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Abstract. In the last few years, cryptographic multilinear maps have
proved their tremendous potential as building blocks for new constructions,
in particular the first viable approach to general program obfuscation.
After the first candidate construction by Garg, Gentry and Halevi (GGH)
based on ideal lattices, a second construction over the integers was de-
scribed by Coron, Lepoint and Tibouchi (CLT). However the CLT scheme
was recently broken by Cheon et al.; the attack works by computing the
eigenvalues of a diagonalizable matrix over Q derived from the multilinear
map.

In this paper we describe a new candidate multilinear map over the
integers. Our construction is based on CLT but with a new arithmetic
technique that makes the zero-testing element non-linear in the encoding,
which prevents the Cheon et al. attack. Our new construction is relatively
practical as its efficiency is comparable to the original CLT scheme.
Moreover the subgroup membership and decisional linear assumptions
appear to hold in the new setting.

1 Introduction

Multilinear maps. Since the breakthrough construction of Garg, Gentry and
Halevi [GGH13a], there has been a growing interest in cryptographic multilin-
ear maps. They have spurred scores of new cryptographic applications. Chiefly
among them is possibly the first proposed approach to general program ob-
fuscation [GGH+13b]. Currently only three candidate constructions are known.
Shorty after the first candidate construction of multilinear maps based on ideal
lattices [GGH13a] (which we will refer to as GGH), Coron, Lepoint and Tibouchi
proposed a second construction over the integers (CLT) using the same general
paradigm [CLT13]. Recently, Gentry, Gorbunov and Halevi proposed another
multilinear maps in which the map is defined with respect to a directed acyclic
graph [GGH15].

A straightforward application of multilinear maps is multipartite Diffie-
Hellman key exchange with κ + 1 users, where κ is the maximum level of
the multilinear map scheme. Initially each user publishes a level-1 encoding of a
random element while keeping a level-0 encoding of the same element private.
Then each user can compute the product its level-0 by the product of the level-1
encodings of the other users. With κ+ 1 users this gives a level-κ encoding from



which the same secret value can be extracted by all users. The security of the
protocol relies on a new hardness assumption which is a natural extension of the
Decisional Diffie-Hellman assumption.

The CLT multilinear map over the integers. We recall the multilinear
maps scheme over the integers from [CLT13]. One generates n secret primes pi
and publishes x0 =

∏n
i=1 pi (where n is large enough to ensure security); one

also generates n small secret primes gi and a random secret integer z modulo
x0. The message space is R = Zg1 × · · · × Zgn . A level-k encoding of a vector
m = (mi) ∈ R is then an integer c such that for all 1 6 i 6 n:

c ≡ ri · gi +mi

zk
(mod pi) (1)

for some small random integers ri; the integer c is therefore defined modulo x0
by CRT. Encodings can then be added and multiplied modulo x0, as long as the
noise ri is such that ri · gi + mi < p for each i. The multiplication of a level-i
encoding by a level-j encoding gives an encoding at level i+ j.

For level-κ encodings one defines a zero-testing parameter pzt with:

pzt =

n∑
i=1

hi ·
(
zκ · g−1i mod pi

)
· x0
pi

mod x0

for some small integers hi. Given a level-κ encoding c as in (1), as a zero-testing
procedure one computes ω = pzt · c mod x0 which gives:

ω =

n∑
i=1

hi ·
(
ri +mi · (g−1i mod pi)

)
· x0
pi

mod x0 . (2)

If mi = 0 for all i, since the ri’s and hi’s are small, we obtain that ω is small
compared to x0; this enables to test whether c is an encoding of 0 or not. Moreover
for non-zero encodings the leading bits of ω only depend on the mi’s and not on
the noise ri; for level-κ encodings this enables to extract a function of the mi’s
only, which eventually defines a degree-κ multilinear map.

Cheon et al. attack. The CLT scheme above was completely broken by a
recent attack from Cheon, Han Lee, Ryu and Stehlé [CHL+15]; the attack runs
in polynomial time, and recovers all secret parameters. The attack works by
computing the eigenvalues of a diagonalizable matrix over Q derived from the
multilinear map. More precisely, when applying the zero-testing procedure to the
product of two encodings x and x′, where x is an encoding of 0, the resulting ω
in (2) can be seen as a diagonal quadratic form over Z in the CRT components
x mod pi and x′ mod pi. By computing the values ωjk of the quadratic form for
n2 product pairs of encodings xj · x′k, one can then recover the coefficients of the
quadratic form using eigendecomposition, which reveals all the secret pi’s and
completely breaks the scheme. We recall the attack in more details in Section 3.
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Tentative fixes. Shortly after Cheon et al. attack, two independent approaches
to fix the CLT scheme have been proposed on the Cryptology ePrint Archive,
due to Garg, Gentry, Halevi and Zhandry on the one hand [GGHZ14, Sec. 7]4,
and Boneh, Wu and Zimmerman on the other [BWZ14]. However, both coun-
termeasures were shown to be insecure in [CLT14,CGH+15]. Indeed, although
these countermeasures do not expose encodings of zero, the value ω from the
zero-testing procedure can still be expressed as a quadratic form in the CRT
components of encodings. As a result, they can both be broken by a variant of
the original Cheon et al. attack. Further extensions of the Cheon et al. attack
along those lines are presented in [GHMS14,CGH+15].

Our new construction. Our new construction keeps the same CLT encodings
but departs from the two previous countermeasures by modifying the zero-testing
procedure itself. Namely, we modify the definition of the zero-testing element
pzt so that ω cannot be expressed as a quadratic form anymore. For this we
use a new arithmetic technique that maps the n CRT components c mod pi to
some value modulo an independent integer N , so that the resulting ω in the
zero-testing procedure depends on the CRT components in a non-linear way,
rather than linearly as in (2).

