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Abstract. We revisit the problem of black-box constructions of uni-
versal one-way hash functions (UOWHFs) from several typical classes of
one-way functions (OWFs), and give respective constructions that either
improve or generalize the best previously known.
– For any 1-to-1 one-way function, we give an optimal construction of

UOWHFs with key and output length Θ(n) by making a single call
to the underlying OWF. This improves the constructions of Naor
and Yung (STOC 1989) and De Santis and Yung (Eurocrypt 1990)
that need key length O(n · ω(logn)).

– For any known-(almost-)regular one-way function with known hard-
ness, we give an optimal construction of UOWHFs with key and
output length Θ(n) and a single call to the one-way function.

– For any known-(almost-)regular one-way function, we give a con-
struction of UOWHFs with key and output length O(n·ω(1)) and
by making ω(1) non-adaptive calls to the one-way function. This
improves the construction of Barhum and Maurer (Latincrypt 2012)
that requires key and output length O(n·ω(logn)) and ω(logn) calls.

– For any weakly-regular one-way function introduced by Yu et al. at
TCC 2015 (i.e., the set of inputs with maximal number of siblings
is of an n−c-fraction for some constant c), we give a construction of
UOWHFs with key length O(n·logn) and output length Θ(n). This
generalizes the construction of Ames et al. (Asiacrypt 2012) which
requires an unknown-regular one-way function (i.e., c = 0).

Along the way, we use several techniques that might be of independent
interest. We show that almost 1-to-1 (except for a negligible fraction)
one-way functions and known (almost-)regular one-way functions are
equivalent in the known-hardness (or non-uniform) setting, by giving
an optimal construction of the former from the latter. In addition, we
show how to transform any one-way function that is far from regular
(but only weakly regular on a noticeable fraction of domain) into an
almost-regular one-way function.



1 Introduction

Informally, a family of compressing hash functions, denoted by G, is called uni-
versal one-way, if given a random function g ∈ G and a random (or equivalently,
any pre-fixed) input x, it is infeasible for any efficient algorithm to find any x′ 6= x
satisfying g(x) = g(x′). The seminal result that one-way functions (OWFs) imply
universal one-way hash functions (UOWHFs) [17] constitutes one of the central
pieces of modern cryptography. Applications of UOWHFs include basing digi-
tal signatures [9] on minimal assumptions (one-way functions), Cramer-Shoup
encryption scheme [4], statistically hiding commitment scheme [12,13], etc.

UOWHFs from any OWFs. The principle possibility result that UOWHFs
can be based on any OWF was established by Rompel [17] (with some corrections
given in [18,15]). However, Rompel’s construction was quite complicated and
extremely unpractical. In particular, for any one-way function on n-bit inputs it
requires key length Õ(n12) and output length Õ(n8). Haitner et al. [11] improved
the construction via the notion of inaccessible entropy [13], and reduced key
and output length to Õ(n7). Therefore, even the best known generic UOWHF
constructions (based on arbitrary OWFs) are mainly of theoretical interest and
are too inefficient to be of any practical use.

UOWHFs from special OWFs. Another line of research focuses on more
efficient (and nearly practical) constructions of UOWHFs from special structured
OWFs. Naor and Yung gave an elegant “hash-then-truncate” construction of
UOWHFs with key and output length Θ(n) which does a single call to any one-
way permutation. However, for a slightly weaker primitive, namely, 1-to-1 one-
way functions, the authors of [16] only gave a rather complicated construction.
De Santis and Yung [19] gave an improved construction from any 1-to-1 OWF
f : {0, 1}n → {0, 1}l as below:

G1-1
def
= {(hnn−1◦. . .◦ hl−1l−2 ◦ h

l
l−1 ◦ f) : {0, 1}n → {0, 1}n−1, hii−1 ∈ Hii−1, n≤i ≤ l },

where “◦” denotes function composition, each Hii−1 denotes a family of pairwise-
independent hash functions that compress i-bit strings into (i−1) bits. Although
G1-1 enjoys linear output length and a single function call, it requires6 key length
O(ω(log n)·n). In addition, the work of [19] also introduced a construction from
any known-regular7 one-way function with key and output length O(ω(log2 n)·n)

