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Abstract. In this paper, we present a simpler and more restricted vari-
ant of the universally composable security (UC) framework that is suit-
able for “standard” two-party and multiparty computation tasks. Many
of the complications of the UC framework exist in order to enable more
general tasks than classic secure computation. This generality may be a
barrier to entry for those who are used to the stand-alone model of secure
computation and wish to work with universally composable security but
are overwhelmed by the differences. The variant presented here (called
simplified universally composable security, or just SUC) is closer to the
definition of security for multiparty computation in the stand-alone set-
ting. The main difference is that a protocol in the SUC framework runs
with a fixed set of parties, and machines cannot be added dynamically to
the execution. As a result, the definitions of polynomial time and proto-
col composition are much simpler. In addition, the SUC framework has
authenticated channels built in, as is standard in previous definitions of
security, and all communication is done via the adversary in order to
enable arbitrary scheduling of messages. Due to these differences, not all
cryptographic tasks can be expressed in the SUC framework. Neverthe-
less, standard secure computation tasks (like secure function evaluation)
can be expressed. Importantly, we show that for every protocol that can
be represented in the SUC framework, the protocol is secure in SUC if
and only if it is secure in UC. Therefore, the UC composition theorem
holds and any protocol that is proven secure under SUC is secure under
the general framework (with some technical changes to the functionality
definition). As a result, protocols that are secure in the SUC framework
are secure when an a priori unbounded number of concurrent executions
of the protocols take place (relative to the same fixed set of parties).

1 Introduction

1.1 Background

The framework of universally composable security (UC) provides very strong
security guarantees. In particular, a protocol that is UC secure maintains its
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security properties when run together with many other arbitrary secure and in-
secure protocols. To be a little more exact, if a protocol π UC securely realizes
some ideal functionality F , then π will “behave just like F” in whatever arbi-
trary computational environment it is run. This security notion matches today’s
computational and network settings and thus has become the security definition
of choice in many cases.

One of the strengths of the UC framework is that it is possible to express
almost any cryptographic task as a UC ideal functionality, and it is possible to
express almost any network environment within the UC framework (e.g., authen-
ticated and unauthenticated channels, synchronous and asynchronous message
delivery, fair and unfair protocol termination, and so on). Unfortunately, this
generality and power of expression comes at the price of the UC formalization
being very complicated. It is important to note that many of these complica-
tions exist in order to enable general cryptographic tasks to be expressible within
the framework. For example digital signatures involve local computation alone,
and also have no a priori polynomial bound on how many signatures will be
generated (by an honest party) since the adversary can determine this. This is
very different from standard “secure computation tasks” that involve an a priori
known number of interactions between the honest parties.

In this paper, we present a simpler and more restricted variant of the univer-
sally composable security (UC) framework; we call this framework simple UC,
or SUC for short. Our simplified framework suffices for capturing classic secure
computation tasks like secure function evaluation, mental poker, and the like.
However, it does not capture more general tasks like digital signatures, and has
a more rigid network model (e.g., the set of parties is a priori fixed and au-
thenticated channels are built into the framework). These restrictions make the
formalization much simpler, and far closer to the classic stand-alone definition of
security which many are more familiar with. Importantly, our simplifications are
with respect to the expressibility of the framework and not the security guaran-
tees obtained. Thus, we can prove that any protocol that is expressed and proven
secure in the SUC framework is automatically secure also in the full UC frame-
work (relative to an appropriately modified ideal functionality). This means that
it is possible to work in the simpler SUC framework, and automatically obtain
security in the full UC framework. In Section 3, we provide an illustrative exam-
ple demonstrating that it is significantly more simple to work in the SUC model
than in the full UC model.

Remark: We assume familiarity with the ideal/real model paradigm and the
standard definitions of security for multiparty computation; see [3] and [15,
Chapter 7] for a detailed treatment on these definitions. In addition, we as-
sume that the reader has basic familiarity and understanding of the notion of
UC security. This paper is not intended as a tutorial of the UC framework.

1.2 An Informal Introduction to Universally Composable Security

We begin by informally outlining the framework for universally composable se-
curity [4, 7]. The framework provides a rigorous method for defining the security



of cryptographic tasks, while ensuring that security is maintained under concur-
rent general composition. This means that the protocol remains secure when run
concurrently with arbitrary other secure and insecure protocols. Protocols that
fulfill this definition of security are called universally composable.

As in other general definitions (e.g., [16, 25, 1, 27, 3, 15]), the security require-
ments of a given task (i.e., the functionality expected from a protocol that carries
out the task) are captured via a set of instructions for a “trusted party” that ob-
tains the inputs of the participants and provides them with the desired outputs
(in one or more iterations). We call the algorithm run by the trusted party an
ideal functionality. Since the trusted party just runs the ideal functionality, we do
not distinguish between them. Rather, we refer to interaction between the parties
and the functionality. Informally, a protocol securely carries out a given task if no
adversary can gain more from an attack on a real execution of the protocol, than
from an attack on an ideal process where the parties merely hand their inputs
to a trusted party with the appropriate functionality and obtain their outputs
from it, without any other interaction. In other words, it is required that a real
execution can be emulated in the above ideal process (where the meaning of
emulation is described below). We stress that in a real execution of the protocol,
no trusted party exists and the parties interact amongst themselves.

