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Abstract. There is a large body of work on using noisy communication
channels for realizing different cryptographic tasks. In particular, it is
known that secure message transmission can be achieved uncondition-
ally using only one-way communication from the sender to the receiver.
In contrast, known solutions for more general secure computation tasks
inherently require interaction, even when the entire input originates from
the sender.

We initiate a general study of cryptographic protocols over noisy channels
in a setting where only one party speaks. In this setting, we show that
the landscape of what a channel is useful for is much richer. Concretely,
we obtain the following results.

– Relationships between channels. The binary erasure channel
(BEC) and the binary symmetric channel (BSC), which are known
to be securely reducible to each other in the interactive setting, turn
out to be qualitatively different in the setting of one-way commu-
nication. In particular, a BEC cannot be implemented from a BSC,
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and while the erasure probability of a BEC can be manipulated in
both directions, the crossover probability of a BSC can only be ma-
nipulated in one direction.

– Zero-knowledge proofs and secure computation of deter-
ministic functions. One-way communication over BEC or BSC is
sufficient for securely realizing any deterministic (possibly reactive)
functionality which takes its inputs from a sender and delivers its
outputs to a receiver. This provides the first truly non-interactive
solutions to the problem of zero-knowledge proofs.

– Secure computation of randomized functions. One-way com-
munication over BEC or BSC cannot be used for realizing general
randomized functionalities which take input from a sender and de-
liver output to a receiver. On the other hand, one-way communica-
tion over other natural channels, such as bursty erasure channels, can
be used to realize such functionalities. This type of protocols can be
used for distributing certified cryptographic keys without revealing
the keys to the certification authority.

1 Introduction

The seminal work of Wyner [Wyn75] demonstrated the usefulness of noise for
secure communication. Since then, there has been a large body of work on
basing various cryptographic primitives, such as key agreement and commit-
ment [BBCM95,BBR88,Mau91,DKS99,WNI03,Wul09,RTWW11], on different types
of noisy communication channels.

In 1988, Crépeau and Kilian [CK88] showed that noise in a communication
channel can be used to realize essentially everything a cryptographer could wish
for. In particular, they showed that any non-trivial binary-symmetric channel
(BSC) can be used to realize oblivious transfer (OT) which is sufficient for realiz-
ing two-party secure computation. (More efficient construction were later consid-
ered in [KM01,SW02,IKO+11b].) Finally, Crépeau, Morozov and Wolf [CMW04]
generalized these results to arbitrary discrete memory-less channels. Other re-
sults towards characterizing the types of channels on which OT can be based
appeared in [Kil88,DKS99,DFMS04,Wul07,Wul09].

Following the work of Crépeau and Kilian [CK88], the entire body of re-
search on secure two-party computation over noisy channels requires parties to
interact. In contrast, the present paper considers cryptographic protocols which
only use one-way communication, namely ones in which only one party speaks.
There has been a considerable amount of work on realizing information-theoretic
secure message transmission in this setting. These works are motivated not only
by the goal of achieving information-theoretic security, but also by the goal of
efficiency; see [BTV12] for discussion. Our goal is to extend this study to more
general cryptographic tasks, including useful special cases of secure two-party
computation in which the input originates from only one party.
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1.1 Our Model

We model a channel as an ideal functionality C. This is done in order to capture
the security properties of the channel in a clean way and in order to facilitate
the use of composition theorems. A channel provides a communication medium
between a sender and a receiver. The sender can invoke the channel C on an input
of its choice. The channel “based on its nature” processes the input and outputs
the processed value to the receiver. The correctness and secrecy requirements of
a channel and the protocols we build on top of it can be specified in terms of UC
security. For example, consider a binary erasure channel (BEC) parameterized
by a probability p ∈ (0, 1). For this channel, the sender inputs a bit x ∈ {0, 1}
and the channel outputs (for the receiver) x with a probability p and ⊥ with
a probability 1 − p. 4 Even for this basic channel, stating the correctness and
security properties is non-trivial. Correctness requires that if the sender sends x
then the receiver outputs either x or ⊥ with the right probability distribution.
Security is a bit more involved; it requires that no malicious sender can figure out
whether the receiver actually received the sent bit or not, and that a malicious
receiver does not learn any partial information about the sent bit in the case of
an erasure.

In this work, we consider various such channels. Two other channels that
would be of great interest to us are the binary symmetric channel (BSC) and
the random oblivious transfer (ROT) channel. A BSC is parameterized by a
probability p ∈ ( 1

2 , 1). For this channel, the sent bit is transmitted correctly
with probability p and is flipped with probability 1− p. An ROT channel takes
as input two strings m0 and m1 from the sender and outputs either (m0,⊥) or
(⊥,m1) to the receiver, with equal probability.