6 A straightforward calculation suggests that G1-1 needs key length O(l·(l − n)), and
we know (see Fact 1) that every 1-to-1 one-way function implies another one-way

function f ′ : {0, 1}n
′∈Θ(n) → {0, 1}n

′+ω(logn) that is 1-to-1 except on a negligible
fraction of inputs, which implies that the key length of [16,19] can be pushed to
O(ω(logn)·n).

7 A function f is regular if every image has the same number (say α) of preimages, and
it is known- (resp., unknown-) regular if α is efficiently computable (resp., inefficient
to approximate). More generally (as introduced in [21]), f is weakly unknown-regular
if the fraction of x’s with maximal |f−1(f(x))| (which is not necessarily efficiently
computable) is noticeable. We stress that here “weakly” is used to describe “regu-
larity” (rather than “one-way-ness” as in “weakly one-way functions”).



and O(ω(1) · log n) adaptive calls, which was recently improved by Barhum
and Maurer [3] to key and output length O(ω(log n) · n) and O(ω(1) · log n)
non-adaptive calls. Based on unknown-regular one-way functions, Ames et al.
[1] presented a more general construction with output length Θ(n), key length
O(logn · n) and Õ(n) adaptive calls. We refer to Table 1 for a summary of pre-
vious constructions and a comparison to our work.

Table 1. A summary of existing constructions [16,19,3,1] and our work, where KR-
OWF and UR-OWF are the shorthands for known-regular and unknown-regular one-
way functions respectively, ε-hard KR-OWF additionally assumes that the hardness
parameter ε of KR-OWF is known, and n−c-WUR-OWF is the shorthand for weakly
unknown-regular one-way functions (see Footnote 7 and formally Definition 9).

Assumption Output Length Key Length # of Calls Type of Call

[16] OWP Θ(n) Θ(n) 1 non-adaptive

[19,16] 1-to-1 OWF Θ(n) O(ω(logn)·n) 1 non-adaptive

[19] KR-OWF O(ω(log2 n) · n) O(ω(log2 n) · n) O(ω(logn)) adaptive

[3] KR-OWF O(ω(logn) · n) O(ω(logn) · n) O(ω(logn)) non-adaptive

[1] UR-OWF Θ(n) O(logn · n) Õ(n) adaptive

ours 1-to-1 OWF Θ(n) Θ(n) 1 non-adaptive

ours ε-hard KR-OWF Θ(n) Θ(n) 1 non-adaptive

ours KR-OWF O(ω(1) · n) O(ω(1) · n) O(ω(1)) non-adaptive

ours n−c-WUR-OWF Θ(n) O(logn · n) Õ(n2c+1) adaptive

Summary of our constructions. In this paper, we give the following con-

structions from the respective aforementioned one-way functions. The first two
constructions enjoy optimal parameters simultaneously and they are (almost)
security-preserving8, the third achieves parameters that are almost optimal up
to an arbitrarily small super-constant factor ω(1) (e.g., log log log n or even less),
and thus they all improve upon the respective known constructions. The fourth
construction generalizes to beyond regular one-way functions (as introduced in
[21]) with optimal output length Θ(n) and key length O(n · log n).

1. For any 1-to-1 one-way function, we construct an optimal family of UOWHFs
with key and output length Θ(n) and a single OWF call.

2. For any known-regular one-way function with known hardness, we give an-
other optimal construction of UOWHFs with key and output length Θ(n)
and a single call.

3. For any known-regular one-way function, we give a construction of UOWHFs
with key and output length O(ω(1)·n) and ω(1) non-adaptive calls.

8 The security of the first UOWHF is essentially the same as the respective OWF, and
the security of the second one is roughly a square root of its underlying OWF.