In order to prove the universal composition theorem, the notion of emulation
in the UC framework is considerably stronger than in previous ones. Tradition-
ally, the model of computation includes the parties running the protocol, plus
an adversary A that potentially corrupts some of the parties. In the setting of
concurrency, the adversary also has full control over the scheduling of messages
(i.e., it fully determines the order that messages sent between honest parties are
received); thus, the model is inherently asynchronous. Emulation means that for
any adversary A attacking a real protocol execution, there should exist an “ideal
process adversary” or simulator S, that causes the outputs of the parties in the
ideal process to be essentially the same as the outputs of the parties in a real
execution. In the universally composable framework, an additional adversarial
entity called the environment Z is introduced. This environment generates the
inputs to all parties, reads all outputs, and in addition interacts with the adver-
sary in an arbitrary way throughout the computation. (As is hinted by its name,
Z represents the external environment that consists of arbitrary protocol exe-
cutions that may be running concurrently with the given protocol.) A protocol
is said to UC-securely compute a given ideal functionality F if for any “real-life”
adversary A that interacts with the protocol there exists an “ideal-process ad-
versary” S, such that no environment Z can tell whether it is interacting with
A and parties running the protocol, or with S and parties that interact with F
in the ideal process. (In a sense, here Z serves as an “interactive distinguisher”
between a run of the protocol and the ideal process with access to F .) Note that
the definition requires the “ideal-process adversary” (or simulator) S to interact
with Z throughout the computation. Furthermore, Z cannot be “rewound”.

The following universal composition theorem is proven in [4, 7]: Consider a
protocol π that operates in a hybrid model of computation where parties can com-



municate as usual, and in addition have ideal access to an unbounded number of
copies of some ideal functionality F . (This model is called the F-hybrid model.)
Furthermore, let ρ be a protocol that UC-securely computes F as sketched above,
and let πρ be the “composed protocol”. That is, πρ is identical to ρ with the
exception that each interaction with the ideal functionality F is replaced with a
call to (or an activation of) an appropriate instance of the protocol ρ. Similarly,
ρ-outputs are treated as values provided by the functionality F . The theorem
states that in such a case, π and πρ have essentially the same input/output be-
haviour. Thus, ρ behaves just like the ideal functionality F , even when composed
concurrently with an arbitrary protocol π. This implies the notion of concurrent
general composition. A special case of the composition theorem states that if π
UC-securely computes some ideal functionality G in the F-hybrid model, then
πρ UC-securely computes G from scratch.

In order to model dynamic settings, the UC formulation enables programs
to dynamically generate other programs and dynamically determine their code,
and a control function must be defined to determine what operations are allowed
and not allowed. This model provides great flexibility, and enables one to model
almost any conceivable setting. However, this also adds considerable complexity
to the definition, in part due to subtleties that arise with respect to polynomial
time, and with respect to the communication rules [18, 19, 22].

1.3 The SUC Framework

The SUC framework is designed to be as similar as possible to the stand-alone
definitions of secure multiparty computation (cf. [3, 15]), with the addition of
an interactive environment as is required for proving concurrent general compo-
sition [23]. In this section we outline the SUC definition, and discuss the main
differences between it and the full UC framework.

An outline of the SUC framework. The SUC framework was designed
by starting with the stand-alone model of secure computation, and adding the
seemingly minimal changes required to obtain security under concurrent gen-
eral composition for standard secure computation tasks, without many of the
complications of the UC framework. Thus, in the SUC framework a fixed set of
parties interact with each other and/or with an ideal functionality (depending
on whether an execution is real, ideal or hybrid). An adversary may corrupt
some subset of the parties, in which case it sees their state and controls them in
the standard way depending on whether it is semi-honest or malicious. As in the
UC framework, an environment machine Z interacts with the adversary through-
out the computation and serves as an “interactive distinguisher” between a real
execution of the protocol and an ideal execution.

In order to model the fact that the adversary controls all message scheduling,
the parties (and any ideal functionality) are connected in a star configuration
via a router machine. The router queues all communication, and forwards mes-
sages only when instructed by the adversary. The adversary sees all the messages
sent, and delivers or blocks these messages at will. We note that although the



adversary may block messages, it cannot modify messages sent by honest parties
(i.e., the communication lines are ideally authenticated). Thus messages sent by
a party can arrive in a different order or not arrive at all, but cannot be forged
unless the adversary has corrupted the sending party. In order to model the fact
that inputs sent to ideal functionalities are private, the SUC framework defines
that any message between the parties and the ideal functionality is comprised of
a public header and private content. The public header contains any information
that is public and thus revealed to the adversary (e.g., the type of message is be-
ing sent or what its length is), whereas the private content contains information
that the adversary is not supposed to learn.

Composition is defined by replacing the Turing machine code for sending a
message to an ideal functionality by the Turing machine code of the protocol
that realizes the functionality. Thus, subroutines are executed internally as in
the sequential modular composition modeling in [3], unlike the modeling in the
full UC framework where subprotocols are invoked as separate ITMs.

The Main Differences Between UC and SUC

Defining polynomial time. In the UC framework, machines can be dynam-
ically added to the computation through the mechanism of an external write
instruction. Thus, bounding the running time of a single machine by a polyno-
mial does not guarantee that the overall computation is bounded by polynomial
time. For example, consider an execution with a single machine that generates
a copy of itself and halts. Clearly, each machine is polynomial time. However,
an execution of this machine will generate an infinite series of machines and will
thus never halt. This makes defining polynomial time in this setting difficult.
The definition in the UC framework states that a machine M runs in polyno-
mial time if it runs at most p(ñ) steps where p is a polynomial, and ñ is the
length of the input tape of M plus the security parameter, minus the length of
all the inputs M provides to other machines. It can be shown that under this
definition, the overall execution is bounded by a polynomial, and pathological
examples like the one provided above are ruled out.

In the SUC framework, machines cannot generate other machines, and the
set of all machines running is fixed ahead of time. Thus, the aforementioned
challenges do not arise. We can therefore define polynomial time in the more
standard way by simply requiring that each machine run in p(|x| + n) steps,
where |x| is the length of its input and n is the security parameter.