The technique works as follows. Consider a level-κ encoding c as in (1); by
the Chinese Remainder Theorem, we can write a relation of the form:

c =

n∑
i=1

(
ri +mi · (g−1i mod pi)

)
· ui − a · x0 (3)

over Z for some a ∈ Z, where the ui’s are the CRT coefficients corresponding to
the primes pi’s, and scaled by gi · z−κ for each i. Let N be a large integer and let
pzt ∈ ZN . For the zero-testing procedure we compute ω = pzt · c mod N which
gives from (3):

ω ≡
n∑
i=1

(
ri +mi · (g−1i mod pi)

)
· vi − a · v0 (mod N) (4)

where vi := pzt · ui mod N and v0 := pzt · x0 mod N . Assume now that we can
generate pzt and N such that all the vi’s are small compared to N , including v0.
Now if mi = 0 for all i, since the ri’s are small, the integer a in (3) is also small,
which implies that ω in (4) will also be small compared to N . This enables to
test whether c is an encoding of 0 or not. As previously for level-κ encodings one
can then extract a function of the mi’s only, which gives a degree-κ multilinear
map. We show that such an element pzt can be efficiently generated for any large
enough N , owing to the particular structure of the CRT coefficients ui.

4 We refer to the revised version of [GGHZ14] of November 12 2014, accessible on the
Cryptology ePrint Archive.
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Security analysis. By comparing equations (2) and (4), we see that the original
CLT scheme is actually a particular case, with N = x0 and v0 = 0. Therefore
the main difference in the new scheme is that v0 6= 0, which causes the value
ω in (4) to depend on the integer a in (3). But that integer a depends on the
CRT components ri in a non-linear way. As a result, it is no longer true that the
value ω computed from encoding products xj ·x′k can be expressed as a quadratic
form in the CRT components of xj and x′k, and the Cheon et al. attack is thus
thwarted.

Another difference with the original CLT scheme is that we cannot publish
x0 =

∏n
i=1 pi anymore. Namely for encodings of 0 we get a small ω and therefore

(4) holds over Z. Therefore from x0 one could compute v0 = pzt · x0 mod N and
apply the Cheon et al. attack modulo v0 instead of over Z. It is not a problem to
keep x0 private, however, as we can mimic the technique introduced by van Dijk et
al. for their fully homomorphic encryption scheme over the integers [DGHV10]
and approximate modular reduction by x0 with a ladder of encodings of zero of
increasing sizes.

We provide a detailed security analysis of our new construction in Section 3
(for the Cheon et al. attack and its variants) and Section 4 (for lattice attacks).
We also explain why the subgroup membership (SubM) and decisional linear
(DLIN) problems, which are known to be easy in the GGH scheme [GGH13a],
seem to be hard in our new setting.

Implementation. We describe an implementation of our scheme, with a few
optimizations. Instead of using a ladder of encodings of 0 at every level, we
publish a small multiple x′0 of x0 so that intermediate encodings can be reduced
modulo x′0; only at the last level do we use a ladder of a few level-κ encodings
of 0. Additionally, to reduce the size of public parameters, we store only a
small subset of the public elements needed for re-randomization and combine
them pairwise to generate the full public parameters, as in [CLT13]; such an
optimization was originally described in [GH11]. With these optimizations our
scheme is relatively practical; for reasonable security parameters a multipartite
Diffie-Hellman computation with 7 users requires about 30 seconds, with a
public parameter size of roughly 6 GBytes; a proof-of-concept implementation is
available at [Lep15].

2 New Multilinear Map over the Integers

In this section we define our new multilinear scheme. Our scheme is actually a
graded encoding scheme (GES) as in previous works [GGH13a,CLT13]; we recall
the notion of GES in the full version of this paper [CLT15]. As explained in
introduction, our new multilinear map scheme keeps the same CLT encodings as
given by (1), with two main differences:

1. The zero-testing parameter pzt is computed differently, so that the CRT
components modulo pi of a level-κ encoding c are mapped to some value
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modulo an independent integer N , instead of modulo x0. The resulting ω
in the zero-testing procedure then depends on those CRT components in
a non-linear way, rather than linearly in the original CLT scheme, which
prevents the Cheon et al. attack.

2. The integer x0 =
∏n
i=1 pi is kept private. For re-randomization, this implies

that we must slightly modify the proof of statistical indistinguishability. To
reduce the size of intermediate encodings back to the size of x0, we publish a
ladder of encodings of 0. In Section 5 we describe a simple optimization with
a public multiple x′0 of x0.

2.1 Scheme Description

System parameters. The system parameters are similar to the original CLT
scheme. One first defines the security parameter λ and the required multilinearity
level κ 6 poly(λ). Based on λ and κ, we choose:
• n: the vector dimension
• η: the bit-size of the primes pi
• α: the bit-size of the primes gi
• ρ: the bit-size of the randomness used in encodings

and various other parameters that will be specified later. The constraints that
these parameters must satisfy are described in Section 2.2. For integers z, p we
denote the reduction of z modulo p by (z mod p) or [z]p with −p/2 < [z]p 6 p/2.
For integers x1, . . . , xn we denote CRTp1,...,pn(x1, . . . , xn) the unique integer x
such that x ≡ xi mod pi for all 1 6 i 6 n and 0 6 x <

∏n
i=1 pi.