4. For any one-way function f that is weakly unknown-regular on a noticeable
fraction (i.e., n−c for constant c) of domain [21], we give a construction of
UOWHFs with key length O(n·logn) and output length Θ(n).

On the (a)symmetry to PRGs. Our results further exhibit the inherent
“black-box duality” [5,13,11] between UOWHFs and PRGs. Firstly, we abstract
out a lemma about universal hashing (see Lemma 1) that is implicit in previous
works [17,15,13] and plays a dual role in UOWHF constructions to the leftover
hash lemma in PRG constructions. Secondly, constructions #2 and #3 above
match the best known results about constructions of PRGs from known-regular
OWFs (see [22]), namely, seed length O(ω(1)·n) or even Θ(n) if the hardness
of the underlying OWF is known. Thirdly, construction #4 is symmetric to the
recent PRG construction [21] based on the same class of one-way functions with
succinct key/seed length O(n · log n). Finally (and perhaps more interestingly),
construction #1 is asymmetric to the case of PRGs, where we do not know
how to construct a linear seed length PRG from an arbitrary 1-to-1 one-way
function9.

On the efficiency, feasibility and limits. Constructions #1, #2 and
#3 are practically relevant as most one-way function candidates turn out to
be known-almost-regular or even 1-to-1. Goldreich, Levin and Nisan [8] showed
how to base almost 1-to-1 (except for a negligible fraction) one-way functions on
intractable problems such as RSA and DLP, and thus construction #1 enables
to build optimal UOWHFs from those problems. A byproduct of construction
#2 is the equivalence of almost 1-to-1 one-way functions and known-(almost-
)regular one-way functions in certain (known-hardness or non-uniform) settings,
where we give an optimal construction of the former from the latter. Moreover,
unknown regular one-way functions further reduce the knowledge required about
the underlying one-way functions, and the problem of basing cryptographic prim-
itives (PRGs, UOWHFs, etc.) on weaker assumptions is of theoretic interests.
It improves our understanding about the feasibility and limits of black-box re-
ductions. In particular, Holenstein and Sinha [14], Barhum and Holenstein [2]
showed that Ω(n/ log n) black-box calls to an arbitrary (including unknown-
regular) one-way function is necessary to construct PRGs and UOWHFs, and
the lower bound is matched by explicit constructions of PRGs [10] and UOWHFs
[1] respectively. The recent work of [21] carried on this line of research even fur-
ther by considering a more general class of one-way functions (which they call
weakly unknown-regular one-way functions), namely, the underlying one-way
function can have an arbitrary structure as long as the set of x with maximal
number of siblings (i.e., x and x′ are siblings of each other if f(x) = f(x′)) is of
noticeable fraction. The authors of [21] gave a construction of PRG with seed

9 Given a 1-to-1 one-way function f , one might think of getting a PRG by hashing
f(Un) into n− s bits concatenated with s+ 1 hard-core bits of f , where s ∈ ω(logn)
is the necessary entropy loss due to the leftover hash lemma. This is in general
not possible without knowing the exact hardness of the underlying f . See more
discussions and the relaxed solutions to this problem by Goldreich [6, Section 3.5.1.3].



length O(n · log n) from weakly unknown-regular OWFs. However, their analysis
is quite ad-hoc (see Remark 2), and doesn’t seem to generalize to UOWHFs. As
an intermediate step of construction #4, we prove that “iterating such a one-way
function (weakly regular on only a noticeable fraction) polynomially many times
yields a one-way function that is almost-regular on an overwhelming fraction”
and thus unify the approach to the two dual objects (i.e., PRGs and UOWHFs).