Authentication versus unauthenticated channels. The basic UC frame-
work has plain, unauthenticated channels; authenticated channels are obtained
via an ideal functionality Fauth that provides message authentication. However,
almost all secure computation protocols rely on authenticated channels and this
is the modeling used in [3, 15]. We therefore adopt authenticated channels as
the default in SUC, thus simplifying the description of protocols (formally, the
real model of computation in the SUC framework corresponds to the Fauth-
hybrid model of computation in the UC framework). Although this is mainly an
aesthetic difference, it makes protocol descriptions much more simple.



Defining composition. The dynamic generation of machines in the UC frame-
work also adds complications regarding defining composition. For example, se-
curity under composition is only guaranteed to hold for subroutine respecting
protocols, which places limitations on the input/output interface of machines
with other machines; see [4, Section 5.1]. These difficulties arise since when a
party calls a subroutine in the UC framework, the subroutine machine is a dis-
tinct machine. In order to simplify this issue, in the SUC framework a subroutine
call is simply a call to a local routine on the same machine, exactly as in the
formulation of sequential modular composition in [3].

We stress that although the number of parties in an SUC protocol is a priori
fixed, security is guaranteed under composition even when an unbounded num-
ber of instances of the protocol are run concurrently. This is obtained via the
SUC/UC composition theorem.

Expressibility. As we have mentioned, there are cryptographic tasks that can
be modeled in the UC framework, but not in the SUC framework. One class
of examples is non-interactive cryptographic primitives like digital signatures,
encryption, pseudorandom functions and so on. These cannot be modeled in the
SUC framework since any interaction with an ideal functionality requires com-
munication that goes via the router and thus its scheduling is controlled by the
adversary. This does not model the real-world behavior of local computation for
these primitives. Another example is that of protocols in synchronous networks
that guarantee output to all parties. This is not possible since the adversary
controls the scheduling and thus it is inherently asynchronous. In addition, the
adversary can always block messages. Despite this, the SUC framework suffices
for modeling any interactive protocol between parties in the most common model
of communication for the concurrent setting where the adversary has full control
over all message scheduling.

The UC security of SUC protocols. We define a transformation TP :
SUC → UC that translates SUC-protocols to UC-protocols, and a transforma-
tion φ that translates ideal functionalities from the SUC framework to the UC
framework. We prove that a protocol π SUC-securely computes some ideal func-
tionality F if and only if TP (π) UC-securely computes φ(F). SUC composition
is derived as a result. The implication is that one may build secure computation
protocols in SUC and automatically derive UC security without working with the
complex structures of the UC framework. Composition of SUC and UC protocols
can also be done freely. Since SUC is less expressive than UC, it is not possible
to express every functionality in SUC. SUC cannot replace UC, but is intended
as a convenient interface to the UC framework that offers the same security
standard, and can simplify the process of proving UC security of protocols.

Organization. Due to lack of space in this extended abstract, the proof of
equivalence between UC and SUC security is not included, and can be found
in the full version [9]. Although this proof is crucial to this work, our main
contribution is a simple model that can be used. As such, a presentation of the
framework, and a demonstration of why it is easier to use – as can be found in
Section 3 – covers the main goals.



1.4 Related Work

There has been considerable work in refining the UC framework and solving
all the subtleties that arise in the fully dynamic and concurrent setting [17, 18,
20]. In addition, there have been other frameworks developed to capture the
same setting of dynamic concurrency as that of the UC framework [24, 21, 19,
22, 27]. However, all of these attempt to capture the same generality of the
UC framework in alternative ways. In this work, we make no such attempt
and our aim is to capture concurrency for more restricted tasks and obtain a
simpler definition. Due to its simplicity, our work can also act as a bridge for
connecting the full UC framework with alternative formalisms like [26]. A similar
attempt at providing a simplified framework, but without a proof of equivalence,
also appeared in [28, Ch. 4].

2 The Simpler UC Model and Definition

In this section, we present a simpler variant of universally composable security
that is suitable for standard multiparty computation tasks. It does not have the
generality and expressibility of the full-fledged UC framework, but suffices for
classic secure computation tasks where a set of parties compute some function
of their inputs (a.k.a. secure function evaluation). It also suffices for reactive
computations where parties give inputs and get outputs in stages.

2.1 Preliminaries

We denote the security parameter by n. A function µ : N→ [0, 1] is negligible if
for every polynomial p(·) there exists a value n0 ∈ N such that for every n > n0

it holds that µ(n) < 1/p(n). All entities (parties, adversary, etc.) are interactive
Turing machines (ITM); each such machine has an input tape, an output tape, an
incoming communication tape, an outgoing communication tape, and a security
parameter tape. If the machine is probabilistic then it also has a random tape.
The value written on the security parameter tape is in unary.

We say that a machine is polynomial time if it runs in time that is polynomial
in the sum of the lengths of the values that are written on its input tape during
its execution plus the security parameter (note that in reactive computations
there may be many inputs). Thus, we require that there exists a polynomial q(·)
so that for any series of inputs x1, x2, ..., x` written on the machine’s input tape
throughout its lifetime, it always halts after at most q(n+|x1|+|x2|+· · ·+|x`|) =

q
(
n+

∑`
j=1 |xj |

)
steps. This is equivalent to saying that each machine receives

1n as its first input, and n is polynomial in the sum of the lengths of all its inputs.
It is important to note that even if the inputs are short (e.g., constant

length), a polynomial-time party can still run in time that is polynomial in
the security parameter in every invocation. In order to see this, observe that(
n+

∑`
j=1 |xj |

)2

>
∑`
j=1 n · |xj | and thus a machine that runs in time nc in ev-

ery invocation is polynomial-time by taking q(n+
∑`
j=1 |xj |) = (n+

∑`
j=1 |xj |)2c.

