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Abstract. By replacing the brute-force list search in sieving algorithms
with Charikar’s angular locality-sensitive hashing (LSH) method, we get
both theoretical and practical speedups for solving the shortest vector
problem (SVP) on lattices. Combining angular LSH with a variant of
Nguyen and Vidick’s heuristic sieve algorithm, we obtain heuristic time
and space complexities for solving SVP of 20.3366n+o(n) and 20.2075n+o(n)

respectively, while combining the same hash family with Micciancio and
Voulgaris’ GaussSieve algorithm leads to an algorithm with (conjectured)
heuristic time and space complexities of 20.3366n+o(n). Experiments with
the GaussSieve-variant show that in moderate dimensions the proposed
HashSieve algorithm already outperforms the GaussSieve, and the practi-
cal increase in the space complexity is much smaller than the asymptotic
bounds suggest, and can be further reduced with probing. Extrapolating
to higher dimensions, we estimate that a fully optimized and parallelized
implementation of the GaussSieve-based HashSieve algorithm might need
a few core years to solve SVP in dimension 130 or even 140.

Keywords: lattices, shortest vector problem (SVP), sieving algorithms,
approximate nearest neighbor problem, locality-sensitive hashing (LSH)

1 Introduction

Lattice cryptography. Over the past few decades, lattice-based cryptography has
attracted wide attention from the cryptographic community, due to e.g. its pre-
sumed resistance against quantum attacks [10], average-case hardness guaran-
tees [3], the existence of lattice-based fully homomorphic encryption schemes [16],
and efficient cryptographic primitives like NTRU [17]. An important problem re-
lated to lattice cryptography is to estimate the hardness of the underlying hard
lattice problems, such as finding short vectors; a good understanding is critical
for accurately choosing parameters in lattice cryptography [28,39].

Finding short vectors. Given a basis {b1, . . . , bn} ⊂ Rn of an n-dimensional
lattice L =

∑n
i=1 Zbi, finding a shortest non-zero lattice vector (with respect to

the Euclidean norm) or approximating it up to a constant factor is well-known
to be NP-hard under randomized reductions [4, 21]. For large approximation
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factors, various fast algorithms for finding short vectors are known, such as the
lattice basis reduction algorithms LLL [26] and BKZ [43, 44]. The latter has a
block-size parameter β which can be tuned to obtain a trade-off between the time
complexity and the quality of the output; the higher β, the longer the algorithm
takes and the shorter the vectors in the output basis. BKZ uses an algorithm
for solving the exact shortest vector problem (SVP) in lattices of dimension β
as a subroutine, and the runtime of BKZ largely depends on the runtime of this
subroutine. Estimating the complexity of solving exact SVP therefore has direct
consequences for the estimated hardness of solving approximate SVP with BKZ.

Finding shortest vectors. In the original description of BKZ, enumeration was
used as the SVP subroutine [14, 20, 38, 44]. This method has a low (polyno-
mial) space complexity, but its runtime is superexponential (2Ω(n logn)), which
is known to be suboptimal: sieving [5], the Voronoi cell algorithm [32], and the
recent discrete Gaussian sampling approach [2] all run in single exponential time
(2O(n)). The main drawbacks of the latter methods are that their space com-
plexities are exponential in n as well, and due to larger hidden constants in the
exponents enumeration is commonly still considered more practical than these
other methods in moderate dimensions n [34].

Sieving in arbitrary lattices. On the other hand, these other SVP algorithms
are relatively new, and recent improvements have shown that at least sieving
may be able to compete with enumeration in the future. While the original
work of Ajtai et al. [5] showed only that sieving solves SVP in time and space
2O(n), later work showed that one can provably solve SVP in arbitrary lattices
in time 22.47n+o(n) and space 21.24n+o(n) [35, 40]. Heuristic analyses of sieving
algorithms further suggest that one may be able to solve SVP in time 20.42n+o(n)

and space 20.21n+o(n) [7, 33, 35], or optimizing for time, in time 20.38n+o(n) and
space 20.29n+o(n) [7,45,46]. Other works have shown how to speed up sieving in
practice [11,15,19,29,30,41], and sieving recently made its way to the top 25 of
the SVP challenge hall of fame [42], using the GaussSieve algorithm [23,33].

Sieving in ideal lattices. The potential of sieving is further illustrated by recent
results in ideal lattices [11, 19]; while it is not known how to use the additional
structure in ideal lattices (commonly used in lattice cryptography) for enumera-
tion or other SVP algorithms, sieving does admit significant polynomial speedups
for ideal lattices, and the GaussSieve was recently used to solve SVP on an ideal
lattice in dimension 128 [11,19,37]. This is higher than the highest dimension for
which enumeration was used to find a record in either lattice challenge [37, 42],
which further illustrates the potential of sieving and the possible impact of fur-
ther improvements to sieving and, in particular, the GaussSieve algorithm.

