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Abstract. MISTY1 is a block cipher designed by Matsui in 1997. It
was well evaluated and standardized by projects, such as CRYPTREC,
ISO/IEC, and NESSIE. In this paper, we propose a key recovery attack
on the full MISTY1, i.e., we show that 8-round MISTY1 with 5 FL layers
does not have 128-bit security. Many attacks against MISTY1 have been
proposed, but there is no attack against the full MISTY1. Therefore, our
attack is the first cryptanalysis against the full MISTY1. We construct
a new integral characteristic by using the propagation characteristic of
the division property, which was proposed in 2015. We first improve
the division property by optimizing a public S-box and then construct
a 6-round integral characteristic on MISTY1. Finally, we recover the
secret key of the full MISTY1 with 263.58 chosen plaintexts and 2121 time
complexity. Moreover, if we can use 263.994 chosen plaintexts, the time
complexity for our attack is reduced to 2107.3. Note that our cryptanalysis
is a theoretical attack. Therefore, the practical use of MISTY1 will not
be affected by our attack.
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1 Introduction

MISTY [17] is a block cipher designed by Matsui in 1997 and is based on the
theory of provable security [19, 20] against differential attack [3] and linear at-
tack [15]. MISTY has a recursive structure, and the component function has a
unique structure, the so-called MISTY structure [16]. There are two types of
MISTY, MISTY1 and MISTY2. MISTY1 adopts the Feistel structure whose F-
function is designed by the recursive MISTY structure. MISTY2 does not adopt
the Feistel structure and uses only the MISTY structure. Both ciphers achieve
provable security against differential and linear attacks. MISTY1 is designed for
practical use, and MISTY2 is designed for experimental use.

MISTY1 is a 64-bit block cipher with 128-bit security, and it has a Feistel
structure with FL layers, where the FO function is used in the F-function of the
Feistel structure. The FO function is constructed by using the 3-round MISTY
structure, where the FI function is used as the F-function of the MISTY struc-
ture. Moreover, the FI function is constructed by using the 3-round MISTY
structure, where a 9-bit S-box S9 and 7-bit S-box S7 are used in the F-function.
MISTY1 is the candidate recommended ciphers list of CRYPTREC [6], and it is
standardized by ISO/IEC 18033-3 [11]. Moreover, it is a NESSIE-recommended
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Table 1. Summary of single secret-key attacks against MISTY1

Rounds #FL layers Attack algorithm Data Time Reference

5 0 higher order differential 11× 27 CP 217 [23]

5 3 Square 234 CP 248 [13]

5 4 higher order differential 222 CP 228 [10]

5 4 impossible differential 238 CP 246.45 [8]

6 4 higher order differential 253.7 CP 253.7 [25]

6 4 impossible differential 251 CP 2123.4 [8]

7 0 impossible differential 250.2 KP 2114.1 [8]

7 4 higher order differential 254.1 CP 2120.7 [25]

7 4 higher order differential 250.1 CP 2100.4 [2]

7 5 higher order differential 251.4 CP 2121 [2]

8 5 integral by division property 263.58 CP 2121 This paper

8 5 integral by division property 263.994 CP 2107.3 This paper

cipher [18] and is described in RFC 2994 [21]. There are many existing attacks
against MISTY1, and we summarize these attacks in Table 1. A higher-order
differential attack is the most powerful attack against MISTY1, and this type of
cryptanalysis was recently improved in [2]. However, there is no attack against
the full MISTY1, i.e., 8-round MISTY1 with 5 FL layers.

Integral Attack The integral attack [13] was first proposed by Daemen et al.
to evaluate the security of Square [7] and was then formalized by Knudsen
and Wagner. There are two major techniques to construct an integral charac-
teristic; one uses the propagation characteristic of integral properties [13], and
the other estimates the algebraic degree [12, 14]. We often call the second tech-
nique a “higher-order differential attack.” A new technique to construct integral
characteristics was proposed in 2015 [24], and it introduced a new property,
the so-called “division property,” by generalizing the integral property [13]. It
showed the propagation characteristic of the division property for any secret
function restricted by an algebraic degree. As a result, several improved results
were reported on the structural evaluation of the Feistel network and SPN.

Our Contribution In [24], the focus is only on the secret S-box restricted
by an algebraic degree. However, many realistic block ciphers use more efficient
structures, e.g., a public S-box and a key addition. In this paper, we show that
the division property becomes more useful if an S-box is a public function. Then,
we apply our technique to the cryptanalysis on MISTY1. We first evaluate the
propagation characteristic of the division property for public S-boxes S7 and S9

and show that S7 has a vulnerable property. We next evaluate the propagation
characteristic of the division property for the FI function and then evaluate
that for the FO function. Moreover, we evaluate that for the FL layer. Finally,
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Fig. 1. Specification of MISTY1

we create an algorithm to search for integral characteristics on MISTY1 by
assembling these propagation characteristics. As a result, we can construct a
new 6-round integral characteristic, where the left 7-bit value of the output
is balanced. We recover the round key by using the partial-sum technique [9].
As a result, the secret key of the full MISTY1 can be recovered with 263.58

chosen plaintexts and 2121 time complexity. Moreover, if we can use 263.994 chosen
plaintexts, the time complexity is reduced to 2107.3. Unfortunately, we have to
use almost all chosen plaintexts, and recovering the secret key by using fewer
chosen plaintexts is left as an open problem.

2 MISTY1

MISTY1 is a Feistel cipher whose F-function has the MISTY structure, and
the recommended parameter is 8 rounds with 5 FL layers. Figure 1 shows the
structure of MISTY1. Let XL

i (resp. XR
i ) be the left half (resp. the right half) of

an i-round input. Moreover, XL
i [j] (resp. XR

i [j]) denotes the jth bit of XL
i (resp.