Interactive Turing machines. The formal definition of interactive Turing
machines (ITMs) can be found in the full version.



2.2 The Communication and Execution Models

We consider a network where the adversary sees all the messages sent, and de-
livers or blocks these messages at will. We note that although the adversary
may block messages, it cannot modify messages sent by honest parties (i.e., the
communication lines are ideally authenticated). We consider a completely asyn-
chronous point-to-point network, and thus the adversary has full control over
when messages are delivered, if at all. We now formally specify the communi-
cation and execution model. This general model is the same for the real, ideal
and hybrid models; we will describe below how each of the specific models are
derived from the general communication and execution model.

Communication. In each execution there is an environment Z, an adver-
sary A, participating parties P1, . . . , Pm, and possibly an ideal functionality F .
The parties, adversary and functionality are “connected” in a star configuration,
where all communication is via an additional router machine that takes instruc-
tions from the adversary (see Figure 1). Formally, this means that the outgoing
communication tape of each machine is connected to the incoming communica-
tion tape of the router, and the incoming communication tape of each machine is
connected to the outgoing communication tape of the router. (For this to work,
we define the router so that it has one incoming and one outgoing tape for every
other entity in the network except the environment). As we have mentioned,
the adversary has full control over the scheduling of all message delivery. Thus,
whenever the router receives a message from a party it stores the message and
forwards it to the adversary A. Then, whenever the adversary wishes to deliver
a message, it sends it to the router who then checks that this message has been
stored. If yes, it delivers the message to the designated recipient and erases it,
thereby ensuring that every message is delivered only once. If no, the router just
ignores the message. If the same message is sent more than once, then the router
will store multiple copies and will erase one every time it is delivered.

Router 

Z F 

𝑷𝟏 

𝑷𝟐 

𝑷𝟒 
𝑷𝟓 

𝑷𝟕 

𝑷𝟑 

𝑷𝟔 

Communication Rules 
 

• 𝑃1, … , 𝑃𝑚 communicate with each other and with 
the functionality F 
– Messages between F and the parties 𝑃1, … , 𝑃𝑚 have a 

public header and private content 

– Different copies of F are differentiated by sid 

• Z communicates with A only 
– But, Z writes to input tapes of 𝑃1, … , 𝑃𝑚 and reads their 

output tapes 

• F communicates with A and 𝑃1, … , 𝑃𝑚 

• A communicates only with F and Z 
• Router sends all messages to A and delivers them 

when instructed by A 
– Messages are of the format (sender,receiver;content) 

– Router only sends public header of messages to and from 
F  to A (so A does not see the private content) 

– A notifies the router when to deliver messages but has 
no influence beyond that 

F F A 

Write inputs; 
read outputs      

(to all 𝑃𝑖) 

Fig. 1. The communication model and rules

Observe that A can only influence when a message is delivered but cannot
modify its content. This therefore models authenticated channels, which is stan-



dard for secure computation. By convention, a message x from a party Pi to
Pj will be of the form (Pi, Pj , x); after Pi writes this message to its outgoing
communication tape, the router receives it and checks that the correct sending
party identifier Pi is written in the message; if yes, it stores it and works as
above (sending only to the Pj designated in the message); if no, it ignores the
message. Observe that this means that Pj also knows who sent the message to it.
In addition, we assume that the set of parties is fixed and known to all.3

The above communication model is the same regarding the communication
between the functionality F and the parties and adversary, with two differences.
First, the different copies of F are differentiated by a unique session identifier
sid for each copy. Specifically, each message sent to the ideal functionality has a
session identifier sid. When, the “main ideal functionality” receives a message, it
first checks if there exists a copy of the ideal functionality with that sid. If not,
then it begins a new execution of the actual ideal functionality code with that
sid, and executes the functionality on the given message. If a copy with that sid
does already exist, then that copy is invoked with the message. Likewise, any
message sent from a copy of the ideal functionality to a party is sent together
with the sid identifying that copy.

The second difference is that any message between the parties and the ideal
functionality is comprised of a public header and private content. The public
header contains any information that is public and thus revealed to the adver-
sary, whereas the private content contains information that the adversary is not
supposed to learn. For example, in a standard two-party computation function-
ality where F computes f(x, y) for some function f (where x is P1’s input and y
is P2’s input), the inputs x and y sent by the parties to F are private. The output
from F to the parties may be public or private, depending on whether this out-
put is supposed to remain secret (say from an eavesdropping adversary between
two honest parties) even after the computation.4 A more interesting example
is the commitment functionality, in which the public header would also contain
the message type (i.e., “commit” or “reveal”), since we typically do not try to
hide whether the parties are running a commitment or decommitment protocol.
Formally, upon receiving a message from a participating party Pi for the func-
tionality or vice versa, the router forwards only the sender/receiver identities
and the public header to the adversary; the private content is simply not sent.5

We remark that the public headers of different messages in an execution must
be different, so that there is no ambiguity regarding the adversary’s instructions
to the router (formally, the router ignores any new message that has an identical
public header to a previously sent different message).

We stress that in the SUC framework, the adversary determines when to
deliver a message from F to participating parties P1, . . . , Pm in the same way as

3
Observe that in contrast to the full UC model, a protocol party here cannot write to the input
tapes of other parties. All communication between protocol parties is via the router.

4
If one of the parties is corrupted then f(x, y) is always learned by the adversary. However, if both
are honest, then it may or may not be learned depending on how one defines it.