Contributions. In this work we show how to obtain exponential trade-offs and
speedups for sieving using (angular) locality-sensitive hashing [12, 18], a tech-
nique from the field of nearest neighbor searching. In short, for each list vector
w we store low-dimensional, lossy sketches (hashes), such that vectors that are
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Fig. 1. The heuristic space-time trade-off of various heuristic sieves from the literature
(red), and the heuristic trade-off between the space and time complexities obtained
with the HashSieve (blue curve). For the NV-sieve, we can further process the hash
tables sequentially to obtain a speedup rather than a trade-off (blue point). The dashed,
gray line shows the estimate for the space-time trade-off of the HashSieve obtained by
assuming that all reduced vectors are orthogonal (cf. Proposition 1). The referenced
works are: NV’08 [35]; MV’10 [33]; WLTB’11 [45]; ZPH’13 [46]; BGJ’14 [7].

nearby have a higher probability of having the same sketch (hash value) than
vectors which are far apart. To search the list for nearby vectors we then do not
go through the entire list of lattice vectors, but only consider those vectors that
have at least one matching sketch (hash value) in one of the hash tables. Storing
all list vectors in exponentially many hash tables requires exponentially more
space, but searching for nearby vectors can then be done exponentially faster as
well, as many distant vectors are not considered for reductions. Optimizing for
time, the resulting HashSieve algorithm has heuristic time and space complexi-
ties both bounded by 20.3366n+o(n), while tuning the parameters differently, we
get a continuous heuristic trade-off between the space and time complexities as
illustrated by the solid blue curve in Figure 1.

From a tradeoff to a speedup. Applying angular LSH to a variant of the Nguyen-
Vidick sieve [35], we further obtain an algorithm with heuristic time and space
complexities of 20.3366n+o(n) and 20.2075n+o(n) respectively, as illustrated by the
blue point in Figure 1. The key observation is that the hash tables of the Hash-
Sieve can be processed sequentially, and we only need to store and use one hash
table at a time. The resulting algorithm achieves the same heuristic speed-up,
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but the asymptotic space complexity remains the same as in the original NV-
sieve algorithm. This improvement is explained in detail in the full version. Note
that this speedup does not appear to be compatible with the GaussSieve and
only works with the NV-sieve, which may make the resulting algorithm slower
in moderate dimensions, even though the memory used is much smaller.

Experimental results. Practical experiments with the (GaussSieve-based) Hash-
Sieve algorithm validate our heuristic analysis, and show that (i) already in low
dimensions, the HashSieve outperforms the GaussSieve; and (ii) the increase in
the space complexity is significantly smaller than one might guess from only
looking at the leading exponent of the space complexity. We also show how to
further reduce the space complexity at almost no cost by a technique called
probing, which reduces the required number of hash tables by a factor poly(n).
In the end, these results will be an important guide for estimating the hardness
of exact SVP in moderate dimensions, and for the hardness of approximate SVP
in high dimensions using BKZ with sieving as the SVP subroutine.

Main ideas. While the use of LSH was briefly considered in the context of sieving
by Nguyen and Vidick [35, Section 4.2.2], there are two main differences:

– Nguyen and Vidick considered LSH families based on Euclidean distances [6],
while we will argue that it seems more natural to consider hash families based
on angular distances or cosine similarities [12].

– Nguyen and Vidick focused on the worst-case difference between nearby and
faraway vectors, while we will focus on the average-case difference.

To illustrate the second point: the smallest angle between pairwise reduced vec-
tors in the GaussSieve may be only slightly bigger than 60◦ (i.e. hardly any
bigger than angles of non-reduced vectors), while in high dimensions the average
angle between two pairwise reduced vectors is actually close to 90◦.

Outlook. Although this work focuses on applying angular LSH to sieving, more
generally this work could be considered the first to succeed in applying LSH
to lattice algorithms. Various recent follow-up works have already further in-
vestigated the use of different LSH methods and other nearest neighbor search
methods in the context of lattice sieving [8, 9, 25, 31], and an open problem is
whether other lattice algorithms (e.g. provable sieving algorithms, the Voronoi
cell algorithm) may benefit from related techniques as well.

Roadmap. In Section 2 we describe the technique of (angular) LSH for finding
near(est) neighbors, and Section 3 describes how to apply these techniques to the
GaussSieve. Section 4 states the main result regarding the time and space com-
plexities of sieving using angular LSH, and describes the technique of probing. In
Section 5 we finally describe experiments performed using the GaussSieve-based
HashSieve, and possible consequences for the estimated complexity of SVP in
high dimensions. The full version [24] contains details on how angular LSH may
be combined with the NV-sieve, and how the memory can be reduced to obtain
a memory-wise asymptotically superior NV-sieve-based HashSieve.
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2 Locality-sensitive hashing

2.1 Introduction

The near(est) neighbor problem is the following [18]: Given a list of n-dimensional
vectors L = {w1,w2, . . . ,wN} ⊂ Rn, preprocess L in such a way that, when
later given a target vector v /∈ L, one can efficiently find an element w ∈ L which
is close(st) to v. While in low (fixed) dimensions n there may be ways to answer
these queries in time sub-linear or even logarithmic in the list size N , in high
dimensions it seems hard to do better than with a naive brute-force list search of
time O(N). This inability to efficiently store and query lists of high-dimensional
objects is sometimes referred to as the “curse of dimensionality” [18].

Fortunately, if we know that the list of objects L has a certain structure, or
if we know that there is a significant gap between what is meant by “nearby”
and “far away,” then there are ways to preprocess L such that queries can be
answered in time sub-linear in N . For instance, for the Euclidean norm, if it is
known that the closest point w∗ ∈ L lies at distance ‖v − w∗‖ = r1, and all
other points w ∈ L are at distance at least ‖v − w‖ ≥ r2 = (1 + ε)r1 from v,
then it is possible to preprocess L using time and space O(N1+ρ), and answer
queries in time O(Nρ), where ρ = (1 + ε)−2 < 1 [6]. For ε > 0, this corresponds
to a sub-linear time and sub-quadratic (super-linear) space complexity in N .