As in the original CLT scheme a level-k encoding of a vector m = (mi) is an
integer c such that for all 1 6 i 6 n:

c ≡ ri · gi +mi

zk
(mod pi) (5)

where the ri’s are ρ-bit random integers (specific to the encoding c), with the
following secret parameters: the pi’s are random η-bit prime integers, the gi’s
are random α-bit primes, and the denominator z is a random (invertible) integer
modulo x0 =

∏n
i=1 pi. The integer c is therefore defined by CRT modulo x0, but

as opposed to the original CLT scheme, x0 is kept secret. We denote by γ the size
of x0 in bits. As in the CLT scheme the domain is the ring R = Zg1 × · · · × Zgn ,
so that for m = (mi) ∈ R the components mi are defined modulo gi for all
1 6 i 6 n.

Instance generation: (pp,pzt)← instGen(1λ, 1κ). Instance generation is sim-
ilar to [CLT13], except for the generation of pzt; moreover x0 is kept private.
We generate n secret random η-bit primes pi and compute x0 =

∏n
i=1 pi. We

generate a random invertible integer z modulo x0. We generate n random α-bit
prime integers gi, and various other parameters that will be specified later.

We publish the parameters (pp,pzt) with

pp =
(
n, η, α, ρ, β, τ, `, µ, y, {x′j}`j=1, {X

(k)
j }, {xj}

τ
j=1, {Πj}n+1

j=1 , s
)
.

5



Sampling level-zero encodings: c ← samp(pp). Since the primes pi’s in (5)
must remain secret, the user cannot encode a vector m ∈ R by CRT directly
from (5). Instead, as in [CLT13], a level-0 encoding c is generated as a random
subset sum of random level-0 encodings x′j from the public parameters. The
only difference with [CLT13] is that the random subset-sum is computed over Z
instead of modulo x0, since x0 is not public.

Therefore we publish as part as our instance generation a set of ` integers x′j ,
where each x′j encodes at level-0 the column vector aj ∈ Zn of a secret matrix

A = (aij) ∈ Zn×`, where each component aij is randomly generated in [0, gi)∩Z.
More precisely, using the CRT modulo x0 we generate integers x′j such that:

1 6 j 6 `, x′j ≡ r′ij · gi + aij (mod pi) (6)

where the r′ij ’s are randomly generated in (−2ρ, 2ρ) ∩ Z.

To generate a level-0 encoding c, we first generate a random binary vector
b = (bj) ∈ {0, 1}` and output the level-0 encoding

c =
∑̀
j=1

bj · x′j .

From (6), this gives c ≡ (
∑`
j=1 r

′
ijbj) · gi +

∑`
j=1 aijbj (mod pi); as required the

output c is a level-0 encoding:

c ≡ ri · gi +mi (mod pi) (7)

of some vector m = A·b ∈ R which is a random subset-sum of the column vectors
aj . We note that for such level-0 encodings we get |ri · gi +mi| 6 ` · 2ρ+α for all
i. As in [CLT13] by applying the leftover hash lemma over R = Zg1 × · · · × Zgn
the distribution of m can be made statistically close to uniform over R.

Lemma 1 ([CLT13]). Let c ← samp(pp) and write c ≡ ri · gi + mi (mod pi).
Assume ` > n · α + 2λ. The distribution of (pp,m) is statistically close to the
distribution of (pp,m′) where m′ ← R.

As opposed to [CLT13] we cannot reduce c modulo x0; we only have the upper-
bound |c| 6 ` · 2γ , where γ is the size of x0 in bits. In the full version of this
paper [CLT15], we show that instead of random sampling one can also publicly
encode elements from the domain R, using a technique described in [BWZ14].

Encoding at higher levels: ck ← enc(pp, k, c). As in [CLT13], to allow encod-
ing at higher levels, we publish as part of our instance-generation a level-one
random encoding of 1, namely an integer y such that:

y ≡ ri · gi + 1

z
(mod pi)

6



for random ri ∈ (−2ρ, 2ρ) ∩ Z; as previously the integer y is computed by CRT
modulo x0. Given a level-0 encoding c of m ∈ R as given by (7), we can then
compute a level-1 encoding of the same m by computing over Z:

c1 = c · y.

Namely we obtain as required:

c1 ≡
r′i · gi +mi

z
(mod pi)

for some integers r′i. From |c| 6 ` · 2γ , we obtain |c1| 6 ` · 22γ .
The difference with [CLT13] is that we cannot reduce c1 modulo x0. Instead

we provide a ladder of level-1 encodings of zero X
(1)
j of increasing size, so that the

size of a level-1 encoding can be progressively reduced down to the size of x0, as in
the DGHV scheme [DGHV10, Sec. 3.3.1]. Specifically, for j = 0, . . . , γ + blog2 `c,
we set:

X
(1)
j = CRTp1,...,pn ([r1j · g1/z]p1 , . . . , [rnj · gn/z]pn) + qj · x0

where rij ← (−2ρ, 2ρ) ∩ Z and qj ← [2γ+j−1/x0, 2
γ+j/x0) ∩ Z.

We can then iteratively reduce the size of c1 down to the size of x0, first by

X
(1)
γ+blog2 `c

and eventually by X
(1)
0 . Since the size reduction is done bit-by-bit, at

each step some integer bj ·X(1)
j is subtracted from c1, for bj ∈ {0, 1}. Therefore

the noise increases additively by at most (γ + blog2 `c+ 1) · 2ρ in absolute value.
After reduction, the resulting encoding ĉ1 will be such that

ĉ1 ≡ (r̂i · gi +mi)/z (mod pi) , (8)

with |r̂i · gi +mi| 6 ` · 2ρ+α · 2ρ+α + (γ + blog2 `c+ 1) · 2ρ 6 2` · 22ρ+2α for all i.
More generally to generate a level-k encoding we compute ck = c0 ·yk, and the

size of ck can be iteratively reduced after each multiplication by y using ladders

of similarly designed level-k encodings {X(k′)
j }γ+blog2 `c

j=0 for levels k′ = 1, . . . , k.