When considering protocols built on top of such channels, we distinguish
between the weaker semi-honest model, where the sender follows the protocol
but tries to learn information about the receiver’s output from its random coins,
and the malicious model, where the sender may send arbitrary information over
the channel. When the sender follows the protocol, the receiver’s output should
be as specified by the functionality. When the sender deviates from the protocol,
the security requirement uses the standard real-ideal paradigm, asserting that
the sender’s strategy can be simulated by a distribution over honest strategies.
It is important to note, however, that in this case the standard definition of
“security with abort” also allows the sender to make the protocol fail, as long
as the receiver can detect this failure. By default, the term “secure” refers to
the malicious model, though most of our negative results apply also to the semi-
honest model.

1.2 Our Results

We initiate a general study of one-way secure computation (OWSC) protocols
over noisy channels in a setting where only one party speaks. Surprisingly, the

4 In the literature, p sometimes stands for the error probability, while in our paper it
is the probability of the “no noise” event.
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Fig. 1. Relationships among different kinds of channels and their applications. Solid
arrows are used to denote a positive reduction, i.e. A → B implies that B can be
constructed given A. On the other hand, dashed arrows indicate negative results, i.e.
A 99K B implies that B cannot be constructed given A. Solid self-edge of BEC indicates
that the transmission probability of a BEC can be manipulated in both directions. On
the other hand, the solid and dashed self-edges of BSC respectively indicate that the
probability of correct transmission of a BSC can be diminished (and brought closer to
1
2
) but cannot be amplified.

one-way setting is strikingly different from the interactive setting. In the inter-
active setting, all finite channels are either trivial, equivalent to secure message
transmission, or equivalent to oblivious transfer. On the other hand, in the set-
ting of OWSC, the landscape of what a channel is useful for is much richer.
Specifically, we obtain the following results. All the implications have been sum-
marized in Figure 1.

– Relationships between channels. Binary erasure channel (BEC) and bi-
nary symmetric channel (BSC), which are known to be securely reducible to
each other in the interactive setting, turn out to be qualitatively very dif-
ferent in the setting of one-way communication. In particular, we show that
a BEC cannot be implemented given a BSC. Also, somewhat surprisingly,
we show that while the erasure probability of a BEC can be manipulated in
both directions the probability of correct transmission of a BSC can only be
manipulated in one direction.

– Deterministic functions. We show that both BEC and and BSC are suffi-
cient for securely realizing any deterministic (possibly reactive) functionality
that takes input from a sender and delivers its output to a receiver with
only one-way communication. This provides the first truly non-interactive
solution to the problem of zero-knowledge. We extend our results to the
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Generalized Erasure Channel (GEC) which is a generalization of BEC (see
Section 3 for formal definition).

– Randomized functions. We show that neither BEC nor BSC can be used
(even assuming computational assumptions) for the task of realizing ran-
domized functionalities which take input from a sender and deliver output
to a receiver, in the setting of one-way communication. Nonetheless, one-way
communications over natural channels, such as bursty erasure channels, can
be used to realize such functionalities. This result is obtained by first con-
structing a random oblivious-transfer channel (ROT) and building on the
techniques from [IPS08,IKO+11a]. This provides the first non-trivial feasi-
bility result for secure-computation in a setting where only one party speaks.

1.3 Applications

One-way secure computation (OWSC) both for deterministic and randomized
functionalities enable a number of applications for which there are no known
solutions.

Truly non-interactive zero-knowledge. Non-interactive zero-knowledge proof sys-
tems (NIZKs) [BFM90,FLS99] are a fundamental tool in cryptography with
widespread applications. However, all known constructions rely on a common
random string (or a random oracle)5 and inherently fail to achieve useful fea-
tures such as non-transferability or deniability [Pas03]. OWSC for deterministic
functions provides the first truly non-interactive solution to the problem of zero-
knowledge. This solution does not rely on a shared string between parties or a
random oracle and achieves non-transferability and deniability properties. Fur-
thermore, this solution achieves information theoretic and composable security.

Oblivious certification of cryptographic keys. Public-key cryptography relies on
the existence of certification authorities (like Verisign) who sign the public keys
of different parties. All known implementations of this certification procedure
rely on interaction. Our OWSC for randomized functionalities provides for the
first candidate to realize this procedure with just one-way communication. More
specifically, our protocol allows the certification authority to send a public-key
secret-key pair along with a certificate on the public key with just one-way
communication. We stress that in this setting the certification authority itself
does not learn the secret key of the recipient party, as the randomness used in
its generation is derived from the channel. However, if the certificate authority
deviates from the protocol, the recipient may detect failure rather than output
a pair of keys.