2.2 Hash families

The method of [6] described above, as well as the method we will use later, relies
on using locality-sensitive hash functions [18]. These are functions h which map
an n-dimensional vector v to a low-dimensional sketch of v, such that vectors
which are nearby in Rn have a high probability of having the same sketch, while
vectors which are far away have a low probability of having the same image
under h. Formalizing this property leads to the following definition of a locality-
sensitive hash family H. Here, we assume D is a certain similarity measure1,
and the set U below may be thought of as (a subset of) the natural numbers N.

Definition 1. [18] A family H = {h : Rn → U} is called (r1, r2, p1, p2)-
sensitive for a similarity measure D if for any v,w ∈ Rn we have

– If D(v,w) ≤ r1 then Ph∈H[h(v) = h(w)] ≥ p1.
– If D(v,w) ≥ r2 then Ph∈H[h(v) = h(w)] ≤ p2.

Note that if we are given a hash family H which is (r1, r2, p1, p2)-sensitive
with p1 � p2, then we can use H to distinguish between vectors which are
at most r1 away from v, and vectors which are at least r2 away from v with
non-negligible probability, by only looking at their hash values (and that of v).

1 A similarity measure D may informally be thought of as a “slightly relaxed” distance
metric, which may not satisfy all properties associated to distance metrics.
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2.3 Amplification

Before turning to how such hash families may actually be constructed or used
to find nearest neighbors, note that in general it is unknown whether efficiently
computable (r1, r2, p1, p2)-sensitive hash families even exist for the ideal setting
of r1 ≈ r2 and p1 ≈ 1 and p2 ≈ 0. Instead, one commonly first constructs an
(r1, r2, p1, p2)-sensitive hash family H with p1 ≈ p2, and then uses several AND-
and OR-compositions to turn it into an (r1, r2, p

′
1, p
′
2)-sensitive hash family H′

with p′1 > p1 and p′2 < p2, thereby amplifying the gap between p1 and p2.

AND-composition. Given an (r1, r2, p1, p2)-sensitive hash family H, we can
construct an (r1, r2, p

k
1 , p

k
2)-sensitive hash family H′ by taking k different,

pairwise independent functions h1, . . . , hk ∈ H and a one-to-one mapping
f : Uk → U , and defining h ∈ H′ as h(v) = f(h1(v), . . . , hk(v)). Clearly
h(v) = h(w) iff hi(v) = hi(w) for all i ∈ [k], so if P[hi(v) = hi(w)] = pj for
all i, then P[h(v) = h(w)] = pkj for j = 1, 2.

OR-composition. Given an (r1, r2, p1, p2)-sensitive hash familyH, we can con-
struct an (r1, r2, 1−(1−p1)t, 1−(1−p2)t)-sensitive hash familyH′ by taking t
different, pairwise independent functions h1, . . . , ht ∈ H, and defining h ∈ H′
by the relation h(v) = h(w) iff hi(v) = hi(w) for at least one i ∈ [t]. Clearly
h(v) 6= h(w) iff hi(v) 6= hi(w) for all i ∈ [t], so if P[hi(v) 6= hi(w)] = 1− pj
for all i, then P[h(v) 6= h(w)] = (1− pj)t for j = 1, 2.2

Combining a k-wise AND-composition with a t-wise OR-composition, we can
turn an (r1, r2, p1, p2)-sensitive hash family H into an (r1, r2, 1 − (1 − pk1)t, 1 −
(1− pk2)t)-sensitive hash family H′ as follows:

(r1, r2, p1, p2)
k−AND
−−−−→ (r1, r2, p

k
1 , p

k
2)

t−OR
−−−−→ (r1, r2, (1− pk1)t, (1− pk2)t).

As long as p1 > p2, we can always find values k and t such that p∗1 = 1−(1−pk1)t ≈
1 is close to 1 and p∗2 = 1− (1− pk2)t ≈ 0 is very small.

2.4 Finding nearest neighbors

To use these hash families to find nearest neighbors, we may use the following
method first described in [18]. First, we choose t · k random hash functions
hi,j ∈ H, and we use the AND-composition to combine k of them at a time
to build t different hash functions h1, . . . , ht. Then, given the list L, we build t
different hash tables T1, . . . , Tt, where for each hash table Ti we insert w into
the bucket labeled hi(w). Finally, given the vector v, we compute its t images
hi(v), gather all the candidate vectors that collide with v in at least one of these
hash tables (an OR-composition) in a list of candidates, and search this set of
candidates for a nearest neighbor.

Clearly, the quality of this algorithm for finding nearest neighbors depends
on the quality of the underlying hash family H and on the parameters k and

2 Note that h is strictly not a function and only defines a relation.
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t. Larger values of k and t amplify the gap between the probabilities of finding
‘good’ (nearby) and ‘bad’ (faraway) vectors, which makes the list of candidates
shorter, but larger parameters come at the cost of having to compute many
hashes (both during the preprocessing and querying phases) and having to store
many hash tables in memory. The following lemma shows how to balance k and
t so that the overall time complexity is minimized.

Lemma 1. [18] Suppose there exists a (r1, r2, p1, p2)-sensitive hash family H.
Then, for a list L of size N , taking

ρ =
log(1/p1)

log(1/p2)
, k =

log(N)

log(1/p2)
, t = O(Nρ), (1)

with high probability we can either (a) find an element w∗ ∈ L that satisfies
D(v,w∗) ≤ r2, or (b) conclude that with high probability, no elements w ∈ L
with D(v,w) > r1 exist, with the following costs:

(1) Time for preprocessing the list: Õ(kN1+ρ).
(2) Space complexity of the preprocessed data: Õ(N1+ρ).
(3) Time for answering a query v: Õ(Nρ).