5
In order to formalize this, every ideal functionality F has an associated public-header function
HF (x) that defines the public-header portion of the input x.



between two participating parties. This is unlike the UC framework where the
adversary has no such power. In the UC model ideal functionalities are invoked as
subroutine machines, and the protocol parties of the main instance communicate
with the invoked sub-protocol machine directly via the input and output tapes,
without passing through the adversary. Thus, the class of functionalities that can
be expressed in SUC is more restricted. Specifically, we cannot guarantee fairness
in the SUC framework, nor model local computation via an ideal functionality
(e.g., as is used to model digital signatures in the UC framework).

Finally, the environment Z communicates with the adversary directly and
not via the router. This is due to the fact that it cannot send messages to any-
one apart from the adversary; this includes the ideal functionality F . However,
differently to all other interaction between parties, the environment Z can write
inputs to the honest parties’ input tapes and can read their output tapes (we
do not call this “communication” in the same sense since it is not via the com-
munication tapes). The adversary A itself can send messages in the name of
any corrupted party (see Section 2.3 below), and can send messages to Z and F
(the fact that it can communicate with F is useful for relaxing functionalities to
allow some adversarial influence; see [4, 7]). The adversary A cannot “directly”
communicate with the participating parties.

Execution. An execution of a set of machines connected as above and com-
municating according to the above rules proceeds as follows. All machines are
initialized to have the same value 1n on their security parameter tapes. Then, the
environment is given an initial input z ∈ {0, 1}∗ and is the first to be “activated”.

In the concurrent setting, and unlike the classic stand-alone setting for secure
computation, there are no synchronous rounds in which all parties send messages,
compute their next message, and then send it. Rather, the adversary is given
full control over the scheduling of messages sent. In order to model this but
still to have a well-defined execution model, an execution is modeled by a series
of activations of machines one after another, where the order of activations is
determined by the adversary. As we have stated, the environment Z is activated
first. In any activation of the environment, it may write to the input tapes of any
of the participating parties P1, . . . , Pm that it wishes to, and read their output
tapes. In addition, it can send a message to the adversary by writing on its
outgoing communication tape. When it halts, the adversary is activated next.
In any activation of the adversary, it may read all messages written to entities’
outgoing communication tapes (apart from the private content sent between
a party and F), carry out any local computation, and write a message on its
outgoing communication tape to Z. It then completes its activation by doing
one of the following:

1. Instructing the router to deliver a message to any single party that it wishes
(including messages between the parties and F). In this case the router is
activated next to deliver the message. After the router has delivered the
message the recipient party (or F) is activated.

2. Sending a direct message to F (this type of communication is not via the
router). In this case F is activated next.



3. Sending a direct message to Z. In this case Z is activated next.

If the activated machine is F or Z, it reads the message from A, runs a local
computation and then sends a response to A, in which case A is activated next.
Otherwise, the activated party (P1, . . . , Pm or F) can read the message on its
incoming communication tape, carry out any local computation it wishes, and
write any number of messages to its outgoing communication tape to the router;
its activation ends when it halts. The router is activated next and sends all of the
messages that it received toA. The adversary is then once again activated, and so
on. One technicality is that the adversary may wish to activate a party to whom
no message has previously been sent. This makes most sense at the beginning of
a protocol execution where a party already has input but has not yet been sent
any messages. Since the adversary is not generally allowed to communicate to
parties, it cannot activate such a party since there are no messages to deliver.
We therefore allow the adversary to deliver an “empty message” to a party to
activate it whenever it wishes. The execution ends when the environment writes
a bit to its output tape (the fact that the environment’s output is just a single
bit is without loss of generality, as shown in [4, 7]).

We stress that the ideal functionality has no input on its input tape and never
writes to its output tape; it only communicates with the participating parties
and the adversary.

Z is activated
Can write inputs, read outputs
Can write a message forA

A is activated

Can read all messages sent
Can write a message for Z
Can instruct router to deliver any single
message (can be empty)

Party receiving
message is
activated

The party activated can beF, Z or one of 𝑃1,… , 𝑃𝑚
Reads received message
Can write any number of outgoing messages

Continue until Z writes
a bit to its output tape
after it is activated.

The router sendsA all messages written in the
past activation

Router	may	be	ac�vated The router delivers the single message instructed
byARouter	

may	be	ac�vatedRouter	

For

Fig. 2. The execution flow and order of activations

2.3 Corruptions and Adversarial Power

As in the standard model of secure computation, the adversary is allowed to
corrupt parties. In the case of static adversaries the set of corrupted parties
is fixed at the onset of the computation. In the adaptive case the adversary
corrupts parties at will throughout the computation. In the static corruption
case, the environment Z is given the set of corrupted parties at the onset of
the computation. In the active corruption case, whenever the adversary corrupts
a party, Z is notified of the corruption immediately. The adversary is allowed



to corrupt parties whenever it is activated. (Formally, the adversary sends a
(corrupt, Pi) message first to Pi via the router, and Pi returns its full internal
state to the adversary. Then, by convention, the adversary is required to send the
corrupt message to Z who is activated at the end of the corruption sequence.)

We also distinguish between malicious and semi-honest adversaries: If the
adversary is malicious then corrupted parties follow the arbitrary instructions
of the adversary. In the semi-honest case, even corrupted parties follow the pre-
scribed protocol and the adversary only gets read access to the internal state
of the corrupted parties. In the case of a malicious adversary, we stress that
the adversary can send any message that it wishes in the name of a corrupted
party. Formally, this means that the router delivers any message in the name
of a corrupted party at the request of the adversary. Observe that in the case
of adaptive malicious corruptions, any messages that were sent by a party (to
another party or to the ideal functionality) before it was corrupted but were not
yet delivered may be modified arbitrarily by the adversary. This follows from the
fact that from the point of corruption the router delivers any message requested
by the adversary. This mechanism assumes that the router is notified whenever
a party is corrupted.