Re-randomization: c′ ← reRand(pp, k, ĉk). Our re-randomization procedure is
similar to [CLT13] except that again we cannot reduce the encodings modulo
x0. We describe the re-randomization of encodings at level k = 1; the procedure
can be easily adapted to randomize at level k > 1. We publish as part of our
instance-generation a set of n+ 1 integers Πj :

1 6 j 6 n+ 1, Πj =

n∑
i=1

$ij · gi · ui +$n+1,j · x0

where the ui’s are appropriate CRT coefficients so that the Πj ’s are all level-1
random encodings of zero:

1 6 j 6 n+ 1, Πj ≡
$ij · gi
z

(mod pi) .
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Namely, we let for all 1 6 i 6 n:

ui :=

(
z−1 ·

(
x0
pi

)−1
mod pi

)
· x0
pi

(9)

The matrix Π = ($ij) ∈ Z(n+1)×(n+1) is a diagonally dominant matrix generated
as follows: the non-diagonal entries are randomly and independently generated in
(−2ρ, 2ρ)∩Z, while the diagonal entries are randomly generated in ((n+1)2ρ, (n+
2)2ρ) ∩ Z.

We also publish as part of our instance-generation a set of τ integers xj :

1 6 j 6 τ, xj =

n∑
i=1

rij · gi · ui + rn+1,j · x0

so that each xj is a level-1 random encoding of zero:

1 6 j 6 τ, xj ≡
rij · gi
z

(mod pi)

and where the column vectors of the matrix X = (rij) ∈ Z(n+1)×τ are randomly
and independently generated in the half-open parallelepiped spanned by the
columns of the previous matrix Π ; an algorithm to generate such ri’s is described
in [CLT13, App. E]; we obtain |rij · gi| 6 3n2ρ+α for all i, j.

Given as input a (reduced) level-1 encoding ĉ1 as given by Equation (8), we
randomize ĉ1 with a random subset-sum of the xj ’s and a linear combination of
the Πj ’s, over Z:

c′1 = ĉ1 +

τ∑
j=1

bj · xj +

n+1∑
j=1

b′j ·Πj (10)

where bj ← {0, 1}, and b′j ← [0, 2µ) ∩ Z, where µ := ρ + α + λ. The following
Lemma shows that as required the distribution of c′1 is nearly independent of
the input (as long as it encodes the same m). This essentially follows from the
“leftover hash lemma over lattices” of [CLT13, Sec. 4.2]; the proof is given in the
full version of this paper [CLT15].

Lemma 2. Let the encodings c← samp(pp), ĉ1 ← enc(pp, 1, c), and c′1 as given
by (10). Write c′1 ≡ (ri · gi + mi)/z (mod pi) for all 1 6 i 6 n and rn+1 =
(c′1−

∑
ri·gi·ui)/x0, and define r = (r1, . . . , rn, rn+1)T . If 2(ρ+α+λ) 6 η and τ >

(n+2)·ρ+2λ, then the distribution of (pp, r) is statistically close to that of (pp, r′),
where r′ ∈ Zn+1 is randomly generated in the half-open parallelepiped spanned by
the column vectors of 2µΠ. Moreover we have |ri · gi +mi| 6 4n2 · 22ρ+2α+λ for
all 1 6 i 6 n.

Finally, we can reduce the size of c′1 down to the size of x0 using the ladder

{X(1)
j }, and we obtain an encoding ĉ′1. Writing ĉ′1 ≡ (r̂′i · gi + mi)/z (mod pi),

we obtain

|r̂′i · gi +mi| 6 4n2 · 22ρ+2α+λ + (γ + blog2 `c+ 1) · 2ρ 6 5n2 · 22ρ+2α+λ .
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Adding, negating and multiplying encodings. As in [CLT13] we can add,
negate and multiply encodings. The difference is that we do those operations over
Z instead of modulo x0. More precisely, given level-one encodings vj of vectors
mj ∈ Zn for 1 6 j 6 κ, with vj ≡ (rij · gi +mij)/z (mod pi), we compute over
Z:

v =

κ∏
j=1

vj .

This gives:

v ≡

κ∏
j=1

(rij · gi +mij)

zκ
≡
ri · gi +

( κ∏
j=1

mij

)
mod gi

zκ
(mod pi)

for some integers ri ∈ Z. Hence we obtain a level-κ encoding of the vector m
obtained by componentwise product of the vectors mj , as long as the components
do not wrap modulo pi, that is

∏κ
j=1(rij · gi +mij) < pi for all i. Then, using

the ladder X
(κ)
j one can reduce its size down to the size of x0, at the cost of an

additive increase in absolute value of the noise.
In multipartite Diffie-Hellman key exchange we compute the product of κ

level-1 encodings from reRand and one level-0 encoding from samp, which gives
from previous bounds for all i:

|ri| 6 (6n222ρ+2α+λ)κ · ` · 2ρ+1

In Section 5 we describe an optimization in which we publish a multiple x′0 of
x0; then all intermediate encodings can be reduced modulo x′0, instead of using a
ladder of encodings of zero; only at the last stage do we need a ladder of a few
level-κ encodings of zero.