The roadmap. We outline below the steps to build UOWHFs from the respec-
tive one-way function f : {0, 1}n → {0, 1}l introduced above. We note that the
following assumptions (about output length) can be made without loss of gen-
erality: l ∈ O(n) for 1-to-1 one-way functions and length-preserving-ness (i.e.,
l = n) for arbitrary one-way functions. More specifically, any 1-to-1 one-way
function f : {0, 1}n → {0, 1}l implies a one-way function f ′ : {0, 1}n′∈Θ(n) →
{0, 1}l′∈Θ(n) that is 1-to-1 except for a negligible fraction. Any one-way function
f with α ≤ |f−1(y)| ≤ α·β implies another length-preserving one-way function
f ′ : {0, 1}n′∈Θ(n) → {0, 1}n′ with α′ ≤ |f ′−1(y)| ≤ α′·β except for a negligible
fraction, where the size of range β is preserved, and α′ is efficiently computable
if α is. We refer to [20] for a full proof.

Based on 1-to-1 OWFs. We adapt Naor-Yung’s elegant “hash-then-truncate”
approach (for one-way permutation) to any 1-to-1 one-way function:

G1
def
= { (trunc ◦ h ◦ f) : {0, 1}n → {0, 1}n−s , h ∈ H } ,

whereH is a family of universal hash permutations on l bits, and trunc : {0, 1}l →
{0, 1}n−s is a truncating function that outputs the first n− s bits of input. We
show that if f is a (t,ε)- 1-to-1 OWF then the resulting G1 is a (t − nO(1),
2s+1 · ε)-UOWHF family with key and output length Θ(n) and shrinkage s (see
Definition 3 and Definition 7 for formal definitions). The construction enjoys
optimal parameters and somewhat counter-intuitively the security bound drops
only by factor 2s (which is optimal by [5]) rather than by 2l−n+s (i.e., exponential
in the number of bits truncated which would render the construction useless).
We refer to the proof of Theorem 1 and Remark 1 for more technical details and
further discussions.

Based on known-(almost-)regular ε-hard OWFs. Given an almost-
regular f (see Definition 6) which is known to be (t,ε)-one-way for some effi-
ciently computable ε, we define the following function family

G2
def
= { g : {0, 1}n → {0, 1}n−s, g(x) = ( trunc(h(f(x))), h1(x) ), h ∈ H, h1 ∈ H1 }

where H is a family of universal hash permutations, and let H1 and trunc be
a family of universal hash functions and the truncating function (both with
appropriate output sizes) respectively. We show that G2 is a UOWHF family
with key and output length Θ(n) and shrinkage s. The rationale is that for any10

x 6= x′ colliding on g ∈ G2 it either satisfies “f(x) = f(x′) ∧ h1(x) = h1(x′)” or

10 More precisely, x is sampled at random and x′ can be any distinct value (i.e., x′ 6= x)
efficiently computable from x and g.



“f(x) 6=f(x′) ∧ trunc(h(f(x))) = trunc(h(f(x′)))”. The former is unconditionally
bounded by universal hashing, and the latter is computationally bounded (and
reducible to the one-way-ness of f). Interestingly, by abstracting out function

f ′(x, h1)
def
= (f(x), h1(x), h1) from the above construction, we further show that

f ′ is a one-way function that is 1-to-1 except for a negligible fraction. We refer
to Theorem 2, Lemma 2 and Theorem 3 for the details.

Based on known-(almost-)regular OWFs. Next, we consider any known-
(almost)-regular OWF f whose hardness parameter is ε unknown (i.e., ε is negli-
gible but may not be efficiently computable). In this case, we run q independent
copies of f , and we get a construction by making q non-adaptive calls with
shrinkage q log n, key and output length O(q · n), where q ∈ ω(1) can be any
efficiently computable super-constant. The parallel repetition technique was also
used in similar contexts (e.g., the construction of PRG from any known regular
OWF [22]). We refer to Theorem 4 for the detailed construction and proof.

Based on a more general class of OWFs. We show iterating the class
of one-way functions introduced in [21] sufficiently many times yields a one-way
function f ′ that is almost-regular, and thus plugging this f ′ into the construction
of Ames et al.[1] yields a construction of UOWHFs with output length Θ(n) and
key length O(n · log n).