We stress that unlike in the full UC model, here it is not possible to “partially
corrupt” a party. Rather, if a party is corrupted, then the adversary learns
everything. This means that we cannot model, for example, the forward security
property of key exchange that states that if a party’s session key is stolen in
one session, then this leaks nothing about its session key in a different session
(since modeling this requires corrupting one session of the key exchange and not
another). For the same reason, it is not possible to model proactive security in
the SUC framework [11].

2.4 The Real, Ideal and Hybrid Models

We are now ready to define the real, ideal and hybrid models. These are all just
special cases of the above communication and execution models:

– The real model with protocol π: In the real model, there is no ideal function-
ality and the (honest) parties send messages to each other according to the
specified protocol π. We denote the output bit of the environment Z after
a real execution of a protocol π with environment Z and adversary A by
suc-realπ,A,Z(n, z), where z is the input to Z.

– The ideal model with F : In the ideal model with F the parties follow a fixed
ideal-model protocol. According to this protocol, the parties send messages
only to the ideal functionality but never to each other. Furthermore, these
messages are the inputs that they read from their input tapes, and nothing
else (unless they are corrupted and the adversary is malicious, in which case
they can send anything to F). In addition, they write any message received
back from the ideal functionality to their output tapes. That is, the ideal-
model protocol instructs a party upon activation to read any new input on
its input tape and send it unmodified to F as an outgoing message, and to



read all incoming messages (from F) on its incoming message tape and write
them unmodified to its output tape. This then ends the party’s activation.
We denote the output of Z after an ideal execution with ideal functionality
F and adversary S (denoted by S since it is actually a “simulator”) by
suc-idealF,S,Z(n, z), where n and z are as above. We stress that in the
ideal model, the adversary/simulator S interacts with Z in an online way;
in particular, it cannot rewind Z or look at its internal state. In addition,
in keeping with the general communication model all messages between the
parties and F are delivered by the adversary.6

– The hybrid model with π and F : In the hybrid model, the parties follow the
protocol π as in the real model. However, in addition to regular messages
sent to other parties, π can instruct the parties to send messages to the
ideal functionality F and also instructs them how to process messages re-
ceived from F . We stress that the messages sent to F may be any values
specified by π and are not limited to inputs like in the ideal model. We de-
note the output of Z from a hybrid execution of π with ideal calls to F by
suc-hybridFπ,A,Z(n, z), where A,Z, n, z are as above. When F is the ideal
functionality we call this the F-hybrid model.

In all models, there is a fixed set of participating parties P1, . . . , Pm, where
each party has a unique party identifier. Observe that we formally consider
a single ideal-functionality type F , and not multiple different ones.7 This is
not a limitation even though protocols often use multiple different subprotocols
(e.g., commitment, zero knowledge, and oblivious transfer). This is because one
can define a single functionality computing multiple subfunctionalities. Thus,
formally we consider one. When defining protocols and proving security, it is
customary to refer to multiple functionalities with the understanding that this
is formally taken care of as described.

2.5 The Definition and Composition Theorem

We are now ready to define SUC security, and to state the composition theorem.
Informally, security is defined as in the classic stand-alone definition of security
by requiring the existence of an ideal-model simulator for every real-model ad-
versary. However, in addition, the simulator must work for every environment, as
in the aforementioned communication and execution models. The environment
behaves as the interactive distinguisher, and therefore we say that a protocol π
SUC-securely computes a functionality if the environment outputs 1 with almost
the same probability in a real execution of π with A as in an ideal execution
with F and S. Recall that the suc-ideal and suc-real notation denotes the
output of Z after the respective executions.

6
The fact that the adversary delivers these messages and thus message delivery is not guaranteed
frees us from the need to explicitly deal with the “early stopping” problem of protocols run
between two parties or amongst many parties where only a minority may be honest. This is
because the adversary can choose which parties receive output and which do not, even in the
ideal model.

7
This is not to be confused with multiple copies of the same functionality F which is included in
the model.



Balanced Environments. A balanced environment is an environment for which
at any point in time during the execution, the overall length of the inputs given
to the parties of the main instance of the protocol is at most n times the length of
the input to the adversary [7]. As in the full UC framework, we require balanced
environments in order to prevent unnatural situations where the input length
and communication complexity of the protocol is arbitrarily large relative to
the input length and complexity of the adversary. In such case no PPT adver-
sary can deliver even a fraction of the protocol communication. The definition
of UC security considers only balanced environments, and we adopt this same
convention.

Definition 1. Let π be a protocol for up to m parties and let F be an ideal
functionality. We say that π SUC-securely computes F if for every probabilistic
polynomial-time real-model adversary A there exists a probabilistic polynomial-
time ideal-model adversary S such that for every probabilistic polynomial-time
balanced environment Z and every constant d ∈ N, there exists a negligible func-
tion µ(·) such that for every n ∈ N and every z ∈ {0, 1}∗ of length at most nd,∣∣∣Pr

[
suc-idealF,S,Z(n, z) = 1

]
− Pr

[
suc-realπ,A,Z(n, z) = 1

]∣∣∣ ≤ µ(n).

The SUC composition theorem is essentially the same as the UC composition
theorem: secure protocols “behave like” ideal functionalities when run in arbi-
trary environments. See the full version for a formal statement of the theorem.

3 An Example – Proving in the UC vs. SUC Models

In this section, we demonstrate the difference between proving security in the full
UC framework and in the SUC framework. We consider the classic commitment
functionality Fcom, due to its relative simplicity. We also consider realizing the
Fzk functionality in the Fcom-hybrid model, since existing protocols “gloss
over” the details of using the composition theorem correctly.