5 The result of Barak and Pass [BP04] is an exception to this. However they only
achieve a weaker notion where security is only guaranteed against uniform provers.
We, on the other hand, are interested in the standard notion of zero-knowledge.
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Fair puzzle distribution. Consider a Sudoku Puzzle competition where the or-
ganizer of the competition would like to generate signed puzzles for all the par-
ticipants. However the participants do not trust the organizer and would like
their challenge Sudoku puzzles to be of the same difficulty. More specifically, we
would like to have a mechanism that allows the competition organizer to provide
independent puzzles of a pre-specified difficulty level (along with a signature on
this puzzle) to each of the participants. The participants should be assured not
only that the puzzles were generated independently from the correct distribu-
tion, but also that the organizers do not have an edge in solving the puzzles
they generated (e.g., by generating random solved puzzles). There are no known
solutions for this problem in a setting with just one-way communication. Our
OWSC protocol for randomized functions gives the first such solution.

2 Preliminaries

Let λ denote a security parameter. We say that a function is negligible in λ if it is
asymptotically smaller than the inverse of any fixed polynomial in λ. Otherwise,
the function is said to be non-negligible in λ. We say that an event happens with
overwhelming probability if it happens with probability p(λ) = 1− ν(λ), where
ν(λ) is a negligible function in λ. We use [n] to denote the set {1, . . . , n}.

Monotone Sets. LetX1, X2 . . . Xn be independent Bernoulli variables with Pr[Xi =
1] = pi. We define Qn = {0, 1}n (the n-cube) and identify each element a ∈ Qn
with the corresponding subset of [n]; i.e., {i | ai = 1}. We define a probability
measure Pr on Qn by:

Pr(a) =
∏
i∈a

pi
∏
i 6∈a

(1− pi) .

A set A ⊆ Qn is said to be a monotone if a ∈ A and a ⊆ b implies that b ∈ A.

Lemma 1 (Harris [Har60], Kleitman [Kle66]). If A and B are two mono-
tone subsets of Qn then A and B are positively correlated; namely,

Pr[A ∩B] ≥ Pr[A] Pr[B].

Chernoff bounds. Let X1, X2 . . . Xn be independent Bernoulli variables with
Pr[Xi = 1] = pi. Let X =

∑n
i=1Xi and µ be the expectation of X. Then,

Pr(X ≥ (1 + δ)µ) ≤ e−
δ2µ
3 , for 0 < δ < 1.

Pr(X ≤ (1− δ)µ) ≤ e−
δ2µ
2 , for 0 < δ < 1.
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3 Different kinds of channels

In this work, we model a channel as an ideal functionality C. This is done in order
to capture the security properties of a channel in a clean way. A channel provides
a (one-way) communication medium between a sender and a receiver. The sender
can invoke the channel C on an input of its choice. The channel “based on its
nature”, processes the input and outputs the processed value to the receiver.
The correctness and secrecy requirements of a channel can be specified by a
two-party functionality, which takes an input from the sender, generates some
internal randomness, and delivers an output to the receiver. Our formulation of
channel functionalities, as well as the security definition of protocols that build
on top of them, follow the standard UC framework [Can05]. All of our positive
results hold with statistical security, and some of our negative results apply also
to the case of computational security. We will consider the following types of
channels.

Binary Erasure Channel. The binary erasure channel (BEC) is perhaps the
simplest non-trivial channel model considered in the literature. We denote this
channel by CpBEC . For this channel, the sender inputs a bit x ∈ {0, 1} and the
channel outputs (to the receiver) x with a probability p and ⊥ with a probability
1− p.

Binary Symmetric Channel. The binary symmetric channel (BSC) denoted by
CpBSC (for p > 1

2 ) is a channel in which the sender inputs a bit x ∈ {0, 1} and
the channel outputs (for the receiver) x with a probability p and 1 − x with a
probability 1− p.

Generalized Erasure Channel. The generalized erasure channel (GEC) is a gen-
eralization of the BEC, where k strings are sent by the sender and some sub-
set of them, determined by a probability distribution D, is erased. We de-
note this channel by Ck,`,DGEC . Formally, the functionality takes as input k strings
x1, . . . , xk ∈ {0, 1}` from the sender. It samples a string s ∈ {0, 1}k (which we
call the randomness of the channel) according to the distribution D. If si = 1
then set yi = xi and, otherwise, yi = ⊥. The functionality outputs y1, . . . , yk
to the receiver. We will consider the following special cases of the generalized
erasure channel.

– `-Bit Random Oblivious Transfer. The `-bit random oblivious transfer chan-

nel (`-ROT) denoted by C`ROT corresponds to the channel C2,`,D2,OT

GEC , where
D2,OT is the distribution that outputs a uniformly random value in {01, 10}.
We also consider a p-biased `-bit ROT channel denoted by C`,pROT corresponds

to the channel C2,`,D2,p,OT

GEC , where D2,p,OT is the distribution that outputs 10
with probability p and 01 with a probability 1− p.