2 Preliminaries

Notations and definitions. We use [n] to denote set {1, . . . , n}. We use
capital letters (e.g., X, Y ) for random variables, standard letters (e.g., x, y)
for values, and calligraphic letters (e.g. X , Y) for sets. The support of a random
variable X, denoted by Supp(X), refers to the set of values on which X takes with
non-zero probability, i.e., {x : Pr[X = x] > 0}. For a binary string x = x1 . . . xn,
denote by x[t] the first t bits of x, i.e., x1 . . . xt. x‖y refers the concatenation
of x and y. We denote by trunc : {0, 1}n → {0, 1}t a truncating function that
outputs the first t bits of input, i.e., trunc(x) = x[t]. |S| denotes the cardinality

of set S. For function f : {0, 1}n → {0, 1}l(n), we use shorthand f({0, 1}n)
def
=

{f(x) : x ∈ {0, 1}n}, and denote by f−1(y) the set of y’s preimages under f ,

i.e., f−1(y)
def
= {x : f(x) = y}. We say f is length-preserving if l(n) = n. We

use s ← S to denote sampling an element s according to distribution S, and

let s
$←− S denote sampling s uniformly from set S, and y := f(x) denote value

assignment. We use Un and UX to denote uniform distributions over {0, 1}n and
X respectively, and let f(Un) be the distribution induced by applying function
f to Un. For probabilistic algorithm A, we use A(x; r) to denote the output of
A on input x and internal coin r. The min-entropy and max-entropy (see, e.g.,
[13]) of a random variable X, denoted by H∞(X) and H0(X) respectively, are
defined as:

H∞(X)
def
= log min

x∈Supp(X)

1

Pr[X = x]
; H0(X)

def
= log |Supp(X)| .



We use ‘+/−’ and ‘·’ for addition/subtraction and multiplication between field
elements respectively. The zero element of any finite field is denoted by 0.

Collision probability. We use CP(X) to denote the collision probability of

X, i.e., CP(X)
def
=
∑
x Pr[X = x]2, and denote by CP(X|Z) the average collision

probability of X conditioned on another (possibly correlated) random variable
Z by

CP(X|Z)
def
= Ez←Z

[ ∑
x Pr[X = x| Z = z]2

]
.

Simplifying Notations. Parameters (e.g., ε, r) are said to be known if they
are polynomial-time computable from the security parameter n. By notation
f : {0, 1}n → {0, 1}l we refer to the ensemble of functions {f : {0, 1}n →
{0, 1}l(n)}n∈N. As slight abuse of notion, poly might be referring to the set of
all polynomials or a certain polynomial, and h might be either a function or its

description which will be clear from context. For example, in h(y)
def
=h ·y the first

h denotes a function, the second h refers to a string (a finite field element) that
describes the function (i.e., multiplying y by h).

Definition 1 (ρ-almost universal hashing). A family of functions H = {h :
{0, 1}l → {0, 1}t} is ρ-almost universal if for any distinct x1, x2 ∈ {0, 1}l, it
holds that

Pr
h

$←−H
[h(x1) = h(x2)] ≤ ρ .

In the special case ρ = 2−t, we say that H is universal.

Definition 2 (pairwise independent hashing). A family of functions H =
{h : {0, 1}l → {0, 1}t} is pairwise independent if any distinct x1, x2 ∈ {0, 1}l
and any v1, v2 ∈ {0, 1}t it holds that Pr

h
$←−H[ h(x1) = v1 ∧ h(x2) = v2 ] = 2−2t.

Definition 3 (one-way functions). A sequence of functions {f : {0, 1}n →
{0, 1}l(n)}n∈N is (t(n),ε(n))-one-way if f is polynomial-time computable and for
any probabilistic algorithm A of running time t(n)

Pr
x

$←−{0,1}n
[A(1n, f(x))∈f−1(f(x))] ≤ ε(n).

Hereafter we use simplified notation f : {0, 1}n → {0, 1}l(n) for the above one-
way function, where t(·) and 1/ε(·) are super-polynomial.