Zero testing. isZero(pp,pzt, c)
?
= 0/1. To prevent the Cheon et al. attack, we

keep the same encoding as in (1) but we compute the pzt differently; this is the
most important difference. Let c be a level-κ encoding. We assume 0 6 c < x0,
as a result of approximate modular reduction using a ladder of level-κ encodings
of 0. From (5) we can write by CRT:

c ≡
n∑
i=1

(
ri · gi +mi

zκ
mod pi

)
·

((
x0
pi

)−1
mod pi

)
· x0
pi

(mod x0)

c ≡
n∑
i=1

(
ri +mi · g−1i mod pi

)
·

(
gi · z−κ ·

(
x0
pi

)−1
mod pi

)
· x0
pi

(mod x0)

Therefore we can write over the integers:

c =

n∑
i=1

(
ri +mi · g−1i mod pi

)
· u′i − a · x0 (11)
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for some integer a, where the u′i’s are the scaled CRT coefficients:

u′i =

(
gi · z−κ ·

(
x0
pi

)−1
mod pi

)
· x0
pi

(12)

We generate a random prime integer N of size γ + 2η + 1 bits. Using LLL in
dimension 2, we obtain5 pairs of nonzero integers (αi, βi) satisfying:

|αi| < 2η−1 |βi| 6
4

3
· N

2η−1
< 22−η ·N βi ≡ αi · (u′i/pi) (mod N).

We also generate as in [CLT13] an integer matrix H = (hij) ∈ Zn×n such
that H is invertible in Z and both ‖HT ‖∞ 6 2β and ‖(H−1)T ‖∞ 6 2β , for
some parameter β specified later; here ‖ · ‖∞ is the operator norm on n × n
matrices with respect to the `∞ norm on Rn. A technique for generating such H
is discussed in the full version of this paper [CLT15]. We then publish as part of
our instance generation the following zero-testing vector pzt ∈ Zn:

(pzt)j =

n∑
i=1

hij · αi · p−1i mod N (13)

To determine whether a level-κ encoding c is an encoding of zero or not, we
compute the vector ω = c · pzt mod N and test whether ‖ω‖∞ is small:

isZero(pp,pzt, c) =

{
1 if ‖c · pzt mod N‖∞ < N · 2−ν
0 otherwise

for some parameter ν specified later.
Namely for a level-κ ciphertext c we obtain from (11):

(ω)j = (c · pzt mod N)j =

n∑
i=1

hij · αi · p−1i · c mod N

=

n∑
i=1

hij · αi · p−1i ·

(
n∑
k=1

(
rk +mk · g−1k mod pk

)
· u′k − a · x0

)
mod N

which gives:

(ω)j =

n∑
i=1

hij ·
( (
ri +mi · g−1i mod pi

)
· βi +

αi ·
n∑

k=1, k 6=i

(
rk +mk · g−1k mod pk

)
· u
′
k

pi
− a · αi ·

x0
pi

)
mod N (14)

5 More precisely, we apply Legendre reduction to the 2-dimensional lattice generated by

the rows of

(
dN/B2e u′i/pi mod N

0 N

)
, where B = (3/4)1/42η−1. The shortest vector

is of the form (αidN/B2e, βi).
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Recall that αi is at most η − 1 bits, therefore αi · u′k/pi has size at most
η − 1 + γ − (η − 1) = γ bits; the integer αi · x0/pi has size also at most γ bits;
moreover βi is at most |N | − η + 1 bits. Therefore in Equation (14) the integers
βi, αi · uk/pi and αi · x0/pi are all small compared to N . This implies that if
mi = 0 for all 1 6 i 6 n, then ωj will be small compared to N , when the ri’s are
small enough, i.e. a limited number of additions/multiplications on encodings
has been performed. Conversely if mi 6= 0 for some i we show that ‖ω‖∞ must
be large. This shows the correctness of our zero-testing procedure. More precisely
we prove the following lemma in the full version of this paper [CLT15].

Lemma 3. Let n, η, α and β be as in our parameter setting. Let ρf be such that
α+log2 n < ρf 6 η−2β−2α−λ−8, and let ν = η−ρf −β−λ−3 > 2α+β+5.
Let c be such that c ≡ (ri · gi + mi)/z

κ (mod pi) for all 1 6 i 6 n, where
0 6 mi < gi for all i. Let r = (ri)16i6n and assume that ‖r‖∞ < 2ρf . If m = 0
then ‖ω‖∞ < 2−ν−λ ·N . Conversely if m 6= 0 then ‖ω‖∞ > 2−ν+2 ·N .

Extraction. sk ← ext(pp,pzt, uκ). This part is essentially the same as in
[GGH13a]. To extract a random function of the vector m encoded in a level-κ
encoding c, we multiply c by the zero-testing parameter pzt modulo N , collect
the ν most significant bits of each of the n components of the resulting vector,
and apply a strong randomness extractor (using the seed s from pp):

ext(pp,pzt, c) = Extracts
(
msbsν(c · pzt mod N)

)
where msbsν extracts the ν most significant bits of the result.

Namely if two encodings c and c′ encode the same m ∈ Zn then from Lemma
3 we have ‖(c − c′) · pzt mod N‖∞ < N · 2−ν−λ, and therefore we expect that
ω = c ·pzt mod N and ω′ = c′ ·pzt mod N agree on their ν most significant bits,
and therefore extract to the same value.

Conversely if c and c′ encode different vectors then by Lemma 3 we must have
‖(c− c′) · pzt mod N‖∞ > N · 2−ν+2, and therefore the ν most significant bits
of the corresponding ω and ω′ must be different. This implies that for random
m ∈ R = Zg1×· · ·×Zgn the min-entropy of msbsν(c ·pzt mod N) when c encodes
m is at least log2 |R| > n(α − 1). Therefore we can use a strong randomness
extractor to extract a nearly uniform bit-string of length blog2 |R|c − λ.

This concludes the description of our new multilinear encoding scheme.