(3a) Hash evaluations of the query vector v: O(Nρ).
(3b) List vectors to compare to the query vector v: O(Nρ).

Although Lemma 1 only shows how to choose k and t to minimize the time
complexity, we can also tune k and t so that we use more time and less space.
In a way this algorithm can be seen as a generalization of the naive brute-force
search solution for finding nearest neighbors, as k = 0 and t = 1 corresponds to
checking the whole list for nearby vectors in linear time and linear space.

2.5 Angular hashing

Let us now consider actual hash families for the similarity measure D that we are
interested in. As argued in the next section, what seems a more natural choice
for D than the Euclidean distance is the angular distance, defined on Rn as

D(v,w) = θ(v,w) = arccos

(
vTw

‖v‖ · ‖w‖

)
. (2)

With this similarity measure, two vectors are ‘nearby’ if their common angle
is small, and ‘far apart’ if their angle is large. In a sense, this is similar to
the Euclidean norm: if two vectors have similar Euclidean norms, their distance
is large iff their angular distance is large. For this similarity measure D, the
following hash family H was first described in [12]:

H = {ha : a ∈ Rn, ‖a‖ = 1}, ha(v)
def
=

{
1 if aTv ≥ 0;

0 if aTv < 0.
(3)
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Intuitively, the vector a defines a hyperplane (for which a is a normal vector),
and ha maps the two regions separated by this hyperplane to different bits.

To see why this is a non-trivial locality-sensitive hash family for the angu-
lar distance, consider two vectors v,w ∈ Rn. These two vectors lie on a two-
dimensional plane passing through the origin, and with probability 1 a hash
vector a does not lie on this plane (for n > 2). This means that the hyperplane
defined by a intersects this plane in some line `. Since a is taken uniformly at
random from the unit sphere, the line ` has a uniformly random ‘direction’ in
the plane, and maps v and w to different hash values iff ` separates v and w in
the plane. Therefore the probability that h(v) 6= h(w) is directly proportional
to their common angle θ(v,w) as follows [12]:

Pha∈H
[
ha(v) = ha(w)

]
= 1− θ(v,w)

π
. (4)

So for any two angles θ1 < θ2, the family H is (θ1, θ2, 1 − θ1
π , 1 −

θ2
π )-sensitive.

In particular, Charikar’s hyperplane hash family is (π3 ,
π
2 ,

2
3 ,

1
2 )-sensitive.

3 From the GaussSieve to the HashSieve

Let us now describe how locality-sensitive hashing can be used to speed up
sieving algorithms, and in particular how we can speed up the GaussSieve of
Micciancio and Voulgaris [33]. We have chosen this algorithm as our main focus
since it seems to be the most practical sieving algorithm to date, which is further
motivated by the extensive attention it has received in recent years [15, 19, 23,
29, 30, 41] and by the fact that the highest sieving record in the SVP challenge
database was obtained using (a modification of) the GaussSieve [23, 42]. Note
that the same ideas can also be applied to the Nguyen-Vidick sieve [35], which
has proven complexity bounds. Details on this combination are in the full version.

3.1 The GaussSieve algorithm

A simplified version of the GaussSieve algorithm of Micciancio and Voulgaris is
described in Algorithm 1. The algorithm iteratively builds a longer and longer
list L of lattice vectors, occasionally reducing the lengths of list vectors in the
process, until at some point this list L contains a shortest vector. Vectors are
sampled from a discrete Gaussian over the lattice, using e.g. the sampling algo-
rithm of Klein [22, 33], or popped from the stack. If list vectors are modified or
newly sampled vectors are reduced, they are pushed to the stack.

In the GaussSieve, the reductions in Lines 5 and 6 follow the rule:

Reduce u1 with u2 : if ‖u1 ± u2‖ < ‖u1‖ then u1 ← u1 ± u2. (5)

Throughout the execution of the algorithm, the list L is always pairwise reduced
w.r.t. (5), i.e., ‖w1 ±w2‖ ≥ max{‖w1‖, ‖w2‖} for all w1,w2 ∈ L. This implies
that two list vectors w1,w2 ∈ L always have an angle of at least 60◦; otherwise
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Algorithm 1 The GaussSieve algorithm (simplified)

1: Initialize an empty list L and an empty stack S
2: repeat
3: Get a vector v from the stack (or sample a new one if S = ∅)
4: for each w ∈ L do
5: Reduce v with w
6: Reduce w with v
7: if w has changed then
8: Remove w from the list L
9: Add w to the stack S (unless w = 0)

10: if v has changed then
11: Add v to the stack S (unless v = 0)
12: else
13: Add v to the list L
14: until v is a shortest vector

one of them would have been used to reduce the other before being added to
the list. Since all angles between list vectors are always at least 60◦, the size of
L is bounded by the kissing constant in dimension n: the maximum number of
vectors in Rn one can find such that any two vectors have an angle of at least
60◦. Bounds and conjectures on the kissing constant in high dimensions lead us
to believe that the size of the list L will therefore not exceed 20.2075n+o(n) [13].