Definition 4 (a family of one-way functions). A sequence of function fam-
ily F = {Fn}n∈N, where Fn = {fu : {0, 1}n → {0, 1}l(n), u ∈ {0, 1}q(n)}, is
(t(n),ε(n))-one-way if for any n ∈ N, u ∈ {0, 1}q(n) and x ∈ {0, 1}n, the value
fu(x) can be computed in polynomial time, and for any probabilistic algorithm A
of running time t(n), we have that

Pr
x

$←−{0,1}n; u $←−{0,1}q(n)

[ A(1n, u, fu(x))∈f−1u (fu(x)) ] ≤ ε(n) .

We use shorthands F = {fu : {0, 1}n → {0, 1}l(n), u ∈ {0, 1}q(n)} for {Fn}n∈N.



Definition 5 (almost 1-to-1 functions). A function f : {0, 1}n → {0, 1}l(n)
is ε(n)-almost 1-to-1 if there exists a negligible function ε(n), such that for every
n ∈ N we have

Pr
x

$←−{0,1}n
[ ∃x′ : x′ 6= x ∧ f(x) = f(x′) ] ≤ ε(n).

In particular, f is 1-to-1 if ε(n) ≡ 0.

Definition 6 (almost regular functions). For integer functions α = α(n)
and β = β(n), a function f : {0, 1}n → {0, 1}l(n) is α-regular if for every n ∈ N
and x ∈ {0, 1}n we have

|f−1(f(x))| = α.

f is (α, α·β)-almost regular if for every n ∈ N and x ∈ {0, 1}n we have

α ≤ |f−1(f(x))| ≤ α · β.

In particular, f is known-(almost)-regular if α is polynomial-time computable,
or otherwise it is called unknown-(almost)-regular. Standard “almost-regularity”
for a (t, ε)-one-way function f refers to that f is (α, α·β)-almost-regular for
β = poly(n) or at most β = (1/ε)Θ(1) for certain small constant 0 < Θ(1) < 1.

Definition 7 (UOWHFs [16]). A sequence of function family G = {Gn}n∈N,
where Gn = {gu : {0, 1}`(n) → {0, 1}`(n)−s(n), u ∈ {0, 1}q(n), ` ∈ poly}, is a family
of (t(n),ε(n))-universal one-way hash functions if for every n ∈ N, u ∈ {0, 1}q(n)
and x ∈ {0, 1}`(n), the value gu(x) can be computed in polynomial time, and for
every probabilistic algorithm A of running time t(n), it holds that

Pr
x

$←−{0,1}`(n); u
$←−{0,1}q(n); x′←A(1n,x,u)

[ x 6= x′ ∧ gu(x) = gu(x′) ] ≤ ε(n) .

The difference between input and output lengths (i.e., s(n)) is called shrinkage.
For succinctness, hereafter we will use shorthand G = {gu : {0, 1}` → {0, 1}`−s,
u ∈ {0, 1}q} for {Gn}n∈N defined above.

3 UOWHFs from 1-to-1 One-way Functions

3.1 A Technical Lemma and Its Applications

We state below a folklore lemma about universal hashing which is symmetric to
the leftover hash lemma.

Lemma 1 (The injective hash lemma [20]). For any integers a, d, k and
l satisfying a≤l, let Y be any random variable over {0, 1}l with H0(Y )≤a, and

let H def
= {h : {0, 1}l → {0, 1}a+d} be a family of (k·2−(a+d))-almost universal

hash functions. Then, we have that

Pr
y←Y, h

$←−H
[ ∃ỹ ∈ Supp(Y ) : ỹ 6= y ∧ h(ỹ) = h(y) ] ≤ k·2−d .

Recall that k = 1 corresponds to the special case that H is universal.



We also mention the fact that the input and output lengths of a 1-to-1 one-
way function f : {0, 1}n → {0, 1}l(n) can be assumed to be linearly related (i.e.,
l(n) = O(n)). For almost regular one-way functions, we can even assume that
they are length-preserving (i.e., l(n) = n). We refer to [20] for the proof of Fact 1.