Remark 1. By comparing equations (2) and (4) we see that the original CLT
scheme is a particular case with N = x0 and αi = 0 for all 1 6 i 6 n. Therefore
the main difference of our construction is that it incorporates the additional term
a, which depends on the ri’s in a non-linear way; this is to prevent the Cheon et
al. attack (see Section 3).

2.2 Setting the Parameters

The constraints on the system parameters are similar to [CLT13].
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• The bit-size ρ of the randomness used for encodings must satisfy ρ = Ω(λ)
to avoid brute force attack on the noise. The improved attacks from [CN12]
and [LS14] both have complexity Õ(2ρ/2), but with a large overhead, so in
practice we can take ρ = λ.

• The bit-size α of the primes gi must be large enough so that the order of the
group R = Zg1 × · · · × Zgn does not contain small prime factors (see the full
version of this paper [CLT15]). One can take α = λ.

• The parameter n must be large enough to thwart lattice-based attacks on
the encodings, namely n = ω(η log λ); see Section 4.

• The number ` of level-0 encodings x′j for samp must satisfy ` > n · α+ 2λ in
order to apply the leftover hash lemma; see Lemma 1.

• The number τ of level-1 encodings xj must satisfy τ > (n + 2) · ρ + 2λ in
order to apply the leftover hash lemma over lattices; see Lemma 2.

• As a conservative security precaution, we take β = 3λ (see the full version of
this paper [CLT15]).

• The bit-size η of the primes pi must satisfy η > ρf + 2α+ 2β + λ+ 8, where
ρf is the maximum bit size of the randoms ri a level-κ encoding (see Lemma
3). When computing the product of κ level-1 encodings and an additional
level-0 encoding (as in a multipartite Diffie-Hellman key exchange with κ+ 1
users), one obtains ρf = κ · (2ρ+ 2α+ λ+ 2 log2 n+ 3) + ρ+ log2 `+ 1 (see
previous Section).

• We set ν = η − ρf − λ − β − 3 for the number of most significant bits to
extract (see Lemma 3).

2.3 Security of Our Construction

As in the original CLT scheme [CLT13] and in the GGH scheme [GGH13a] the
security of our construction does not seem to be reducible to more classical
assumptions, such as for example the Approximate-GCD problem. To prove the
security of the one-round (κ+ 1)-way Diffie-Hellman key exchange protocol, as
in [GGH13a] one must therefore make the assumption that solving the Graded
DDH problem (GDDH) is hard in our scheme; see the full version of this paper
[CLT15].

3 Cheon et al. Attack

The goal of this section is to argue that the Cheon et al. attack [CHL+15] is
prevented in our new construction.

3.1 Attack Description

We first recall the Cheon et al. attack against the original CLT scheme. This
attack makes use of low-level encodings of 0: if such encodings are made public,
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one can recover in polynomial time all secret parameters. In the CLT scheme
such encodings of 0 are used for the rerandomization procedure, therefore the
Cheon et al. attack leads to a complete break of CLT.

In the following we describe a slight simplification of [CHL+15] in which only
a single ciphertext c is used instead of two ciphertexts c0 and c1; this enables to
obtain as eigenvalues directly the CRT components of c, instead of the ratios of
the CRT components of c0 and c1. For simplicity we assume κ = 2; the attack is
easily extended to any κ > 2. Let c be a level-0 encoding with c ≡ ci (mod pi).
Let x be a level-1 encoding with x ≡ xi/z (mod pi), and let x′ be a level-1
encoding of 0 with x′ ≡ r′i · gi/z (mod pi). Let c′ be the level-κ product encoding

c′ = x · c · x′ mod x0

From c′ ≡ xi · ci · r′i · gi · z−2 (mod pi), we obtain by CRT:

c′ ≡
n∑
i=1

xi · ci · r′i · ui (mod x0) (15)

with the CRT coefficients:

ui =

(
gi · z−2 ·

(
x0
pi

)−1
mod pi

)
· x0
pi

In the original CLT scheme, the zero-testing parameter pzt is given by

pzt =

n∑
i=1

hi ·
(
z2 · g−1i mod pi

)
· x0
pi

mod x0

Using pzt · ui ≡ hi · x0/pi (mod x0) for all 1 6 i 6 n, we obtain from (15):

ω = [pzt · c′]x0
=

n∑
i=1

xi · ci · r′i · hi · x0/pi (16)

where the last equality holds over Z because c′ is an encoding of 0.
More generally, let xj be level-1 encodings with xj ≡ xij/z (mod pi), and let

x′k be a level-1 encodings of 0 with x′k ≡ r′ik · gi/z (mod pi). One can therefore
compute for 1 6 j, k 6 n:

ωjk = [(xj · c · x′k) · pzt]x0
(17)

which gives as previously:

ωjk =

n∑
i=1

xij · ci · r′ik · hi · x0/pi (18)

over the integers. We note that ωjk is a diagonal quadratic form over Z in
the xij ’s and the r′ik’s. By spanning 1 6 j, k 6 n, one can construct a matrix
Wc = (ωjk)16j,k6n such that

Wc = X ×C ×R , (19)
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where C = diag(c1, c2, . . . , cn), X = (xij ·hi ·x0/pi)16j,i6n and R = (r′ik)16i,k6n.
We perform the same computation with c = 1 in (17); one can therefore

compute a matrix W1 such that W1 = X × I ×R, where I is the n× n identity
matrix. Finally, one can publicly compute:

W = Wc ·W1
−1 = X ×C ×X−1 .

Since C is a diagonal matrix, by computing the eigenvalues of W one can recover
the ci’s, and then the pi’s. Finally, Cheon et al. describe how to recover all the
other secret values in [CHL+15].