XR
i ) from the left. MISTY1 is a 64-bit block cipher, and the key-bit length is 128

bits. The component function FOi consists of FIi,1, FIi,2, and FIi,3, and the
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four 16-bit round keys KOi,1, KOi,2, KOi,3, and KOi,4 are used. The function
FIi,j consists of S9 and S7, and a 16-bit round key KIi,j is used. Here, S9 and S7

are defined in Appendix A. The component function FLi uses two 16-bit round
keys, KLi,1 and KLi,2. These round keys are calculated from the secret key
(K1,K2, . . . ,K8) as

Symbol KOi,1 KOi,2 KOi,3 KOi,4 KIi,1 KIi,2 KIi,3 KLi,1 KLi,2

Key Ki Ki+2 Ki+7 Ki+4 K ′i+5 K ′i+1 K ′i+3 K i+1
2

(odd i) K ′i+1
2 +6

(odd i)

K ′i
2+2

(even i) K i
2+4 (even i)

Here, K ′i is the output of FIi,j where the input is Ki and the key is Ki+1.

3 Integral Characteristic by Division Property

3.1 Notations

We make the distinction between the addition of Fn2 and addition of Z, and
we use ⊕ and + as the addition of Fn2 and addition of Z, respectively. For any
a ∈ Fn2 , the ith element is expressed in a[i], and the Hamming weight w(a) is
calculated as w(a) =

∑n
i=1 a[i]. Moreover, a[i, . . . , j] denotes a bit string whose

elements are values described into square brackets. Let 1n ∈ Fn2 be a value whose
all elements are 1. Moreover, let 0n ∈ Fn2 be a value whose all elements are 0.

For any a ∈ (Fn1
2 × F

n2
2 × · · · × F

nm
2 ), the vectorial Hamming weight of a is

defined as W (a) = (w(a1), w(a2), . . . , w(am)) ∈ Zm. Moreover, for any k ∈ Zm

and k′ ∈ Zm, we define k � k′ if ki ≥ k′i for all i. Otherwise, a � b.

Boolean Function A Boolean function is a function from Fn2 to F2. Let deg(f)
be the algebraic degree of a Boolean function f . Algebraic Normal Form (ANF)
is often used as representations of the Boolean function. Let f be any Boolean
function from Fn2 to F2, and it can be represented as

f(x) =
⊕
u∈Fn

2

afu

(
n∏

i=1

x[i]u[i]

)
,

where afu ∈ F2 is a constant value depending on f and u. If deg(f) is at most d,
all afu satisfying d < w(u) are 0. An n-bit S-box can be regarded as the collection
of n Boolean functions. If algebraic degrees of n Boolean functions are at most
d, we say the algebraic degree of the S-box is at most d.

3.2 Integral Attack

An integral attack is one of the most powerful cryptanalyses against block ci-
phers. Attackers prepare N chosen plaintexts and get the corresponding cipher-
texts. If the XOR of all corresponding ciphertexts becomes 0, we say that the
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block cipher has an integral characteristic with N chosen plaintexts. In an in-
tegral attack, attackers first create an integral characteristic against a reduced-
round block cipher. Then, they guess the round keys that are used in the last
several rounds and calculate the XOR of the ciphertexts of the reduced-round
block cipher. Finally, they evaluate whether or not the XOR becomes 0. If the
XOR does not become 0, they can discard the guessed round keys from the
candidates of the correct key.

3.3 Division Property

A division property, which was proposed in [24], is used to search for integral
characteristics. We first prepare a set of plaintexts and evaluate the division
property of the set. Then, we propagate the division property and evaluate the
division property of the set of texts encrypted over one round. By repeating
the propagation, we show the division property of the set of texts encrypted
over some rounds. Finally, we can easily determine the existence of the integral
characteristic from the propagated division property.

Bit Product Function We first define two bit product functions πu and πu,
which are used to evaluate the division property of a multiset. Let πu : Fn2 → F2
be a function for any u ∈ Fn2 . Let x ∈ Fn2 be the input, and πu(x) is the AND of
x[i] satisfying u[i] = 1, i.e., it is defined as

πu(x) :=

n∏
i=1

x[i]u[i].

Let πu : (Fn1
2 × F

n2
2 × · · · × F

nm
2 ) → F2 be a function for any u ∈ (Fn1

2 × F
n2
2 ×

· · · × Fnm
2 ). Let x ∈ (Fn1

2 × F
n2
2 × · · · × F

nm
2 ) be the input, and πu(x) is defined

as

πu(x) :=

m∏
i=1

πui(xi).

Definition of Division Property The division property is given against a
multiset, and it is calculated by using the bit product function. Let X be an
input multiset whose elements take a value of (Fn1

2 × F
n2
2 × · · · × F

nm
2 ). In the

division property, we first evaluate a value of
⊕

x∈X πu(x) for all u ∈ (Fn1
2 ×

Fn2
2 × · · · × F

nm
2 ). Then, we divide the set of u into a subset whose evaluated

value becomes 0 and a subset whose evaluated value becomes unknown1. In [24],
the focus was on using the Hamming weight of elements of u to divide the set.

1 If we know all accurate values in a multiset, we can divide the set of u into subsets
whose evaluated value becomes 0 or 1. However, in the application to cryptanalysis,
we evaluate the values in the multiset whose elements are texts encrypted for several
rounds. Such elements change depending on the sub keys and the constant bit of
plaintexts. Therefore, we consider the subset whose evaluated value becomes 0 or
unknown.
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Definition 1 (Division Property). Let X be a multiset whose elements take
a value of (Fn1

2 × F
n2
2 × · · · × F

nm
2 ), and k is an m-dimensional vector whose ith

element takes a value between 0 and ni. When the multiset X has the division
property Dn1,n2,...,nm

k(1),k(2),...,k(q) , it fulfils the following conditions: The parity of πu(x)

over all x ∈ X is always even when

u ∈
{

(u1, . . . , um) ∈ (Fn1
2 × · · · × F

nm
2 ) |W (u) � k(1), . . . ,W (u) � k(q)

}
.

Moreover, the parity becomes unknown when u is used such that there exists an
i (1 ≤ i ≤ q) satisfying W (u) � k(i).

Assume that the multiset X has the division property Dn1,n2,...,nm

k(1),k(2),...,k(q) . If there

exist k(i) such that k
(i)
j is greater than 1,

⊕
x∈X xj becomes 0. See [24] to better

understand the concept in detail. Moreover, [22] shows an example, and it helps
us understand the division property.

Propagation Rules of Division Property Some propagation rules for the
division property are proven in [24]. We summarize them as follows.