– (k, `, p)-Erasure Channel. The (k, `, p)-erasure channel corresponds to the

channel Ck,`,Dk,pGEC , where Dk,p is the distribution that outputs a k bit string
s such that, for every i ∈ [k], we have si = 1 with probability p and si = 0
with probability 1− p.
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– (k, `)-Perfect Red-Blue Channel. The (k, `)-Perfect Red-Blue channel corre-

sponds to the channel Ck,`,Dk,RBGEC , where Dk,RB is any distribution such that
each string in its output space (namely {0, 1}k) may be labeled either Red
or Blue (or none) in a way that Pr[Red ∪ Blue] = 1, Pr[Red] = Pr[Blue] and
∀r ∈ Red and ∀s ⊆ r we have that s /∈ Blue and, similarly, ∀b ∈ Blue and
∀c ⊆ b we have that c /∈ Red.6

– (k, `, µ, ν, η)-Statistical Red-Blue Channel. The (k, `, µ, ν, η)-Statistical Red-
Blue channel is a relaxed version of the Perfect Red-Blue Channel, that

corresponds to the channel Ck,`,Dk,µ,ν,ηGEC , where Dk,µ,ν,η is any distribution
whose output space can be labelled Red and Blue such that (i) Pr[Red ∪
Blue] ≥ 1−µ, (ii) |Pr[Red]−Pr[Blue]| ≤ ν, (iii) Prr∈Red[∃s ⊆ r such that s ∈
Blue] ≤ η, and (iv) Prb∈Blue[∃c ⊆ b such that c ∈ Red] ≤ η.

– (k, `, b)-Perfect Bursty Channel. This is an erasure channel where all b era-
sures appear in a “burst”. Formally, the (k, `, b)-Perfect bursty channel cor-

responds to the channel Ck,`,Dk,bGEC , where Dk,b is the distribution that outputs
a k bit string such that all the bits are set to 1 besides the bits in locations
x+ 1, x+ 2, . . . , x+ b where x is chosen uniformly from {0, . . . , k − b}.

– (k, `, b, σ)-Noisy Bursty Channel. This is an erasure channel where erasures
still appear in a “burst” but their number b′ is normally distributed around
b. Formally, the (k, `, b, σ)-noisy bursty channel corresponds to the channel

Ck,`,Dk,b,σGEC for typical k � b, where Dk,b,σ is the distribution that outputs a
k bit string such that all the bits are set to 1 besides the bits in locations
x+ 1, x+ 2, . . . , x+ b′ where b′ is sampled from a gaussian and rounded to
the closest non-negative integer ≤ k with mean b and standard deviation σ
and then x is chosen uniformly from {0, . . . , k − b′}.

4 Classification of functionalities

Below we define the notion of one-way secure computation (OWSC) over a chan-
nel C (thought of as a non-reactive ideal functionality). We shall refer to such a
OWSC scheme as OWSC/C.

An OWSCf/C scheme for a function f : X → Y is a two-party protocol
between Sender and Receiver and it follows the following format:

- Sender gets an input x ∈ X.
- Sender invokes the channel C (possibly multiple instances of the channel)

with inputs of its choice. The channel, based on its nature, processes the
input value and outputs it to the Receiver.

- Receiver carries out a local computation and outputs f(x) or an error mes-
sage.

Similarly, we can consider reactive functionality specified by a stateful func-
tion f : Σ×X → Σ×Y . The Sender of a OWSCf/C scheme for a stateful function
f obtains multiple inputs on the fly. On obtaining an input x ∈ X, Sender can

6 Here, again, we identify each a ∈ {0, 1}k with a subset of [k] in the natural way.
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invoke the channel C multiple times and in each execution the Receiver should
either output y where (σ′, y) ← f(σ, x) (where σ ∈ Σ is the current state and
σ′ is the state for the next execution) or an error message. The first execution
of the protocol sets the state to ε.

The correctness and secrecy requirements of an OWSC scheme can be speci-
fied in terms of an ideal functionality. An OWSCf/C scheme for f is required to
be a secure realization of the following function Ff in the C-hybrid model.

- Ff accepts x ∈ X from the Sender and outputs f(x) to the receiver. If x is
a special input error, then it outputs error to the Receiver.

We shall denote the security parameter by λ and require that the sender and the
receiver in any scheme run in time polynomial in λ and the size of the circuit
computing the function f . Further, for a scheme to be considered secure, we
require that the simulation error be at most 2−Ω(λ).

Definition 1 (Completeness for deterministic functionalities). A chan-
nel C is said to be OWSC complete for deterministic functionalities, if for every
deterministic function f : X → Y there exists a OWSCf/C scheme that is a
UC-secure realization of the functionality Ff in the C-hybrid model.