While the space complexity of the GaussSieve is reasonably well understood,
there are no proven bounds on the time complexity of this algorithm. One might
estimate that the time complexity is determined by the double loop over L: at
any time each pair of vectors w1,w2 ∈ L was compared at least once to see if
one could reduce the other, so the time complexity is at least quadratic in |L|.
The algorithm further seems to show a similar asymptotic behavior as the NV-
sieve [35], for which the asymptotic time complexity is heuristically known to be
quadratic in |L|, i.e., of the order 20.415n+o(n). One might therefore conjecture
that the GaussSieve also has a time complexity of 20.415n+o(n), which closely
matches previous experiments with the GaussSieve in high dimensions [23].

3.2 The GaussSieve with angular reductions

Since the heuristic bounds on the space and time complexities are only based
on the fact that each pair of vectors w1,w2 ∈ L has an angle of at least 60◦,
the same heuristics apply to any reduction method that guarantees that angles
between vectors in L are at least 60◦. In particular, if we reduce vectors only if
their angle is at most 60◦ using the following rule:

Reduce u1 with u2 :

if θ(u1,±u2) < 60◦ and ‖u1‖ ≥ ‖u2‖ then u1 ← u1 ± u2, (6)

then we expect the same heuristic bounds on the time and space complexities
to apply. More precisely, the list size would again be bounded by 20.208n+o(n),
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Algorithm 2 The GaussSieve-based HashSieve algorithm

1: Initialize an empty list L and an empty stack S
2: Initialize t empty hash tables Ti

3: Sample k · t random hash vectors ai,j

4: repeat
5: Get a vector v from the stack (or sample a new one if S = ∅)
6: Obtain the set of candidates C =

⋃t
i=1 Ti[hi(v)]

7: for each w ∈ C do
8: Reduce v with w
9: Reduce w with v

10: if w has changed then
11: Remove w from the list L
12: Remove w from all t hash tables Ti

13: Add w to the stack S (unless w = 0)

14: if v has changed then
15: Add v to the stack S (unless v = 0)
16: else
17: Add v to the list L
18: Add v to all t hash tables Ti

19: until v is a shortest vector

and the time complexity may again be estimated to be of the order 20.415n+o(n).
Basic experiments show that, although with this notion of reduction the list size
increases, this factor indeed appears to be sub-exponential in n.

3.3 The HashSieve with angular reductions

Replacing the stronger notion of reduction of (5) by the weaker one of (6), we
can clearly see the connection with angular hashing. Considering the GaussSieve
with angular reductions, we are repeatedly sampling new target vectors v (with
each time almost the same list L), and each time we are looking for vectors
w ∈ L whose angle with v is at most 60◦. Replacing the brute-force list search
in the original algorithm with the technique of angular locality-sensitive hashing,
we obtain Algorithm 2. Blue lines in Algorithm 2 indicate modifications to the
GaussSieve. Note that the setup costs of locality-sensitive hashing are spread
out over the various iterations; at each iteration we only update the parts of the
hash tables that were affected by updating L. This means that we only pay the
setup costs of locality-sensitive hashing once, rather than once for each search.

3.4 The (GaussSieve-based) HashSieve algorithm

Finally, note that there seems to be no point in skipping potential reductions in
Lines 8 and 9. So while for our intuition and for the theoretical motivation we
may consider the case where the reductions are based on (6), in practice we will
again reduce vectors based on (5). The algorithm is illustrated in Figure 2.
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Fig. 2. An example of the HashSieve, using k = 2 hyperplanes and 2k = 4 buckets in
each hash table. Given 10 list vectors L = {w1, . . . ,w10} and a target vector v, for
each of the t hash tables we first compute v’s hash value (i.e. compute the region in
which it lies), look up vectors with the same hash value, and compare v with those
vectors. Here we will try to reduce v with C = {w6,w7,w8,w9,w10} and vice versa.

3.5 Relation with leveled sieving

Overall, the crucial modification going from the GaussSieve to the HashSieve is
that by using hash tables and looking up vectors to reduce the target vector with
in these hash tables, we make the search space smaller; instead of comparing a
new vector to all vectors in L, we only compare the vector to a much smaller
subset of candidates C ⊂ L, which mostly contains good candidates for reduc-
tion, and does not contain many of the ‘bad’ vectors in L which are not useful
for reductions anyway.

In a way, the idea of the HashSieve is similar to the technique previously
used in two- and three-level sieving [45,46]. There, the search space of candidate
nearby vectors was reduced by partitioning the space into regions, and for each
vector storing in which region it lies. In those algorithms, two nearby vectors in
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adjacent regions are not considered for reductions, which means one needs more
vectors to saturate the space (a higher space complexity) but less time to search
the list of candidates for nearby vectors (a lower time complexity). The key
difference between leveled sieving and our method is in the way the partitions
of Rn are chosen: using giant balls in leveled sieving (similar to the Euclidean
LSH method of [6]), and using intersections of half-spaces in the HashSieve.

4 Theoretical results

For analyzing the time complexity of sieving with angular LSH, for clarity of
exposition we will analyze the GaussSieve-based HashSieve and assume that
the GaussSieve has a time complexity which is quadratic in the list size, i.e.
a time complexity of 20.415n+o(n). We will then show that using angular LSH,
we can reduce the time complexity to 20.337n+o(n). Note that although practical
experiments in high dimensions seem to verify this assumption [23], in reality it
is not known whether the time complexity of the GaussSieve is quadratic in |L|.
At first sight this therefore may not guarantee a heuristic time complexity of the
order 20.337n+o(n). In the full version we illustrate how the same techniques can
be applied to the sieve of Nguyen and Vidick [35], for which the heuristic time
complexity is in fact known to be at most 20.415n+o(n), and for which we get the
same speedup. This implies that indeed, with sieving we can provably solve SVP
in time and space 20.337n+o(n) under the same heuristic assumptions of Nguyen
and Vidick [35]. For clarity of exposition, in the main text we will continue
focusing on the GaussSieve due to its better practical performance, even though
theoretically one might rather apply this analysis to the algorithm of Nguyen
and Vidick due to their heuristic bounds on the time and space complexities.