3.1 Differences in Defining the Ideal Functionality for Commitments

Before describing the functionality, we need to introduce the delayed output ter-
minology, which is a convention that appears in the full UC framework. Quoting
from [6, Sec. 6.2]: “we say that an ideal functionality F sends a delayed output v
to party P if it engages in the following interaction: Instead of simply outputting
v to P , F first sends to the adversary a message that it is ready to generate an
output to P . If the output is public, then the value v is included in the message
to the adversary. If the output is private then v is not mentioned in this mes-
sage. Furthermore, the message contains a unique identifier that distinguishes it
from all other messages sent by F to the adversary in this execution. When the
adversary replies to the message (say, by echoing the unique id), F outputs the
value v to P .”



We now consider the definition of secure commitments. For simplicity, we
consider the single commitment functionality (typically, the multiple commit-
ment functionality is used, but this even further complicates the definition). This
is the definition that appears in [5, Sec. 7.3.1]:

FIGURE 1 (Functionality Fcom for the Full UC Framework)

1. Upon receiving an input (Commit, sid, x) from C, verify that sid =
(C,R, sid′) for some R, else ignore the input. Next, record x and generate
a public delayed output (Receipt, sid) to R. Once x is recorded, ignore any
subsequent Commit inputs.

2. Upon receiving an input (Open, sid) from C, proceed as follows: If there
is a recorded value x then generate a public delayed output (Open, sid, x)
to R. Otherwise, do nothing.

3. Upon receiving a message (Corrupt-committer, sid) from the adversary,
output a Corrupted value to C, and send x to the adversary. Furthermore,
if the adversary now provides a value x′, and the Receipt output was not
yet written on R’s tape, then change the recorded value to x′.

The Ideal Commitment Functionality Fcom

In contrast, in the SUC framework the functionality description is far simpler.
Before writing the functionality, we introduce a convention that was used in [12]
for the public headers and private contents in functionalities. The “operation
labels” (e.g., Commit, Receipt, etc.) and the session identifiers are by convention
(and unless explicitly stated otherwise) part of the public header, and the rest
of the message constitutes the private contents. In addition, we parameterize
the functionality by some m = poly(n), which means that all commitment val-
ues are of length m. This is needed since SUC parties have a fixed polynomial
running time, and so a receiver who does not receive input to the commitment
functionality cannot process arbitrarily long strings. Note that all known UC
commitment schemes work in this way (i.e., they are either commitments to
bits, fixed-length strings, or group elements, etc.). Thus, this definition matches
existing constructions.8 We have:

FIGURE 2 (Functionality Fcom for the SUC Framework)

Fcom runs with length parameter m, as follows:

1. Upon receiving an input (Commit, sid, x) from C, verify that x ∈ {0, 1}m
and that sid = (C,R, sid′) for some R, else ignore the input. Next, record
x and send (Receipt, sid) to R. Once x is recorded, ignore any subsequent
Commit inputs.

2. Upon receiving an input (Open, sid) from C, proceed as follows: If there is
a recorded value x then send (Open, sid, x) to R. Otherwise, do nothing.

The Ideal Commitment Functionality Fcom
8

We remark that it is also possible to define Fcom so that S inputs x and R inputs 1|x|. This
ensures that R can run in time that is polynomial in the length of the committed value. We chose
the formulation of a fixed m since it more closely models how UC commitments are typically
constructed.



Explaining the differences between the functionalities. In the full UC
framework, it is necessary to refer to public delayed outputs, since honest parties
write their inputs locally to ideal functionalities; to be more exact, an ideal
call is a subroutine invocation. Thus, in interactive scenarios, it is necessary
for the ideal functionality to explicitly communicate with the adversary to ask
permission to send the receipt, and so on. Due to the fact that this is tiresome
to describe each time, the convention of a “delayed output” was introduced. In
contrast, in the SUC framework, since the adversary automatically controls all
delivery, it suffices to naturally send messages. However, this does come at the
price of explicitly stating which parts of the messages are public (and seen by
the adversary when it delivers) and which parts are private. Nevertheless, by our
convention, this is typically simple.

A more significant difference arises in the context of corruption. In the full
UC model, an ideal functionality is modeled as a subroutine of the main protocol
instance. Therefore, parties “send” messages/inputs to an ideal functionality F
by writing them directly on the input tape of F . This means that the adversary
cannot change the contents of such a written message, even in the case that the
party is corrupted before the input was effectively used. In real protocols, it is
often possible for the adversary to make such a change. (For example, consider
the case that the honest party sends its first message and is corrupted before it
is delivered. In this case, the adversary can choose not to deliver that message
and instead send a new message in its place for the corrupted party, possibly
using a different input. Thus, this has to also be possible in the ideal model.)
This forces such treatment to be explicitly defined in the ideal functionality. In
contrast, in the SUC framework, this issue does not arise at all. This is because
all messages, including inputs to an ideal functionality and messages in a real
protocol, are treated in the same way and sent via the router. By the way the
router is defined, an adversary can choose not to deliver messages to an ideal
functionality in the same way that it can choose not to deliver messages in a
real protocol.

3.2 Proving Security of Commitment Protocols and Zero
Knowledge Protocols

In this section, we consider the problem of constructing UC commitments in the
CRS model, and then zero knowledge protocols using UC commitments. This is
the standard way of working; see [10, 12], and see [14] for a more recent work
following the same paradigm. The authors of [14] claim security of their zero
knowledge protocol by referring to the proof of security of zero knowledge from
commitments that appears in [10]. However, this proof is much closer to the
SUC framework and does not take into account a number of issues that must
be considered in the (current version of the) full UC model. We describe some
of the additional issues that need to be taken into account in order to prove the
full UC security of the zero knowledge protocol from full UC commitments. For
the sake of concreteness, when considering polynomial time, we refer specifically
to the constructions in [14].