Extension. A similar attack applies against two independent approaches to
fix the CLT scheme, [GGHZ14, Sec. 7] and [BWZ14], proposed shortly after
the Cheon et al. attack. Namely, although the two countermeasures do not
expose encodings of zero, the value ω from the zero-testing procedure can still
be expressed as a diagonal quadratic form in the CRT components of encodings,
as in Equation (18), hence the two countermeasure can be broken by the same
technique; we refer to [CLT14] for a description of the modified attacks.

3.2 Non-Applicability of Cheon et al. Attack

In this section we explain why the above attack does not apply against our new
scheme. As previously we let x be a level-1 encoding with x ≡ xi/z (mod pi),
and let x′ be a level-1 encoding of 0 with x′ ≡ r′i · gi/z (mod pi). We consider as
previously the level-κ product encoding, with κ = 2:

c′ = x · c · x′

Here we cannot reduce c′ modulo x0 since x0 is kept private; instead we must
use a ladder of level-2 encodings of zero. Let c′′ be the resulting encoding, with
0 6 c′′ < x0; we obtain:

c′′ ≡ c′ + si · gi
z2

(mod pi)

for some integers si of size roughly ρ bits. Therefore instead of (15) we obtain
over the integers:

c′′ =

n∑
i=1

(xi · ci · r′i + si) · ui − a · x0 (20)

for some integer a. Using the new definition of pzt ∈ ZN , and letting vi =
pzt · ui mod N for all 1 6 i 6 n and v0 = pzt · x0 mod N , we obtain from (20):

ω = [pzt · c′′]N =

n∑
i=1

(xi · ci · r′i + si) · vi − a · v0 (21)

where as previously the last equality holds over Z.
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Now comparing equalities (16) and (21), we see that we obtain two additional
terms: the si’s and the integer a. The si’s come from reducing c′ with the ladder
of level-κ encodings of 0, so that eventually 0 6 c′′ < x0; therefore the si’s
depend on x · c · x′ in a non-linear way. Similarly the integer a in (21), which is
the quotient of the division of

∑n
i=1 (xi · ci · r′i + si) · ui by x0, depends on the

xi · ci · x′i in a non-linear way. Therefore, if we apply Cheon et al. attack, we do
not obtain a quadratic form as in (18) anymore.

More precisely, we can let as previously xj be level-1 encodings with xj ≡ xij/z
(mod pi), and let x′k be a level-1 encodings of 0 with x′k ≡ r′ik · gi/z (mod pi).
As previously for all 1 6 j, k 6 n, we can compute the product encodings
c′jk = xj · c · x′k and we let c′′jk be the encodings obtained after reducing c′jk such
that 0 6 c′′jk < x0, using the ladder of level-κ encodings of zero. This gives:

ωjk = [pzt · c′′jk]N =

n∑
i=1

(xij · ci · r′ik + sijk) · vi − ajk · v0 (22)

for integers sijk and ajk. Compared to (18), we see that the previous equation
has two additional terms sijk and ajk. As previously we can write:

Wc = X ×C ×R+ S −A · v0 (23)

for some matrices S and A. However we see that the previous attack does not
apply, because of the additional terms S and A · v0. Namely if as previously we
perform the same computation with c = 1, we obtain:

W1 = X × I ×R+ S′ −A′ · v0 (24)

but as opposed to the CLT scheme we cannot get a simple expression for W =
Wc ×W1

−1. More generally, as opposed to the CLT case, it seems difficult to
extract useful information about C from the matrices Wc and W1, since in
equations (23) and (24) all terms X, R, S, S′, A, A′ and v0 are unknown.

Remark 2. If we do not reduce c′jk with the ladder of encodings, the sijk terms
disappear but the integers ajk becomes too large and (22) does not hold over Z
anymore. The equation still holds modulo N , however there is still the additional
term ajk that prevents the Cheon et al. attack.

3.3 Attack with Known x0.

In this section we describe an extension of the Cheon et al. attack against our
scheme when x0 is known; this explains why x0 must be kept secret in our scheme.

When x0 is known, we can reduce the previous ciphertexts c′jk modulo x0,
and therefore the sijk terms in (22) disappear. Moreover v0 = [pzt ·x0]N is known.
Therefore we can compute the Wc matrix as previously, and we obtain from (23)
with S = 0:

Wc = X ×C ×R mod v0
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which is the same equation as (19) in the original attack except that it holds
modulo v0 instead of over Z.

Therefore we can apply the Cheon et al. attack modulo v0 instead of over
Z. If v0 is prime, one can recover the eigenvalues of W = Wc ·W1

−1 mod v0
by factoring the characteristic polynomial modulo v0, which reveals the ci’s as
previously. If a prime p can be extracted from v0, one can still apply the attack
modulo p and recover the ci’s modulo p; for large enough p this reveals the ci’s;
alternatively for sufficiently many such primes p, the ci’s could be recovered by
CRT.

Actually the attack also works even if v0 is hard to factor and no prime can
be extracted. Namely the eigenvalues ci’s are small, so to recover the roots of the
characteristic polynomial one can use Coppersmith’s first theorem for finding
small roots of polynomial equations modulo an integer of unknown factorization
[Cop97]. Namely Coppersmith’s bound applies: with a modulus v0 of size roughly
γ bits and a characteristic polynomial of degree n, the roots have size only roughly
ρ bits, with ρ� η ' γ/n.