Rule 1 (Substitution) Let F be a function that consists of m S-boxes, where
the bit length and the algebraic degree of the ith S-box is ni bits and di,
respectively. The input and the output take a value of (Fn1

2 ×F
n2
2 ×· · ·×F

nm
2 ),

and X and Y denote the input multiset and the output multiset, respectively.
Assuming that the multiset X has the division property Dn1,n2,...,nm

k(1),k(2),...,k(q) , the

division property of the multiset Y is Dn1,n2,...,nm

k′(1),k′(2),...,k′(q) as

k
′(j)
i =

⌈
k
(j)
i

di

⌉
for 1 ≤ i ≤ m, 1 ≤ j ≤ q.

Rule 2 (Copy) Let F be a copy function, where the input x takes a value
of Fn2 and the output is calculated as (y1, y2) = (x, x). Let X and Y be the
input multiset and output multiset, respectively. Assuming that the multiset
X has the division property Dn

k , the division property of the multiset Y is
Dn,n

k′(1),k′(2),...,k′(k+1) as

k′(i+1) = (k − i, i) for 0 ≤ i ≤ k.

Rule 3 (Compression by XOR) Let F be a function compressed by an XOR,
where the input (x1, x2) takes a value of (Fn2 × Fn2 ) and the output is cal-
culated as y = x1 ⊕ x2. Let X and Y be the input multiset and output
multiset, respectively. Assuming that the multiset X has the division prop-
erty Dn,n

k(1),k(2),...,k(q) , the division property of the multiset Y is Dn
k′ as

k′ = min{k(1)1 + k
(1)
2 , k

(2)
1 + k

(2)
2 , . . . , k

(q)
1 + k

(q)
2 }.

Here, if the minimum value of k′ is larger than n, the propagation charac-
teristic of the division property is aborted. Namely, a value of ⊕y∈Yπv(y) is
0 for all v ∈ Fn2 .
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Fig. 2. The difference between [24] and us. The left figure is an assumption used in
[24]. The right one is a new assumption used in this paper.

Rule 4 (Split) Let F be a split function, where the input x takes a value of
Fn2 and the output is calculated as x = y1‖y2, where (y1, y2) takes a value
of (Fn1

2 × F
n−n1
2 ). Let X and Y be the input multiset and output multiset,

respectively. Assuming that the multiset X has the division property Dn
k , the

division property of the multiset Y is Dn1,n−n1

k′(1),k′(2),...,k′(q) as

k′(i+1) = (k − i, i) for 0 ≤ i ≤ k.

Here, (k− i) is less than or equal to n1, and i is less than or equal to n−n1.
Rule 5 (Concatenation) Let F be a concatenation function, where the input

(x1, x2) takes a value of (Fn1
2 × F

n2
2 ) and the output is calculated as y =

x1‖x2. Let X and Y be the input multiset and output multiset, respectively.
Assuming that the multiset X has the division property Dn1,n2

k(1),k(2),...,k(q) , the

division property of the multiset Y is Dn1+n2

k′ as

k′ = min{k(1)1 + k
(1)
2 , k

(2)
1 + k

(2)
2 , . . . , k

(q)
1 + k

(q)
2 }.

4 Division Property for Public Function

In an assumption of [24], attackers cannot know the specification of an S-box
and only know the algebraic degree of the S-box. However, many specific block
ciphers usually use a public S-box and an addition of secret sub keys, where
an XOR is especially used for the addition. In this paper, we show that the
propagation characteristic of the division property can be improved if an S-box
is a public function. The difference between [24] and us is shown in Fig. 2.

We consider the propagation characteristic of the division property against
the function shown in the right figure in Fig. 2. The key XORing first be applied,
but it does not affect the division property because it is a linear function. There-
fore, when we evaluate the propagation characteristic of the division property,
we can remove the key XORing. Next, a public S-box is applied, and we can
determine the ANF of the S-box. Assuming that an S-box is a function from n
bits to m bits, the ANF is represented as

y[1] = f1(x[1], x[2], . . . , x[n]),

y[2] = f2(x[1], x[2], . . . , x[n]),

...

y[m] = fm(x[1], x[2], . . . , x[n]),
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where x[i] (1 ≤ i ≤ n) is an input, y[j] (1 ≤ j ≤ m) is an output, and fj (1 ≤ j ≤
m) is a Boolean function. The division property evaluates the input multiset and
output one by using the bit product function πu, and we then divide the set of
u into a subset whose evaluated value becomes 0 and a subset whose evaluated
value becomes unknown. Namely, we evaluate the equation

Fu(x[1], x[2], . . . , x[n]) =

m∏
i=1

fi(x[1], x[2], . . . , x[n])u[i]

and divide the set of u. In [24], a fundamental property of the product of some
functions is used, i.e., the algebraic degree of Fu is at most w(u) × d if the
algebraic degree of functions fi is at most d. However, since we now know the
ANF of functions f1, f2, . . . , fm, we can calculate the accurate algebraic degree
of Fu for all u ∈ Fn2 . In this case, if the algebraic degree of Fu is less than
w(u) × d for all u for which w(u) is constant, we can improve the propagation
characteristic.

4.1 Application to MISTY S-boxes

Evaluation of S7 The S7 of MISTY is a 7-bit S-box with degree 3. We show
the ANF of S7 in Appendix A. We evaluate the property of (πv ◦ S7) to get
the propagation characteristic of the division property. The algebraic degree
of (πv ◦ S7) increases in accordance with the Hamming weight of v, and it is
summarized as follows.

w(v) 0 1 2 3 4 5 6 7
degree 0 3 5 5 6 6 6 7

If we replace the S7 with a modified S-box, which is randomly chosen from all
7-bit S-boxes with degree 3, the algebraic degree of (πv ◦ S) is at least 6 with
w(v) ≥ 2. However, for the S7, the increment of the algebraic degree is bounded
by 5 with w(v) = 2 or w(v) = 3 holds2. Thus, the propagation characteristic is
represented as the following.

D7
k for input set X D7

0 D7
1 D7

2 D7
3 D7

4 D7
5 D7

6 D7
7

D7
k for output set Y D7

0 D7
1 D7

1 D7
1 D7

2 D7
2 D7

4 D7
7

Notice that the division property D7
4 is propagated from the division property

D7
6. Assuming that the modified S-box is applied, the division property D7

2 is
propagated from the division property D7

6 [24]. Therefore, the deterioration of
the division property for the S7 is smaller than that for any 7-bit S-box.