Before proceeding, denote the commitment protocol of [14] by Πcom, the
CRS functionality by Fcrs, and the zero knowledge protocol of [10, 14] by Πzk.
Protocol Πzk works by running the classic zero knowledge Hamiltonicity proto-
col of Blum [2], while using UC commitments. Actually, since many commitments
are needed with respect to the same CRS, the multiple commitment function-
ality Fmcom is used but for simplicity we will ignore this here. Note that the
commitment protocol Πcom in [14] uses a fully-homomorphic encryption scheme
denoted Qenc and a CCA-secure encryption scheme ENCcca.

Proof of polynomial-time. One of the requirements of the UC composition
theorem is that all the protocols involved are polynomial time. The mentioned
proofs do not formally prove that the protocols are polynomial time. In the SUC
model, the fact that Πcom in [14] is polynomial time is immediate, and simply
follows from the fact that the Qenc and ENCcca encryption schemes run in
polynomial time (since in each invocation each party trivially runs in time that
is polynomial in the security parameter and input; see Section 2.1 for why this
suffices in the SUC framework). However, in order to prove that Πcom in [14] is
polynomial time in the full UC framework, one needs to first pad the input of each
party in Πcom with sufficient tokens, so that it runs in time that is polynomial
in the length of its (padded) input minus the length of the inputs/messages
that it sends to Fcrs. If Fcrs is assumed to be a local functionality (e.g.,
secure setup), then this is not difficult since the only input to Fcrs is the pair
(CRS, sid). However, if Fcrs is implemented via coin-tossing using a local Fcrs
functionality (as suggested in the JUC [13] solution to achieving independent
CRS invocations per protocol), then the number of tokens needed to be provided
is different. Essentially, a different Fcrs ideal functionality has to be defined for
each of these cases. (The reason that a different ideal functionality is needed
is that the functionality defines the length of the input, which depends on the
number of tokens needed.)

Consider next the case of constructing Πzk using Fcom. These zero-knowl-
edge protocols make multiple calls to the commitment functionality. The number
of calls to Fcom, and thus the length of the input written by the parties in Πzk
to Fcom, differs significantly when the zero-knowledge is based on Hamiltonicity
versus when it is based on 3 coloring. The proof of polynomial-time complexity
must take into account that for Hamiltonicity, for a graph with n nodes, O(n3)
calls to Fcom are made (repeating n times where in each time a matrix of size
O(n2) is committed to). However, the size of the graph depends on the Karp
reduction of the statement being proven to Hamiltonicity, and this must also be
counted. This bound must then be included in the ideal functionality for Fcom,
since the actual length of the input includes these tokens. Notice, however, that
the number of tokens needed in 3 coloring will be different, and so the definition
of Fcom can actually depend on the implementation of Fzk as used by Πcom.
To make this even more complex, if Fcom uses Fcrs as described above, then
the number of token further depends on whether Fcrs is a local functionality
or derived by some type of coin-tossing protocol.



We are not aware of any research paper whose focus is protocol construction
that relates to the issue of defining the number of tokens–equivalently how much
to pad the input–when defining the functionality, and proving that the protocol
is polynomial time as defined in the full UC framework.

Subroutine Respecting Protocols. The UC composition theorem demands
that protocols are subroutine respecting; see [6]. Informally speaking, this means
that subroutines only accept messages from other parties or subsidiaries of the
subroutine instance. In addition, upon the first activation, the adversary receives
notification of the code and SID of the instance. Since these are messages sent to
the adversary, they need to be dealt with by the adversary in the proof of security.
To the best of our knowledge, the adversary’s treatment of these notifications
are typically not described.

Corruptions. In the full UC framework, the protocol specification has to in-
clude what the parties should do upon receiving a Corrupt message. This is due
to the fact that the UC framework enables great flexibility in dealing with cor-
ruptions (and thus can model partial corruptions, proactive corruptions, and so
on). In contrast, in the SUC model, a party is either honest or fully corrupted,
and in the latter case the adversary obtains full control of the party. Although
describing what a party should do upon corruption is not complicated, it is once
again an example of a detail that needs to be addressed, but is to the best of
our knowledge omitted in current protocol specifications.

Order of activations. In the full UC framework, the order of activations
depends on the adversary and on the protocol, and is derived from the order of
external write calls made by the machines in the system. Each machine can only
write one external message (be it input to a subroutine, output, or a regular
message) per activation, and by writing the message it passes the execution to
the receiving machine. This means that multiple invocation patterns are possible,
yielding multiple case analyses in the proof. In addition, when writing the proof,
one must distinguish between the different types of messages (writing to an ideal
functionality is fundamentally different to sending a message to another party).
Both of these complicate the presentation and make it harder for one writing
the proof to be exact. In contrast, in the SUC model, one of our aims was to
make the order of activations the same in all models (real, ideal and hybrid)
and to use the same method for all types of messages. (The only exception
is the parties’ inputs written by the environment and their outputs read by
the environment.) Thus, the scheduling of activations and the terminology with
respect to messages is always the same (under full control of the adversary),
simplifying the presentation.

Conclusions – current UC research and UC/SUC proofs. We are not
aware of any written proof in the UC framework that actually takes these details
into account. Rather, researchers writing protocols in the UC framework do not
specify the number of tokens needed in order to be polynomial time (which is the
most serious issue), do not describe what the adversary should do with invocation
messages, do not consider the varying order of activations, and so on. Essentially,



researchers today write their proofs as if they are working in something similar
to the SUC framework. The main contribution of this paper can therefore be
viewed as a justification of the soundness of working in this way. In addition, we
provide an exact model that can be used, instead of handwaving away the full
UC details. Finally, our proof that SUC protocols are actually UC secure (with
the appropriate adjustments) means that for the standard interactive secure
computation tasks, nothing is lost by working with our simpler model.
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