4.1 High-dimensional intuition

So for now, suppose that the GaussSieve has a time complexity quadratic in |L|
and that |L| ≤ 20.208n+o(n). To estimate the complexities of the HashSieve, we
will use the following assumption previously described in [35]:

Heuristic 1 The angle Θ(v,w) between random sampled/list vectors v and w
follows the same distribution as the distribution of angles Θ(v,w) obtained by
drawing v,w ∈ Rn at random from the unit sphere.

Note that under this assumption, in high dimensions angles close to 90◦ are
much more likely to occur between list vectors than smaller angles. So one might
guess that for two vectors w1,w2 ∈ L (which necessarily have an angle larger
than 60◦), with high probability their angle is close to 90◦. On the other hand,
vectors that can reduce one another always have an angle less than 60◦, and
by similar arguments we expect this angle to always be close to 60◦. Under the
extreme assumption that all ‘reduced angles’ between vectors that are unable to
reduce each other are exactly 90◦ (and non-reduced angles are at most 60◦), we
obtain the following estimate for the costs of the HashSieve algorithm.
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Proposition 1. Assuming that reduced vectors are always pairwise orthogonal,
the HashSieve with parameters k = 0.2075n+o(n) and t = 20.1214n+o(n) heuristi-
cally solves SVP in time and space 20.3289n+o(n). We further obtain the trade-off
between the space and time complexities indicated by the dashed line in Figure 1.

Proof. If all reduced angles are 90◦, then we can simply let θ1 = π
3 and θ2 = π

2
and use the hash family described in Section 2.5 with p1 = 2

3 and p2 = 1
2 .

Applying Lemma 1, we can perform a single search in time Nρ = 20.1214n+o(n)

using t = 20.1214n+o(n) hash tables, where ρ = log(1/p1)
log(1/p2)

= log2( 3
2 ) ≈ 0.585. Since

we need to perform these searches Õ(|L|) = Õ(N) times, the time complexity is
of the order Õ(N1+ρ) = 20.3289n+o(n). ut

4.2 Heuristically solving SVP in time and space 20.3366n+o(n)

Of course, in practice not all reduced angles are actually 90◦, and one should
carefully analyze what is the real probability that a vector w whose angle with
v is more than 60◦, is found as a candidate due to a collision in one of the hash
tables. The following central theorem follows from this analysis and shows how
to choose the parameters to optimize the asymptotic time complexity. A rigorous
proof of Theorem 1 based on the NV-sieve can be found in the full version.

Theorem 1. Sieving with angular locality-sensitive hashing with parameters

k = 0.2206n+ o(n), t = 20.1290n+o(n), (7)

heuristically solves SVP in time and space 20.3366n+o(n). Tuning k and t differ-
ently, we further obtain the trade-off indicated by the solid blue line in Figure 1.

Note that the optimized values in Theorem 1 and Proposition 1, and the
associated curves in Figure 1 are very similar. So the simple estimate based on
the intuition that in high dimensions “everything is orthogonal” is not far off.

4.3 Heuristically solving SVP in time 20.3366n and space 20.2075n

For completeness let us briefly explain how for the NV-sieve [35], we can in fact
process the hash tables sequentially and eliminate the need of storing exponen-
tially many hash tables in memory, for which full details are given in the full
version. To illustrate the idea, recall that in the Nguyen-Vidick sieve we are
given a list L of size 20.21n+o(n) of vectors of norm at most R, and we want to
build a new list L′ of similar size 20.21n+o(n) of vectors of norm at most γR with
γ < 1. To do this, we look at (almost) all pairs of vectors in L, and see if their
difference (sum) is short; if so, we add it to L′. As the probability of finding a
short vector is roughly 2−0.21n+o(n) and we have 20.42n+o(n) pairs of vectors, this
will result in enough vectors to continue in the next iterations.

The natural way to apply angular LSH to this algorithm would be to add all
vectors in L to t independent hash tables, and to find short vectors to add to



14 Thijs Laarhoven

L′ we then compute a new vector v’s hash value for each of these t hash tables,
look for potential short vectors v±w by comparing v with the colliding vectors
w ∈

⋃t
i=1 Ti[hi(v)], and process all vectors one by one. This results in similar

asymptotic time and space complexities as illustrated above.
The simple but crucial modification that we can make to this algorithm is

that we process the tables one by one; we first construct the first hash table, add
all vectors in L to this hash table, and look for short difference vectors inside
each of the buckets of L to add to L′. The cost of building and processing one
hash table is of the order 20.21n+o(n), and the number of vectors found that can
be added to L′ is of the order 20.08n+o(n). By then deleting the hash table from
memory and building new hash tables over and over (t = 20.13n+o(n) times) we
keep building a longer list L′ until finally we will again have found 20.21n+o(n)

short vectors for the next iteration. In this case however we never stored all hash
tables in memory at the same time, and the memory increase compared to the
NV-sieve is asymptotically negligible. This leads to the following result.