Evaluation of S9 The S9 of MISTY is a 9-bit S-box with degree 2. We show
the ANF of S7 in Appendix A. We evaluate the property of (πv ◦ S9) to get
the propagation characteristic of the division property. The algebraic degree
of (πv ◦ S9) increases in accordance with the Hamming weight of v, and it is
summarized as follows.
2 This observation was also provided by Theorem 3.1 in [4].
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w(v) 0 1 2 3 4 5 6 7 8 9
degree 0 2 4 6 8 8 8 8 8 9

Thus, the propagation characteristic is represented as

D9
k for input set X D9

0 D9
1 D9

2 D9
3 D9

4 D9
5 D9

6 D9
7 D9

8 D9
9

D9
k for output set Y D9

0 D9
1 D9

1 D9
2 D9

2 D9
3 D9

3 D9
4 D9

4 D9
9

Unlike the propagation characteristic of the division property for S7, that for S9

is the same as that for any 9-bit S-box with degree 2.

5 New Integral Characteristic

This section shows how to create integral characteristics on MISTY1 by using
the propagation characteristic of the division property. We first evaluate the
propagation characteristic for the component functions of MISTY1, i.e., the
FI function, the FO function, and the FL layer. Finally, by assembling these
characteristics, we create an algorithm to search for integral characteristics on
MISTY1.

5.1 Division Property for FI function

We evaluate the propagation characteristic of the division property for the FI
function by using those for MISTY S-boxes shown in Sect. 4.1. Since there are
a zero-extended XOR and a truncated XOR in the FI function, we use a new
representation, in which the internal state is expressed in two 7-bit values and
one 2-bit value. Figure 3 shows the structure of the FI function with our repre-
sentation, where we remove the XOR of sub keys because it does not affect the
division property.

Let X1 be the input multiset of the FI function. We define every multiset
X2,X3, . . . ,X11 in Fig. 3. Here, elements of the multiset X1, X5, X6, and X11 take
a value of (F72 × F22 × F72). Elements of the multiset X2, X3, X8, and X9 take a
value of (F92 × F72). Elements of the multiset X4, X7, and X10 take a value of
(F22 × F72 × F72). Since elements of X1 and X11 take a value of (F72 × F22 × F72),
the propagation for the FI function is calculated on D7,2,7

k(1),k(2),...,k(q) . Here, the

propagation is calculated with the following steps.
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Algorithm 1 Propagation for FI function

1: procedure FIEval(k1, k2, k3)
2: k(1),k(2), . . . ,k(q) ⇐ S9Eval(k) . X1 → X5

3: k(1),k(2), . . . ,k(q) ⇐ S7Eval(k(1),k(2), . . . ,k(q)) . X5 → X7

4: k(1),k(2), . . . ,k(q) ⇐ S9Eval(k(1),k(2), . . . ,k(q)) . X7 → X11

5: return SizeReduce(k(1),k(2), . . . ,k(q))
6: end procedure

1: procedure S9Eval(k(1), . . . ,k(q))
2: q′ ⇐ 0
3: for i⇐ 1 to q do
4: (`, c, r)⇐ (k

(i)
1 , k

(i)
2 , k

(i)
3 )

5: k ⇐ ` + c
6: if k < 9 then
7: k ⇐ dk/2e
8: end if
9: for c′ ⇐ 0 to min(2, k) do

10: for x⇐ 0 to r do
11: `′ ⇐ r − x
12: r′ ⇐ k − c′ + x
13: if r′ ≤ 7 then
14: q′ ⇐ q′ + 1
15: k′(q′) ⇐ (`′, c′, r′)
16: end if
17: end for
18: end for
19: end for
20: return k′(1),k′(2), . . . ,k′(q′)

21: end procedure

22: procedure S7Eval(k(1), . . . ,k(q))
23: q′ ⇐ 0
24: for i⇐ 1 to q do
25: (`, c, r)⇐ (k

(i)
1 ,k

(i)
2 ,k

(i)
3 )

26: k ⇐ `
27: if k = 6 then
28: k ⇐ 4
29: else if k < 6 then
30: k ⇐ dk/3e
31: end if
32: for x⇐ 0 to r do
33: `′ ⇐ c
34: c′ ⇐ r − x
35: r′ ⇐ k + x
36: if r′ ≤ 7 then
37: q′ ⇐ q′ + 1
38: k′(q′) ⇐ (`′, c′, r′)
39: end if
40: end for
41: end for
42: return k′(1),k′(2), . . . ,k′(q′)

43: end procedure

From X1 to X2: A 9-bit value is created by concatenating the first 7-bit value
with the second 2-bit value. The propagation characteristic can be evaluated
by using Rule 5.

From X2 to X3: The 9-bit S-box S9 is applied to the first 9-bit value. The
propagation characteristic can be evaluated by using Rule 1.

From X3 to X4: The 9-bit output value is split into a 2-bit value and a 7-bit
value. The propagation characteristic can be evaluated by using Rule 4.

From X4 to X5: The second 7-bit value is XORed with the last 7-bit value, and
then, the order is rotated. The propagation characteristic can be evaluated
by using Rule 2 and Rule 3.

From X5 to X6: The 7-bit S-box S7 is applied to the first 7-bit value. The
propagation characteristic can be evaluated by using Rule 1.

From X6 to X7: The first 7-bit value is XORed with the last 7-bit value, and
then, the order is rotated. The propagation characteristic can be evaluated
by using Rule 2 and Rule 3.
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FI FIFI

Fig. 4. Structure of FO function

From X7 to X8: A 9-bit value is created by concatenating the first 2-bit value
with the second 7-bit value. The propagation characteristic can be evaluated
by using Rule 5.

From X8 to X11: The propagation characteristic is the same as that from X2

to X5.

Algorithm 1 creates the propagation characteristic table for the FI function. It
calls SizeReduce, where redundant elements are eliminated, i.e., it eliminates
k(i) if there exists j satisfying k(i) � k(j). Algorithm 1 only creates the propaga-
tion characteristic table for which the input property is represented by D7,2,7

k . If
any input multiset is evaluated, we need to know the propagation characteristic
of D7,2,7

k(1),k(2),...,k(q) . However, we do not evaluate such propagation in advance

because it can easily be evaluated by the table for which the input property is
represented by D7,2,7

k . We create all propagation characteristic tables by imple-
menting Algorithm 1 and experimentally confirm that Algorithm 1 creates the
correct tables.