3.4 Attack for Small Multiple of x0

In Section 5 we describe an optimization with a known multiple x′0 = q · x0, in
order to avoid the ladder of encodings of 0. Here we show that we cannot take a
too small multiple x′0, otherwise the attacker can compute:

v′0 = [pzt · x′0]N = [pzt · q · x0]N = q · v0 mod N

where, as in Section 3.3, we let v0 := pzt · x0 mod N . If the prime q is small
enough then the previous equation holds over the integers, and the attacker
obtains v′0 = q · v0. Therefore the attacker can possibly extract a few primes
from v′0 and therefore from v0. Letting b be a divisor of v0, one could then apply
the Cheon et al. attack modulo b instead of modulo v0 and recover all secret
parameters. Therefore one should make sure that q · v0 is greater than N . Letting
ηq be the bitsize of q, this gives the condition ηq + γ > γ + 2η + 1. Therefore we
can take ηq = 2η + λ.

3.5 The Subgroup Membership and Decision Linear Problems

In the full version of this paper [CLT15] we also explain why the subgroup
membership (SubM) and decisional linear (DLIN) problems, which are known to
be easy in the GGH scheme [GGH13a], seem to be hard in our new setting.

4 Lattice Attacks

4.1 Lattice Attack on the Encodings

The first attack considered in [CLT13] against the original CLT scheme was based
on computing a short basis for the lattice of vectors orthogonal modulo x0 to
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x = (xj)16j6t, where the xj ’s are level-0 encodings of zero [CLT13, Sec. 5.1]. If
the reduced basis vectors are short enough, they can reveal the noise values of
the xj ’s and hence break the scheme.

The attack does not apply directly to our modified scheme, because x0 is now
secret, and it is therefore no longer possible to compute a basis for the lattice
of vectors orthogonal to x modulo x0. However, we can also mount the attack
using the lattice x⊥ of vectors orthogonal to x over Z, or the lattice of vectors
orthogonal to x modulo some multiple x′0 of x0 when using the optimization
suggested in Section 5 below.

Just as in [CLT13, Sec. 5.1], though, the complexity of these extended attacks
remains exponential in n; it is in fact slightly worse, because the new lattice has
slightly longer vectors for a given choice of the lattice dimension t. In particular,
the complexity lower bound of 2Ω(γ/η2) applies a fortiori. The attack is therefore
defeated by letting n = ω(η log λ).

4.2 Lattice Attack against pzt

From x0 =
∏n
i=1 pi and (pzt)j =

∑n
i=1 hij · αi · p

−1
i mod N , we obtain:

x0 · (pzt)j =

n∑
i=1

hij · αi ·
x0
pi

mod N.

Now x0 is of size γ bits, and the right-hand side of this congruence, which we
denote by wj , is bounded above by n2β+γ : they are both small compared to
N . Therefore, if we consider a vector p formed by a subset of the (pzt)j ’s, say
p =

(
(pzt)j

)
16j6t

∈ Zt, it may be possible to recover w = (wj)16j6t as a short

vector in the lattice generated by p and NZt, and obtain x0 accordingly.

We describe the attack in more details in the full version of this paper
[CLT15]. We show that the lattice attack has a complexity lower bound of

2Ω(n/η) = 2Ω(γ/η2), just as in Section 4.1. Thus, this attack is thwarted by our
choice of parameters.

In the full version of this paper [CLT15], we consider three other lattice
attacks on the zero-testing parameter pzt, which are variants of the lattice attacks
considered in [CLT13, Sec. 5.2, 5.3 and 5.4]. We show that they are also thwarted
by our choice of parameters.

5 Optimizations and Implementation

In this section we describe an implementation of our new multilinear map scheme
in the one-round (κ+ 1)-way Diffie-Hellman key exchange protocol; we recall the
protocol in the full version of this paper [CLT15], following [BS03,GGH13a]. We
use the following optimizations, described in details in the full version of this
paper [CLT15]:
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1. Integer pzt: as in [CLT13] we use a single integer pzt instead of a vector
pzt with n components, as this is enough for Diffie-Hellman key exchange.
Moreover the integer N can be generated as the product of large enough
prime integers, instead of being prime.

2. Known multiple of x0: we publish a multiple x′0 = q · x0 of x0, so that all
intermediate encodings can be reduced modulo x′0, instead of using a ladder
of encodings of 0 at each level.

3. Quadratic re-randomization: as in [CLT13] we only store a small subset
of encodings which are later combined pairwise to generate the full set of
encodings. This implies that the randomization of encodings becomes heuristic
only. We describe a slightly more efficient variant.

Parameters and timings. We have implemented a one-round (κ + 1)-way
Diffie-Hellman key exchange protocol with κ+ 1 = 7 users, in C++ using the
GMP library [Gt14] to perform operations on large integers and fplll [ACPS] for
LLL. We provide our concrete parameters and the resulting timings in Table 1,
for security parameters ranging from 52 to 80 bits. As in [CLT13], for a security
level λ we expect that the best attack requires at least 2λ clock cycles. The
timings of Table 1 show that the implementation of our scheme improves upon
the implementation in [CLT13], especially for the Setup phase.

Instantiation λ κ n η ∆ ρ γ = n · η pk size

Small 52 6 540 1679 23 52 0.9 · 106 27 MB
Medium 62 6 2085 1989 45 62 4.14 · 106 175 MB
Large 72 6 8250 2306 90 72 19.0 · 106 1.2 GB
Extra 80 6 25305 2619 159 85 66.3 · 106 6.1 GB

Setup Publish KeyGen

5.9 s 0.10 s 0.17 s
36 s 0.33 s 1.06 s
583 s 2.05 s 6.17 s
4528 s 7.8 s 23.9 s

Table 1. Parameters and timings to instantiate a one-round 7-way Diffie-Hellman key
exchange protocol with κ = 6, ` = 2λ and α, β, ν = λ on a 16-core computer (Intel Xeon
E7-8837 at 2.67GHz). Setup was run in parallel on the 16 cores, while the other steps
ran on a single core. Publish and KeyGen timings are per party.
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