Theorem 2. Sieving with angular locality-sensitive hashing with parameters

k = 0.2206n+ o(n), t = 20.1290n+o(n), (8)

heuristically solves SVP in time 20.3366n+o(n) and space 20.2075n+o(n). These com-
plexities are indicated by the left-most blue point in Figure 1.

Note that this choice of parameters balances the costs of computing hashes
and comparing vectors; the fact that the blue point in Figure 1 does not lie on the
“Time = Space”-line does not mean we can further reduce the time complexity.

4.4 Reducing the space complexity with probing

Finally, as the above modification only seems to work with the less practical NV-
sieve (and not with the GaussSieve), and since for the GaussSieve-based Hash-
Sieve the memory requirement increases exponentially, let us briefly sketch how
we can reduce the required amount of memory in practice for the (GaussSieve-
based) HashSieve using probing. The key observation here is that, as illustrated
in Figure 2, we only check one bucket in each hash table for nearby vectors,
leading to t hash buckets in total that are checked for candidate reductions.
This seems wasteful, as the hash tables contain more information: we also know
for instance which hash buckets are next-most likely to contain nearby vectors,
which are buckets with very similar hash values. By also probing these buckets
in a clever way and checking multiple hash buckets per hash table, we can sig-
nificantly reduce the number of hash tables t in practice such that in the end we
still find as many good vectors. Using ` levels of probing (checking all buckets
with hash value at Hamming distance at most ` to h(v)) we can reduce t by a
factor O(n`) at the cost of increasing the time complexity by a factor at most
2`. This does not constitute an exponential improvement, but the polynomial
reduction in memory may be worthwhile in practice. More details on probing
can be found in the full version.
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5 Practical results

5.1 Experimental results in moderate dimensions

To verify our theoretical analysis, we implemented both the GaussSieve and the
GaussSieve-based HashSieve to try to compare the asymptotic trends of these
algorithms. For implementing the HashSieve, we note that we can use various
simple tweaks to further improve the algorithm’s performance. These include:

(a) With the HashSieve, maintaining a list L is no longer needed.
(b) Instead of making a list of candidates, we go through the hash tables one

by one, checking if collisions in this table lead to reductions. If a reducing
vector is found early on, this may save up to t · k hash computations.

(c) As hi(−v) = −hi(v) the hash of −v can be computed for free from hi(v).
(d) Instead of comparing ±v to all candidate vectors w, we only compare +v

to the vectors in the bucket hi(v) and −v to the vectors in the bucket
labeled −hi(v). This further reduces the number of comparisons by a factor
2 compared to the GaussSieve, where both comparisons are done for each
potential reduction.

(e) For choosing vectors ai,j to use for the hash functions hi, there is no reason
to assume that drawing a from a specific, sufficiently large random subset
of the unit sphere would lead to substantially different results. In particular,
using sparse vectors ai,j makes hash computations significantly cheaper,
while retaining the same performance [1,27]. Our experiments indicated that
even if all vectors ai,j have only two equal non-zero entries, the algorithm
still finds the shortest vector in (roughly) the same number of iterations.

(f) We should not store the actual vectors, but only pointers to vectors in each
hash table Ti. This means that compared to the GaussSieve, the space com-
plexity roughly increases from O(N ·n) to O(N ·n+N ·t) instead of O(N ·n·t),
i.e., an asymptotic increase of a factor t/n rather than t.

With these tweaks, we performed several experiments of finding shortest vectors
using the lattices of the SVP challenge [42]. We generated lattice bases for dif-
ferent seeds and different dimensions using the SVP challenge generator, used
NTL (Number Theory Library) to preprocess the bases (LLL reduction), and
then used our implementations of the GaussSieve and the HashSieve to obtain
these results. For the HashSieve we chose the parameters k and t by rounding the
theoretical estimates of Theorem 1 to the nearest integers, i.e., k = b0.2206ne
and t = b20.1290ne (see Figure 3a). Note that clearly there are ways to further
speed up both the GaussSieve and the HashSieve, using e.g. better preprocessing,
vectorized code, parallel implementations, optimized samplers, etc. The purpose
of our experiments is only to obtain a fair comparison of the two algorithms and
to try to estimate and compare the asymptotic behaviors of these algorithms.
Details on a more optimized implementation of the HashSieve are given in [31].
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Dimension (n) 40 45 50 55 60 65 70 75 80

Hash length (k) 9 10 11 12 13 14 15 17 18

Hash tables (t) 36 56 87 137 214 334 523 817 1278

. . . with probing (t1) 7 9 13 19 28 41 60 88 130

(a) Parameters used in HashSieve experiments, without (t) and with (t1) probing
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Fig. 3. Experimental data for the GaussSieve and the HashSieve (with/without prob-
ing). Markers indicate experiments, lines and labels represent least-squares fits.
Figure 3b shows the time spent on hashing and comparing vectors in the HashSieve.
Figure 3c confirms our intuition that if we miss a small fraction of the reducing vectors,
the list size increases by a small factor. Figure 3d compares the time complexities of the
algorithms, confirming our theoretical analysis of a speedup of roughly 20.07n over the
GaussSieve. Figure 3e illustrates the space requirements of each algorithm. Note that
probing decreases the required memory at the cost of a small increase in the time. Also
note that the step-wise behavior of some curves in Figure 3 is explained by the fact
that k is small but integral, and increases by 1 only once every four/five dimensions.
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Computations. Figure 3b shows the number of inner products computed by
the HashSieve for comparing vectors and for computing hashes. We have chosen
k and t so that the total time for each of these operations is roughly balanced, and
indeed this seems to be the case. The total number of inner products for hashing
seems to be a constant factor higher than the total number of inner products
computed for comparing vectors, which may also be desirable, as hashing is
significantly cheaper than comparing vectors using sparse hash vectors. Tuning
the parameters differently may slightly change this ratio.

