic tools, and our
results can be helpful in designing a block cipher from this point of view.
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