Definition 2 (Completeness for randomized functionalities). A channel
C is said to be OWSC complete for randomized functionalities, if for every ran-
domized function f : X → Y there exists a OWSCf/C scheme that is a UC-secure
realization of the functionality Ff in the C-hybrid model.

5 Reductions among channels

In this section, we study the relationships between different kinds of channels.
Specifically:

– Impossibility results for CROT . One of the key channels of interest to
us is the random oblivious transfer channel. We start by establishing (in
Section 5.1) that this channel cannot be securely realized out of the most

basic channels such as CBEC (in fact, from any Ck,`,Dk,pGEC , where Dk,p is the
distribution that outputs a k bit string s such that, for every i ∈ [k], we
have si = 1 with probability p and si = 0 with probability 1− p) and CBSC .
In full-version, we provide extensions of these results to the computational
setting (but ruling out only protocols with negligible error rather than small
noticeable error).

– Positive results for CROT . We consider a variety of more structured chan-
nels, such as the Red-Blue channel and the bursty channel, and give construc-
tions of random oblivious transfer channel from such channels (Section 5.2).

– Self-transformations for CBEC and CBSC . We move back to the basic
channels (CBEC and CBSC) and study additional properties of them. Al-
though both these channels do not imply C1ROT , they are of a very different
nature. We show (in Section 5.3) that erasure probabilities of the CBEC
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can be easily manipulated but the flipping probability of CBSC is harder to
manipulate. In particular, we show that, given a CBEC , we can construct an-
other CBEC with amplified or diminished erasure probabilities. On the other
hand, given a CBSC , we can only construct another CBSC with amplified
flipping probability. In fact, diminishing the flipping probability turns out
to be is impossible.

We remark that all the impossibility results (in this section) are stated in
terms of the simulation based notion but hold even for a weaker game-based
security notion. These stronger impossibility results are implied by the proofs
and are not spelled out explicitly.

5.1 Impossibility results for CROT

In this subsection, we rule out the construction of C1ROT (random oblivious trans-
fer) from the most basic channels such as CBEC and CBSC . In particular, we
show:

– C`′ROT (and, in fact, even biased-ROT) cannot be non-interactively securely

realized from Ck,`,Dk,pGEC .

– Cp
′

BEC cannot be non-interactively securely realized from CpBSC . It is easy to

realize C
1
2

BEC from C`′ROT . Hence, combining with the above result, we also

conclude that C`′ROT cannot be non-interactively securely realized from CpBSC .

The following theorem and its proof can be adapted to rule out even C`
′,q
ROT

for any constant q. We state the result and the proof in the simpler setting where
q = 1

2 .

Theorem 1. ∃ ε ∈ (0, 1) and `′ ∈ Z+ such that ∀k, `, p, the channel C`′ROT
cannot be ε-securely realized in the Ck,`,Dk,pGEC hybrid model even against semi-
honest adversaries.

We start by giving some intuition for the case of binary erasure channel. The
intuition extends to (k, `, p)-erasure channels in a natural way. In any protocol for
non-interactively realizing C1ROT the sender will need to encode both its inputs
m0,m1 into its first message. Whether the receiver obtains m0 or m1 should
depend solely on the random coins of the channel. In other words, erasure of
certain bits (or more generally one combination from a list of possible choices)
allows the receiver to obtain m0 while erasure of another combination allows
the receiver to learn m1. The key issue is that a binary erasure channel erases
each bit sent by the sender independently with a probability 1 − p. Consider
the scenario in which a receiver can obtain m0 from the received bits. In this
scenario, since each bit sent by the sender is treated independently we have that
the receiver also obtains m1 with a large enough probability, contradicting the
security of the protocol. Arguing the last step formally is tricky and we rely on
the Harris-Kleitman inequality for our argument. The full proof appears in the
full-version.
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Theorem 2. ∀p ∈ ( 1
2 , 1), p′ ∈ (0, 1) and protocol π, ∃ε such that π does not

ε-securely realize Cp
′

BEC in the CpBSC-hybrid model even against semi-honest ad-
versaries.

We start by giving some intuition. Any protocol for non-interactively securely
realizing CBEC will need the sender to encode its input m into its first message.
Whether the receiver obtains m or not should depend solely on the random
coins of the channel. In other words when certain bits (or, more generally, one
combination from a list of possible choices) is flipped then the receiver loses
all information about m while flipping another combination allows the receiver
to learn m completely. Consider a sequence of hybrid strings between a pair of
strings on which the receiver outputs m and ⊥ respectively. Among the hybrid
strings there must exist two strings that differ in exactly one bit but are such
that the receiver’s output on the two differs completely. At this point, we argue
that a change of just one bit cannot affect the receiver’s best guess about the
sent bit very dramatically, contradicting the security of the protocol. The key
technical challenge of the proof lies in proving that this happens with a noticeable
probability. The full proof appears in the full-version.