5.2 Division Property for FO function

We next evaluate the propagation characteristic of the division property for the
FO function by using the propagation characteristic table of the FI function.
Figure 4 shows the structure of the FO function, where we remove the XOR of
sub keys because it does not affect the division property. The input and output
of the FO function take the value of (F72 × F22 × F72 × F72 × F22 × F72). Therefore,
the propagation for the FO function is calculated on D7,2,7,7,2,7

k(1),k(2),...,k(q) .

Similar to that for the FI function, we create the propagation characteristic
table for the FO function (see Algorithm 2). We create only a table for which
the input property is represented by D7,2,7,7,2,7

k and the output property is rep-

resented by D7,2,7,7,2,7
k(1),k(2),...,k(q) .

5.3 Division Property for FL Layer

MISTY1 has the FL layer, which consists of two FL functions and is applied
once every two rounds. In the FL function, the right half of the input is XORed
with the AND between the left half and a sub key KLi,1. Then, the left half of
the input is XORed with the OR between the right half and a sub key KLi,2.

Since the input and the output of the FL function take the value of F72 ×
F22 × F72 × F72 × F22 × F72, the propagation for the FL function is calculated on
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Algorithm 2 Propagation for FO function

1: procedure FOEval(k1, k2, k3, k4, k5, k6)
2: k(1),k(2), . . . ,k(q) ⇐ FORound(k)
3: k(1),k(2), . . . ,k(q) ⇐ FORound(k(1),k(2), . . . ,k(q))
4: k(1),k(2), . . . ,k(q) ⇐ FORound(k(1),k(2), . . . ,k(q))
5: return SizeReduce(k(1),k(2), . . . ,k(q))
6: end procedure

1: procedure FORound(k(1),k(2), . . . ,k(q))
2: q′ ⇐ 0
3: for i = 1 to q do
4: y(1),y(2), . . . ,y(qy) ⇐ FIEval(k

(i)
1 , k

(i)
2 , k

(i)
3 )

5: for j = 1 to qy do

6: for all x s.t. (x1 ≤ k
(i)
4 ) ∧ (x2 ≤ k

(i)
5 ) ∧ (x3 ≤ k

(i)
6 ) do

7: k′ ⇐ (k
(i)
4 − x1, k

(i)
5 − x2, k

(i)
6 − x3, y

(j)
1 + x1, y

(j)
2 + x2, y

(j)
3 + x3)

8: if (k′
4 ≤ 7) ∧ (k′

5 ≤ 2) ∧ (k′
6 ≤ 7) then

9: q′ ⇐ q′ + 1
10: k′(q′) ⇐ k′

11: end if
12: end for
13: end for
14: end for
15: return k′(1),k′(2), . . . ,k′(q′)

16: end procedure

D7,2,7,7,2,7
k(1),k(2),...,k(q) . FlEval in Algorithm 3 calculates the propagation characteris-

tic table for the FL function, where SizeReduce eliminates k(i) if there exists
j satisfying k(i) � k(j). Moreover, the FL layer consists of two FL functions.
Therefore, we have to consider the propagation characteristic of the division
property D7,2,7,7,2,7,7,2,7,7,2,7

k , where each FL function is applied to the left half
and the right one. FlLayerEval in Algorithm 3 calculates the propagation char-
acteristic of the division property for the FL layer.

5.4 Path Search for Integral Characteristic on MISTY1

We created the propagation characteristic table for the FI and FO functions in
Sect. 5.1 and 5.2, respectively. Moreover, we showed the propagation characteris-
tic for the FL layer in Sect. 5.3. By assembling these propagation characteristics,
we create an algorithm to search for integral characteristics on MISTY1. Since
the input and the output are represented as eight 7-bit values and four 2-bit
values, the propagation is calculated on D7,2,7,7,2,7,7,2,7,7,2,7

k(1),k(2),...,k(q) .

The FL layer is first applied to plaintexts, and it deteriorates the propagation
of the division property. Therefore, we first remove only the first FL layer and
search for integral characteristics on MISTY1 without the first FL layer. The
method for passing through the first FL layer is shown in the next paragraph.
Algorithm 4 shows the search algorithm for integral characteristics on MISTY1
without the first FL layer.
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Algorithm 3 Propagation for FL layer

1: procedure FlEval(k1, k2, . . . , k6)
2: q′ ⇐ 0
3: (`, c, r)⇐ (k1 + k4, k2 + k5, k3 + k6)
4: for k′

1 ⇐ 0 to min(7, `) do
5: for k′

2 ⇐ 0 to min(2, c) do
6: for k′

3 ⇐ 0 to min(7, r) do
7: (k′

4, k
′
5, k

′
6)⇐ (`− k′

1, c− k′
2, r − k′

3)
8: if (k′

4 ≤ 7) ∧ (k′
5 ≤ 2) ∧ (k′

6 ≤ 7) then
9: q′ ⇐ q′ + 1

10: k′(q′) ⇐ (k′
1, k

′
2, k

′
3, k

′
4, k

′
5, k

′
6)

11: end if
12: end for
13: end for
14: end for
15: return SizeReduce(k(1),k(2), . . . ,k(q′))
16: end procedure

1: procedure FlLayerEval(k(1),k(2), . . . ,k(q))
2: q′ ⇐ 0
3: for i⇐ 1 to q do
4: `(1), `(2), . . . , `(q`) ⇐ FlEval(k

(i)
1 , k

(i)
2 , . . . , k

(i)
6 )

5: r(1), r(2), . . . , r(qr) ⇐ FlEval(k
(i)
7 , k

(i)
8 , . . . , k

(i)
12 )

6: for j ⇐ 1 to q` do
7: for j′ ⇐ 1 to qr do
8: q′ ⇐ q′ + 1

9: k′(q′) ⇐ (`
(j)
1 , `

(j)
2 , `

(j)
3 , `

(j)
4 , `

(j)
5 , `

(j)
6 , r

(j′)
1 , r

(j′)
2 , r

(j′)
3 , r

(j′)
4 , r

(j′)
5 , r

(j′)
6 )

10: end for
11: end for
12: end for
13: return (k′(1),k′(2), . . . ,k′(q′))
14: end procedure

As a result, we can construct 6-round integral characteristics without the first
and last FL layers. Each characteristic uses 263 chosen plaintexts, where any one
bit of the first seven bits is constant and the others take all values. Figure 5 shows
the 6-round integral characteristic, where the bit strings labeled B, i.e., the first
7 bits and last 32 bits, are balanced. Notice that the 6-round characteristic
becomes a 7-round characteristic if the FL layer that is inserted after the 6th
round is removed. Compared with the previous 4-round characteristic [10, 25],
our characteristic is improved by two rounds.