List sizes. In the analysis, we assumed that if reductions are missed with
a constant probability, then the list size also increases by a constant factor.
Figure 3c seems to support this intuition, as indeed the list sizes in the HashSieve
seem to be a (small) constant factor larger than in the GaussSieve.

Time complexities. Figure 3d compares the timings of the GaussSieve and
HashSieve on a single core of a Dell Optiplex 780, which has a processor speed
of 2.66 GHz. Theoretically, we expect to achieve a speedup of roughly 20.078n

for each list search, and in practice we see that the asymptotic speedup of the
HashSieve over the GaussSieve is close to 20.07n using a least-squares fit.

Note that the coefficients in the least-squares fits for the time complexities
of the GaussSieve and HashSieve are higher than theory suggests, which is in
fact consistent with previous experiments in low dimensions [15, 19, 29, 30, 33].
This phenomenon seems to be caused purely by the low dimensionality of our
experiments. Figure 3d shows that in higher dimensions, the points start to
deviate from the straight line, with a better scaling of the time complexity in
higher dimensions. High-dimensional experiments of the GaussSieve (80 ≤ n ≤
100) and the HashSieve (86 ≤ n ≤ 96) demonstrated that these algorithms
start following the expected trends of 20.42n+o(n) (GaussSieve) and 20.34n+o(n)

(HashSieve) as n gets larger [23,31]. In high dimensions we therefore expect the
coefficient 0.3366 to be accurate. For more details, see [31].

Space complexities. Figure 3e illustrates the experimental space complexities
of the tested algorithms for various dimensions. For the GaussSieve, the total
space complexity is dominated by the memory required to store the list L. In our
experiments we stored each vector coordinate in a register of 4 bytes, and since
each vector has n entries, this leads to a total space complexity for the GaussSieve
of roughly 4nN bytes. For the HashSieve the asymptotic space complexity is
significantly higher, but recall that in our hash tables we only store pointers to
vectors, which may also be only 4 bytes each. For the HashSieve, we estimate
the total space complexity as 4nN+4tN ∼ 4tN bytes, i.e., roughly a factor t

n ≈
20.1290n/n higher than the space complexity of the GaussSieve. Using probing,
the memory requirement is further reduced by a significant amount, at the cost
of a small increase in the time complexity (Figure 3d).
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5.2 High-dimensional extrapolations

As explained at the start of this section, the experiments in Section 5.1 are aimed
at verifying the heuristic analysis and at establishing trends which hold regard-
less of the amount of optimization of the code, the quality of preprocessing of
the input basis, the amount of parallelization etc. However, the linear estimates
in Figure 3 may not be accurate. For instance, the time complexities of the
GaussSieve and HashSieve seem to scale better in higher dimensions; the time
complexities may well be 20.415n+o(n) and 20.337n+o(n) respectively, but the con-
tribution of the o(n) only starts to fade away for large n. To get a better feeling
of the actual time complexities in high dimensions, one would have to run these
algorithms in higher dimensions. In recent work, Mariano et al. [31] showed that
the HashSieve can be parallelized in a similar fashion as the GaussSieve [29].
With better preprocessing and optimized code (but without probing), Mariano
et al. were able to solve SVP in dimensions up to 96 in less than one day on
one machine using the HashSieve3. Based on experiments in dimensions 86 up
to 96, they further estimated the time complexity to lie between 20.32n−15 and
20.33n−16, which is close to the theoretical estimate 20.3366n+o(n). So although the
points in Figure 3d almost seem to lie on a line with a different leading constant,
these leading constants should not be taken for granted for high-dimensional
extrapolations; the theoretical estimate 20.3366n+o(n) seems more accurate.

Finally, let us try to estimate the highest practical dimension n in which the
HashSieve may be able to solve SVP right now. The current highest dimension
that was attacked using the GaussSieve is n = 116, for which 32GB RAM and
about 2 core years were needed [23]. Assuming the theoretical estimates for
the GaussSieve (20.4150n+o(n)) and HashSieve (20.3366n+o(n)) are accurate, and
assuming there is a constant overhead of approximately 22 of the HashSieve
compared to the GaussSieve (based on the exponents in Figure 3d), we might
estimate the time complexities of the GaussSieve and HashSieve to be G(n) =
20.4150n+C and H(n) = 20.3366n+C+2 respectively. To solve SVP in the same
dimension n = 116, we therefore expect to use a factor G(116)/H(116) ≈ 137
less time using the HashSieve, or five core days on the same machine. With
approximately two core years, we may further be able to solve SVP in dimension
138 using the HashSieve, which would place sieving near the very top of the
SVP hall of fame [42]. This does not take into account the space complexity
though, which at this point may have increased to several TBs. Several levels
of probing may significantly reduce the required amount of RAM, but further
experiments have to be conducted to see how practical the HashSieve is in high
dimensions. As in high dimensions the space requirement also becomes an issue,
studying the memory-efficient NV-sieve-based HashSieve (with space complexity
20.2075n+o(n)) may be an interesting topic for future work.

3 At the time of writing, Mariano et al.’s highest SVP challenge records obtained using
the HashSieve are in dimension 107, using five days on one multi-core machine.
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