5.2 Positive constructions for CROT

We start by presenting a construction of a random oblivious transfer channel in
Red-Blue channel hybrid model. Our construction provides a solution for any
arbitrary Red-Blue channel and is inefficient. Furthermore, such a channel in
its generality is not very natural. Therefore, we study natural examples of Red-
Blue channels (and their approximate variants) and attempt at more efficient
solutions.

We start by considering the basic setting of an arbitrary Red-Blue Channel
and prove that it is sufficient to realize a random oblivious transfer channel.

Theorem 3. C`ROT can be max{µ, ν, η}-UC-securely realized (even against ma-
licious adversaries) in the (k, `′, µ, ν, η)-Red-Blue Channel hybrid model where
`′ = ` · 2k.

The proof appears in the full-version.Note that for the case of perfect Red-Blue
Channel, we have that µ = ν = η = 0, and hence C`ROT can be perfectly-UC-
securely realized in the (k, `′)-Perfect Red-Blue Channel hybrid model where
`′ = ` · 2k.

Efficient construction for ROT. We will start by considering the case of perfect
bursty channel and show that it can be used to realize ROT. Recall that a

(k, `, b)-perfect bursty channel corresponds to the channel Ck,`,Dk,bGEC , where Dk,b
is the distribution that outputs a k bit string such that all the bits are set to 1
besides the “burst” of bits in locations x+ 1, x+ 2, . . . , x+ b which are set to 0,
where x is chosen uniformly from {0, . . . , k − b}. In this setting we claim that:
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Theorem 4. C`ROT can be UC-securely realized (even against malicious adver-
saries) in the (k, `, b)-perfect bursty channel hybrid model when b > k

2 or when
b is odd.

Proof. We start by giving the intuition. The key idea is to use Shamir’s secret
sharing (with shares of length `) and secret share the first string in the first
half and the second string in the second half (with some appropriate threshold).
Both when b > k

2 or when b is odd we will have an asymmetry in terms of
the deletion pattern. If more terms from the first half are erased then the first
string is deleted and, on the other hand, if more terms from the second half get
erased then the second string is deleted. If k is odd then our construction will
only give a biased-ROT but this bias can be corrected using the transformation
from Section 7. Similarly, we note that in our construction we do not need the
distribution over where the burst happens to be uniform. Our protocol can be
very easily modified so that this restriction is not crucial. This would however
only give biased ROT protocols and this bias will need to be corrected using the
transformation from Section 7.

Next we give the construction for the case when b is odd. We assume, for
simplicity, that k is even and t = k

2 . The construction for the setting when k is
odd or when b is not necessarily odd but k > b/2 are identical except that the
parameters should be adjusted appropriately.

Π = 〈S,R〉 protocol with sender input m0,m1

1. Let θ = t − bb/2c. Let {α1, . . . , αt} be a θ-out-of-t Shamir’s secret sharing of
m0. Similarly, let {αt+1, . . . , αk} be a θ-out-of-t Shamir’s secret sharing of m1.

2. Send (α1, . . . , αk) to the receiver.
3. Let the starting point of the burst in the symbols received by the receiver be

i∗. If i∗ > θ compute m0 using the shares α1, . . . , αθ and output (m0,⊥); oth-
erwise, output (⊥,m1) where m1 is computed using the shares αk−θ+1, . . . , αk.

Fig. 2. C`ROT in the (k, `, b)-perfect bursty channel hybrid model, for odd b

The construction appears in Figure 2. Since b is odd, either in the first half
or in the second half at least db/2e of the strings are erased and hence that value
remains hidden. On the other hand, in the other half the value can always be
computed since at most bb/2c strings are deleted. The proof is identical to the
case of Red-Blue Channel (proved in the full-version) and is therefore omitted.

Channel with Imprecise Burst. Finally, we consider a bursty erasure channel
where the size of burst is not precisely known but comes from roughly a discrete
gaussian distribution. Recall that (k, `, b, σ)-noisy bursty channel corresponds to

the channel Ck,`,Dk,b,σGEC , where Dk,b,σ is the distribution that outputs a k bit string
such that all the bits are set to 1 besides the bits in locations x+1, x+2, . . . , x+b′

12



where b′ is sampled from a gaussian and rounded to the closest non-negative
integer ≤ k with mean b and standard deviation σ and then x is chosen uniformly
from {0, . . . , k − b′}.

Theorem 5. C`ROT can be (1−α)b
k−(1+α)b+

σ2

α2b2 -UC-securely realized in the (k, `, b, σ)-

noisy bursty channel hybrid model for any constant α ∈ (0, 1).