As shown in Sect. 4, the S7 of MISTY1 has the vulnerable property that
D7

4 is provided from D7
6. Interestingly, assuming that S7 does not have this

property (change lines 27–31 in S7Eval), our algorithm cannot construct the
6-round characteristic.

We already know that MISTY1 has the 14th order differential characteristic,
which is shown in [23], and the principle was also discussed in [1, 5]. We also eval-



14 Yosuke Todo

Algorithm 4 Path search for r-round characteristics without first FL layer

1: procedure RoundFuncEval(k(1),k(2), . . . ,k(q))
2: q′ = 0
3: for i⇐ 1 to q do
4: for all x s.t. xj ≤ k

(i)
j for all j = 1, 2, . . . , 6 do

5: (r1, r2, r3)⇐ (k
(i)
1 − x1, k

(i)
2 − x2, k

(i)
3 − x3)

6: (r4, r5, r6)⇐ (k
(i)
4 − x4, k

(i)
5 − x5, k

(i)
6 − x6)

7: y(1),y(2), . . . ,y(qy) ⇐ FOEval(x1, x2, x3, x4, x5, x6)
8: for i′ ⇐ 1 to qy do

9: (`1, `2, `3)⇐ (k
(i)
7 + y

(i′)
1 , k

(i)
8 + y

(i′)
2 , k

(i)
9 + y

(i′)
3 )

10: (`4, `5, `6)⇐ (k
(i)
10 + y

(i′)
4 , k

(i)
11 + y

(i′)
5 , k

(i)
12 + y

(i′)
6 )

11: if `j′ ≤ 7 for j′ ∈ {1, 3, 4, 6} and `j′ ≤ 2 for j′ ∈ {2, 5} then
12: q′ ⇐ q′ + 1
13: k′(q′) ⇐ (`1, `2, `3, `4, `5, `6, r1, r2, r3, r4, r5, r6)
14: end if
15: end for
16: end for
17: end for
18: return SizeReduce(k′(1),k′(2), . . . ,k′(q′))
19: end procedure

1: procedure Misty1Eval(k1, k2, . . . , k12, r)
2: k(1),k(2), . . . ,k(q) ⇐ RoundFuncEval(k) . 1st round
3: for i = 1 to r do
4: if i is even then
5: k(1),k(2), . . . ,k(q) ⇐ FlLayerEval(k(1),k(2), . . . ,k(q)) . FL Layer
6: end if
7: k(1),k(2), . . . ,k(q) ⇐ RoundFuncEval(k(1),k(2), . . . ,k(q)) . (i+1)th round
8: end for
9: end procedure

uate the principle of the characteristic by using the propagation characteristic
of the division property. As a result, we confirm that the characteristic always
exists if each algebraic degree S9 and S7 is 2 and 3, respectively. This result
implies that the existence of the 14th order differential characteristic is only de-
rived from the algebraic degree of S-boxes. Namely, even if different S-boxes are
chosen in S7 and S9, the 14th order differential characteristic exists unless the
algebraic degree increases.

Passage of First FL Layer Our new characteristic removes the first FL layer.
Therefore, we have to create a set of chosen plaintexts to construct integral
characteristics by using guessed round keys KL1,1 and KL1,2. Here, we have to
carefully choose the set of chosen plaintexts to avoid the use of the full code
book (see Fig. 6, Fig. 7, and Fig. 8). In every figure, Ai denotes for which we
prepare an input set that i bits are active. As an example, we consider an integral
characteristic for which the first one bit is constant and the remaining 63 bits are
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FL FL

FO

FO

FL FL

Fig. 5. New 6-round integral characteristic

KL1,1

KL1,2

(0A15  0A15)
(0A15  1A15)

(1A15  A16)

KL1,2[1]=1

KL1,1[1]=*

Fig. 6. KL1,2 = 1

KL1,1

KL1,2

(0A15  1A15)
(1A15  0A15)

(1A15  A16)

KL1,2[1]=0

KL1,1[1]=0

Fig. 7. KL1,1 = 0,KL1,2 = 0

KL1,1

KL1,2

(0A15  0A15)
(1A15  0A15)

(0A15  A16)

KL1,2[1]=0

KL1,1[1]=1

Fig. 8. KL1,1 = 1,KL1,2 = 0

active. Since all bits of the right half are active, we focus only on the left half. We
first guess that KL1,2[1] = 1, and we then prepare the set of plaintexts like in
Fig. 6. We next guess that (KL1,1[1],KL1,2[1]) = (0, 0), and we then prepare the
set of plaintexts like in Fig. 7. Moreover, we guess that (KL1,1[1],KL1,2[1]) =
(1, 0), and we then prepare the set of plaintexts like in Fig. 8. Their chosen
plaintexts construct 6-round integral characteristics if the guessed key bits are
correct. Notice that we do not use 262 chosen plaintexts as (1A15 1A15 A16 A16).
Thus, our integral characteristics use 264 − 262 ≈ 263.58 chosen plaintexts.

6 Key Recovery Using New Integral Characteristic

This section shows the key recovery step of our cryptanalysis, which uses the
6-round integral characteristic shown in Sect. 5. In the characteristic, the left
7-bit value of XL

7 is balanced. To evaluate this balanced seven bits, we have to
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S9 S9S7 S9 S9S7 S9 S9S7

BUU UUU

C  [1-16]L C  [17-32]L C  [j]R C  [16+j]R

S9 S9S7 S9 S9S7 S9 S9S7

Fig. 9. Key recovery step

Table 2. Procedure of key recovery step

Step Guessed key #guessed New Discarded values #texts Values in set Complexity
total bits value

1 0 234 CL, CR[j, 16 + j]
2 K1,K

′
7 32 XR

9 CL 234 XR
9 , CR[j, 16 + j] 234+32 = 266

3 K8,K
′
5 64 D1 XR

9 [1, . . . , 16] 234 D1, X
R
9 [17, . . . , 32], CR[j, 16 + j] 234+64 = 298

4 K′
3[j], (K7) 65 D2[j] D1 w/oD1[j] 220 D1[j], D2[j], XR

9 [17, . . . , 32], CR[j, 16 + j] 234+65 = 299

5 K2, (K
′
1[j]) 81 D3[j] XR

9 [17, . . . , 32], D1[j] 24 D2[j], D3[j], CR[j, 16 + j] 220+81 = 2101

6 K5[j],K′
2[j] 83 XL

7 [j] D2[j], D3[j], CR[j, 16 + j] 21 XL
7 [j] 24+83 = 287

calculate two FL layers and one FO function by using the guessed round keys.
Figure 9 shows the structure of our key recovery step.

6.1 Sub Key Recovery Using Partial-Sum Technique

We guess KL1,1[i](= K1[i]) and KL1,2[i](= K ′7[i]) and then prepare a set of
chosen plaintexts to construct an integral characteristic. In the characteristic,
seven bitsXL

7 [1, . . . , 7] are balanced. Therefore, we evaluate whether or notXL
7 [j]

is balanced for j ∈ {1, 2, . . . , 7} by using a partial-sum technique [9].
In the first step, we store the frequency of 34 bits (CL, CR[j, 16 + j]) into a

voting table for j ∈ {1, 2, . . . , 7}. Then, we partially guess round keys, discard the
size of the voting table, and calculate the XOR of XL

7 [j]. Table 2 summarizes the
procedure of the key recovery step, where every value is defined in Fig. 9. Since
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the time complexity is the sum of all steps, the time complexity is about 2101.5.
When we repeat the procedure for seven balanced bits, the time complexity
becomes 7× 2101.5 = 2104.3.

The key recovery step has to guess the 124-bit key

K1,K2,K5[1, . . . , 7],K7,K8,

K ′1[1, . . . , 7],K ′2[1, . . . , 7],K ′3[1, . . . , 7],K ′5,K
′
7.

Here, K ′7 and K ′1[1, . . . , 7] are uniquely determined by guessing K7,K8 and
K1,K2, respectively. Thus, the guessed key bit size is reduced to

K1,K2,K5[1, . . . , 7],K7,K8,

K ′2[1, . . . , 7],K ′3[1, . . . , 7],K ′5,

and it becomes 101 bits. Moreover, since we already guessed 2 bits, i.e., K1[i] and
K ′7[i], to construct integral characteristics, the guessed key bit size is reduced
to 99 bits. For wrong keys, the probability that XL

7 [1, . . . , 7] is balanced is 2−7.
Therefore, the number of the candidates of round keys is reduced to 292. Finally,
we guess the 27 bits:

K5[8, . . . , 16],K ′2[8, . . . , 16],K ′3[8, . . . , 16].

Notice that K3, K4, and K6 are uniquely determined from (K2,K
′
2), (K3,K

′
3),

and (K5,K
′
5), respectively. Therefore, the total time complexity is 292+27 = 2119.

We guess the correct key from 2119 candidates by using two plaintext-ciphertext
pairs, and the time complexity is 2119 + 2119−64 ≈ 2119. We have to execute the
above procedure against (K1[i],K ′7[i]) = (0, 0), (0, 1), (1, 0), (1, 1), and the time
complexity becomes 4× 2119 = 2121.

6.2 Trade-off between Time and Data Complexity

In Sect. 6.1, we use only one set of chosen plaintexts, where (264 − 262) chosen
plaintexts are required. Since the probability that wrong keys are not discarded
is 2−7, a brute-force search is required with a time complexity of 2128−7 = 2119,
and it is larger than the time complexity of the partial-sum technique. Therefore,
if we have a higher number of characteristics, the total time complexity can be
reduced.

To prepare several characteristics, we choose some constant bits from seven
bits (i ∈ {1, 2, . . . , 7}). If we use a characteristic with i = 1, we use chosen
plaintexts for which plaintext PL takes the following values

(00A14 00A14), (00A14 01A14), (01A14 00A14), (01A14 01A14),

(00A14 10A14), (00A14 11A14), (01A14 10A14), (01A14 11A14),

(10A14 00A14), (10A14 01A14), (11A14 00A14), (11A14 01A14),

where A14 denotes that all values appear the same number independent of other
bits, e.g., (00A14 00A14) uses 260 chosen plaintexts because PR also takes all



18 Yosuke Todo

Table 3. Trade-off between time and data complexity

#characteristics Complexity for partial-sum Complexity for brute-force Total

1 2104.3 2121 2121

2 2105.3 2114 2114

3 2106.3 2107 2107.7

4 2107.3 2100 2107.3

5 2108.3 293 2108.3

values. Moreover, if we use a characteristic with i = 2, we use chosen plaintexts
for which PL takes the following values

(00A14 00A14), (00A14 10A14), (10A14 00A14), (10A14 10A14),

(00A14 01A14), (00A14 11A14), (10A14 01A14), (10A14 11A14),

(01A14 00A14), (01A14 10A14), (11A14 00A14), (11A14 10A14).

When both characteristics are used, they do not require choosing plaintexts for
which PL takes (11A14 11A14). Therefore, (264 − 260) chosen plaintexts are
required, and the probability that wrong keys are not discarded becomes 2−14.
Similarly, when three characteristics, which require (264−258) chosen plaintexts,
are used, the probability that wrong keys are not discarded becomes 2−21.

Table 3 summarizes the trade-off between time and data complexity, and
it shows that the use of four characteristics is optimized from the perspective
of time complexity. Namely, when (264 − 256) ≈ 263.994 chosen plaintexts are
required, the time complexity to recovery the secret key is 2107.3.