Proof. We use the same construction as in Figure 2 except the threshold param-
eter θ of the Shamir secret sharing. We set it up in a way so that it is possible to
obtain m0 if less than (1−α)b/2 symbols are erased from the first half. Similarly
secret sharing is done for the second half. By Chebyshev’s inequality, the proba-
bility that the size of the burst, b′, lies outside the range {(1−α)b, . . . , (1 +α)b}
is at most σ2

α2b2 (if b′ is too big the receiver may not learn any value, while if b′

is too small it may learn both values). Assuming this does not happen, then the
receiver gets only one of the sent values as long as the burst does not happen “in
the middle” (i.e., (1−α)b/2 symbols are erased from each half). The probability

that the burst happens in the middle is at most (1−α)b
k−(1+α)b .

5.3 Self-transformations for CBEC and CBSC

In this subsection, we show that any erasure channel can be used to construct a
binary erasure channel with any desired erasure probability. On the other hand,
the case of BSC is very different. The probability of correct transmission in a
BSC channel can be reduced but cannot be increased. Formally,

Theorem 6. ∀ Ck,`,DGEC such that D is not a constant distribution, ∃ p such
that CpBEC can be (perfectly) UC-securely realized (even against malicious ad-

versaries) in the Ck,`,DGEC -hybrid model.

Theorem 7. ∀p, p′ ∈ (0, 1) and ε > 1, ∃p′′ ∈ [p′, εp′], such that Cp
′′

BEC can
be (perfectly) UC-securely realized (even against malicious adversaries) in the
CpBEC-hybrid model.

Theorem 8. ∀p ∈ ( 1
2 , 1) and t ∈ Z+, the channel Cp

′

BSC can be (perfectly) UC-
securely realized (even against malicious adversaries) in the CpBSC-hybrid model

where p′ = 1
2 + 2t−1

(
p− 1

2

)t
.

Theorem 9. ∀ p, p′ ∈ ( 1
2 , 1), p′ > p and protocol π, ∃ε such that π does not

ε-securely realize Cp
′

BSC in the CpBSC-hybrid model even against semi-honest ad-
versaries.

Proofs of the above theorems appear in the full-version.
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6 OWSC scheme for Deterministic Functionalities

OWSCf/C is a meaningful notion only for those deterministic functions f such
that given a value y identifying if there exists an input x such that y = f(x)
is non-trivial (cannot be done in efficiently). This, in particular, rules out all
functions with polynomial sized input domains. Furthermore, this notion is useful
only in the setting of malicious adversaries because it is trivial to realize this
notion in the setting of semi-honest adversaries.

We start by noting that a OWSCf/C scheme, for any deterministic function
f , can be realized by using a OWSCzk/C scheme for the zero-knowledge function-
ality. This can be achieved simply by having the sender send the output to the
receiver and along with it prove in zero-knowledge, knowledge of an input x for
which f(x) yields the provided output. Here we implicitly assume that besides
the channel C the sender also has access to an error free channel which can be
implemented using C itself (with a negligible error). Formally,

Theorem 10. For every deterministic function f , there exists a OWSCf/C scheme
that is a UC-secure realization (even against malicious adversaries) of the func-

tionality Ff in the C-hybrid model where C ∈ {Ck,`,DGEC , C
p
BSC}.

As already mentioned, proving the above theorem reduces to the task of
realizing a OWSCzk/C scheme. In our construction, we will make use of oblivious
ZK-PCPs (see definitions in full-version).

Lemma 2. There exists a OWSCzk/C scheme that is a UC-secure realization
(even against malicious adversaries) of the zero-knowledge functionality in the

C-hybrid model where C ∈ {Ck,`,DGEC , C
p
BSC}.

We start by giving some intuition. The key idea is to use an erasure channel
or a binary symmetric channel to send over multiple instances of independently
chosen ZK-PCPs and observe the statistical gap that can be created only if valid
proofs were sent. However, a number of difficulties arise in realizing this intuition,
particularly in our construction from BSC. Below, we provide our construction
from erasure channels. The more involved construction from binary symmetric
channel is deferred to full-version.

Erasure Channels. We start by considering the case of binary erasure channels

with error probability 1
2 ; i.e., when C = C

1
2

BEC . It follows from Theorem 6 and

Theorem 7 that any Ck,`,DGEC can be used to realize C
1
2

BEC .7 We give the protocol
in Figure 3.