7 Conclusions

In this paper, we showed a cryptanalysis of the full MISTY1. MISTY1 was well
evaluated and standardized by several projects, such as CRYPTREC, ISO/IEC,
and NESSIE. We constructed a new integral characteristic by using the prop-
agation characteristic of the division property. Here, we improved the division
property by optimizing a public S-box. As a result, a new 6-round integral char-
acteristic is constructed, and we can recover the secret key of the full MISTY1
with 263.58 chosen plaintexts and 2121 time complexity. If we can use 263.994

chosen plaintexts, our attack can recover the secret key with a time complexity
of 2107.3.
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A MISTY S-boxes

The ANF of S7 is represented as

y[0] = x[0]⊕ x[1]x[3]⊕ x[0]x[3]x[4]⊕ x[1]x[5]⊕ x[0]x[2]x[5]⊕ x[4]x[5]

⊕ x[0]x[1]x[6]⊕ x[2]x[6]⊕ x[0]x[5]x[6]⊕ x[3]x[5]x[6]⊕ 1,

y[1] = x[0]x[2]⊕ x[0]x[4]⊕ x[3]x[4]⊕ x[1]x[5]⊕ x[2]x[4]x[5]⊕ x[6]⊕ x[0]x[6]

⊕ x[3]x[6]⊕ x[2]x[3]x[6]⊕ x[1]x[4]x[6]⊕ x[0]x[5]x[6]⊕ 1,

y[2] = x[1]x[2]⊕ x[0]x[2]x[3]⊕ x[4]⊕ x[1]x[4]⊕ x[0]x[1]x[4]⊕ x[0]x[5]⊕ x[0]x[4]x[5]

⊕ x[3]x[4]x[5]⊕ x[1]x[6]⊕ x[3]x[6]⊕ x[0]x[3]x[6]⊕ x[4]x[6]⊕ x[2]x[4]x[6],

y[3] = x[0]⊕ x[1]⊕ x[0]x[1]x[2]⊕ x[0]x[3]⊕ x[2]x[4]⊕ x[1]x[4]x[5]⊕ x[2]x[6]

⊕ x[1]x[3]x[6]⊕ x[0]x[4]x[6]⊕ x[5]x[6]⊕ 1,

y[4] = x[2]x[3]⊕ x[0]x[4]⊕ x[1]x[3]x[4]⊕ x[5]⊕ x[2]x[5]⊕ x[1]x[2]x[5]⊕ x[0]x[3]x[5]

⊕ x[1]x[6]⊕ x[1]x[5]x[6]⊕ x[4]x[5]x[6]⊕ 1,

y[5] = x[0]⊕ x[1]⊕ x[2]⊕ x[0]x[1]x[2]⊕ x[0]x[3]⊕ x[1]x[2]x[3]⊕ x[1]x[4]

⊕ x[0]x[2]x[4]⊕ x[0]x[5]⊕ x[0]x[1]x[5]⊕ x[3]x[5]⊕ x[0]x[6]⊕ x[2]x[5]x[6],

y[6] = x[0]x[1]⊕ x[3]⊕ x[0]x[3]⊕ x[2]x[3]x[4]⊕ x[0]x[5]⊕ x[2]x[5]⊕ x[3]x[5]

⊕ x[1]x[3]x[5]⊕ x[1]x[6]⊕ x[1]x[2]x[6]⊕ x[0]x[3]x[6]⊕ x[4]x[6]⊕ x[2]x[5]x[6].

Moreover, the ANF of S9 is represented as

y[0] = x[0]x[4]⊕ x[0]x[5]⊕ x[1]x[5]⊕ x[1]x[6]⊕ x[2]x[6]⊕ x[2]x[7]⊕ x[3]x[7]⊕ x[3]x[8]

⊕ x[4]x[8]⊕ 1,

y[1] = x[0]x[2]⊕ x[3]⊕ x[1]x[3]⊕ x[2]x[3]⊕ x[3]x[4]⊕ x[4]x[5]⊕ x[0]x[6]⊕ x[2]x[6]

⊕ x[7]⊕ x[0]x[8]⊕ x[3]x[8]⊕ x[5]x[8]⊕ 1,

y[2] = x[0]x[1]⊕ x[1]x[3]⊕ x[4]⊕ x[0]x[4]⊕ x[2]x[4]⊕ x[3]x[4]⊕ x[4]x[5]⊕ x[0]x[6]

⊕ x[5]x[6]⊕ x[1]x[7]⊕ x[3]x[7]⊕ x[8],

y[3] = x[0]⊕ x[1]x[2]⊕ x[2]x[4]⊕ x[5]⊕ x[1]x[5]⊕ x[3]x[5]⊕ x[4]x[5]⊕ x[5]x[6]

⊕ x[1]x[7]⊕ x[6]x[7]⊕ x[2]x[8]⊕ x[4]x[8],

y[4] = x[1]⊕ x[0]x[3]⊕ x[2]x[3]⊕ x[0]x[5]⊕ x[3]x[5]⊕ x[6]⊕ x[2]x[6]⊕ x[4]x[6]

⊕ x[5]x[6]⊕ x[6]x[7]⊕ x[2]x[8]⊕ x[7]x[8],

y[5] = x[2]⊕ x[0]x[3]⊕ x[1]x[4]⊕ x[3]x[4]⊕ x[1]x[6]⊕ x[4]x[6]⊕ x[7]⊕ x[3]x[7]

⊕ x[5]x[7]⊕ x[6]x[7]⊕ x[0]x[8]⊕ x[7]x[8],

y[6] = x[0]x[1]⊕ x[3]⊕ x[1]x[4]⊕ x[2]x[5]⊕ x[4]x[5]⊕ x[2]x[7]⊕ x[5]x[7]⊕ x[8]

⊕ x[0]x[8]⊕ x[4]x[8]⊕ x[6]x[8]⊕ x[7]x[8]⊕ 1,

y[7] = x[1]⊕ x[0]x[1]⊕ x[1]x[2]⊕ x[2]x[3]⊕ x[0]x[4]⊕ x[5]⊕ x[1]x[6]⊕ x[3]x[6]

⊕ x[0]x[7]⊕ x[4]x[7]⊕ x[6]x[7]⊕ x[1]x[8]⊕ 1,

y[8] = x[0]⊕ x[0]x[1]⊕ x[1]x[2]⊕ x[4]⊕ x[0]x[5]⊕ x[2]x[5]⊕ x[3]x[6]⊕ x[5]x[6]

⊕ x[0]x[7]⊕ x[0]x[8]⊕ x[3]x[8]⊕ x[6]x[8]⊕ 1.