7 Theorem 7 only guarantees a channel Cp
′

BEC with p′ close enough to p. We will use
the value 1

2
for concreteness but any value close enough to 1

2
, say in the range 1

2
to

51
100

, will suffice as well.
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OWSCzk/CpBEC protocol for language L

Common Input: x ∈ {0, 1}λ.
Auxiliary Input for prover P : w such that (x,w) ∈ RL.
Parameters: Let (PoZK, VoZK) be any (c, ν)-oblivious ZK-PCP system (see
full-version)(with c ≤ n

4
and ν ≥ 3

4
) with knowledge soundness κ. Let ` = λ

κ
.

– P samples proofs π1, . . . , π` from PoZK(λ, x, w) and sends (π1, . . . , π`) to V via
the erasure channel CpBEC .

– V receives π′1, . . . , π
′
` and for all i ∈ [`] checks if VoZK(π′i). It outputs accept if

all the checks pass and reject otherwise.

Fig. 3. Realizing zero-knowledge from Binary Erasure Channel

Completeness. For every i ∈ [k], using Chernoff bound, we have that:

Pr
[
Υ (π′i) ≤

n

4

]
≤ e− n

16 ,

where Υ (π′i) denotes the number of occurrences of ⊥ in π′i.

Hence, except with negligible probability for each i ∈ [k], R receives at least
c. Given this the completeness of the protocol follows from the completeness of
the oblivious ZK-PCP.

Soundness. We will construct an extractor E′, that extracts valid witnesses from
any cheating prover P ∗ that makes the honest verifier accept with non-negligible
probability. We will first describe our extractor E′ and then argue that it indeed
works (with overwhelming probability).

Our extractor E′ proceeds as follows. Let (π1, π2, . . . , π`) be the proofs gen-
erated by the cheating prover P ∗. For every i ∈ [`], E′ obtains yi = E(x, πi). If
∃i∗ ∈ [`] such that yi∗ ∈ R(x) then output yi∗ (breaking ties arbitrarily). If no
such i∗ exists then output ⊥.

Note that since our extractor E′ failed to extract witness out of πi for any
i ∈ [`] we have (by soundness of the ZK-PCP) that Pr[VoZK(x, π′i) = 0] ≥ κ,
for every i ∈ [`], where the probability is taken over the random choices of
obtaining π′i from πi. Hence, if E′ outputs ⊥ then the verifier must also always
reject, except with probability at most ≤ (1− κ)`, which is negligible for ` = λ

κ .

Zero-Knowledge. We need to construct a simulator S ′ for our protocol. This con-
struction follows immediately from the ν-zero-knowledge property of the oblivi-
ous ZK-PCP.

The full proof for the case of BSC appears in full-version.
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7 C`
ROT is OWSC complete for randomized functionalities

In this section, we describe an OWSC scheme for any randomized function in
the CROT -hybrid model that uses only a single round of random OTs and no
additional interaction. The functionalities considered here provide output to only
one party. This result follows directly from [IPS08, Appendix B] and we include
the construction and proof in the full-version for completeness (much of the text
have been taken verbatim from [IPS08, Appendix B]). More efficient alternatives
have been considered by [IKO+11a] however we consider the simplest feasibility
result for our setting.

One technical difference in our setting compared to [IPS08] is in the un-
derlying primitive from which the protocols are constructed. While the protocol
in [IPS08] uses a regular 1-out-of-N OT protocol, in our case we only have access
to a 1-out-of-2 ROT protocol and need to convert it to a 1-out-of-N ROT proto-
col. (Recall that the choice about which 1-out-of-N strings the receiver obtains
is made by the channel in the ROT protocol.) This however can be done easily
using standard techniques and a sketch of the construction has been provided in
full-version.

Theorem 11. For every randomized function f , ∃` and a OWSCf/C`ROT scheme
that is a UC-secure realization (even against malicious adversaries) of the func-
tionality Ff in the C`ROT -hybrid model.

ε-secure variant. We can also use the ε-UC realization of ROT (based on noisy
bursty channel as in Theorem 5) in order to obtain a ε · r-UC realization of
OWSCf where r is the number of ROT calls made inside our construction. r for
our construction is a fixed polynomial in the security parameter λ, independent
of the size of the function being computed.

Construction using biased-ROT. The above theorem is stated just for the case
of C`ROT -hybrid model. However we note that the same construction continues

to work in the C`,pROT -hybrid model, for any constant p ∈ (0, 1), with one small

change. When using the C`,pROT channel, the input provided by the channel for the
function evaluation will be biased. This issue can be resolved by using security
parameter λ number of independent bits from the channel to obtain each bit
for the functionality being evaluated. More specifically, each input bit for the
functionality is obtained by taking the exclusive or of λ independent input bits.
By the XOR Lemma, we claim that the obtained bits will be close to uniform.

Furthermore, when using the C`,pROT -hybrid model, the construction itself does
not depend on the precise value of the constant p. Hence, our construction is
robust in the sense that it remains secure even if the adversary gets to specify
the value of p (within some bounded range).
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