Fact 1 For any r1 = r1(n) ≤ r2 = r2(n) and any efficiently computable
κ = κ(n) ∈ O(n), we have

1. Any 1-to-1 (t,ε)-one-way function f : {0, 1}n → {0, 1}l implies a (t− nO(1),
ε + poly(n) · 2−κ)-one-way function f ′ : {0, 1}n′∈Θ(n) → {0, 1}(n′+κ)∈Θ(n)

which is 1-to-1 except on a (poly(n) · 2−κ)-fraction of inputs, i.e.,

Pr
x

$←−{0,1}n′
[ ∃x′ ∈ {0, 1}n

′
: x′ 6= x ∧ f ′(x) = f ′(x′) ] ≤ poly(n) · 2−κ

2. Any (2r1 , 2r2)-almost regular (t,ε)-one-way function f : {0, 1}n → {0, 1}l
implies a length-preserving (t−nO(1),ε+poly(n) ·2−(r1+κ))-one-way function
f̄ : {0, 1}n′∈Θ(n) → {0, 1}n′ which is (2κ+r1 , 2κ+r2)-almost regular except on
a (poly(n) · 2−(r1+κ))-fraction of inputs, i.e.,

Pr
x

$←−{0,1}n′
[ 2κ+r1 ≤ |f̄−1(f̄(x))| ≤ 2κ+r2 ] ≥ 1− poly(n) · 2−(r1+κ) .

Therefore, we will assume in the remainder of the paper that the underlying
1-to-1 one-way function has linear output length (i.e., l(n) = O(n)) and that
the almost-regular and weakly unknown-regular one-way functions are length-
preserving (i.e., l(n) = n).

3.2 UOWHFs from 1-to-1 OWFs

For a 1-to-1 OWF f : {0, 1}n → {0, 1}l, we define a cryptographic game between

a challenger C and an inverter Inv. That is, C samples a random y∗
$←− {0, 1}l

and sends it to Inv, and Inv wins the game iff he comes up with any x′ satisfying
f(x′) = y∗. Note that even unbounded Inv wins this game with advantage no
more than 2−(l−n) (which is probability that y∗ ∈ f({0, 1}n)), and Fact 2 states
that the chance to win is even smaller for computationally bounded Inv.

Fact 2 For any 1-to-1 (t,ε)-one-way function f : {0, 1}n → {0, 1}l and any
probabilistic algorithm Inv of running time t, it holds that

Pr
y∗

$←−{0,1}l
[ f(Inv(y∗)) = y∗ ] ≤ 2−(l−n) · ε .

Proof.

Pr
y∗

$←−{0,1}l
[ f(Inv(y∗)) = y∗ ] ≤ Pr

y∗
$←−{0,1}l

[y∗ ∈ f({0, 1}n)]·Pr
y∗

$←−f({0,1}n)
[ f(Inv(y∗)) = y∗ ] ≤ 2−(l−n)·ε .



Remark 1 (on the proof sketch of Theorem 1). We use a trick to prove Theorem 1.
We show that any A that ε′-breaks the TCR of the constructed UOWHF implies
an InvA (of almost the same efficiency as A) that wins the above game (i.e.,
inverting f on a random y∗ ∈ {0, 1}l) with advantage roughly 2n−l−s · ε′. This
may seem useless since l−n can be Ω(n) or even poly(n). However, by Fact 2 this
term (i.e., 2n−l−s · ε′) is actually upper bounded by 2−(l−n) · ε. The conclusion
ε′≤2sε immediately follows by cancelling the factor (l − n). In other words, the
security bound does not depend on the number of bits truncated (i.e., l−n+ s),
but only on shrinkage s, and it is tight due to [5].

Theorem 1 (UOWHFs from 1-to-1 OWFs). Let f : {0, 1}n → {0, 1}l∈O(n)

be any 1-to-1 (t, ε)-one-way function, let H be a family of permutations11 over
{0, 1}l as follows:

H = {h : {0, 1}l → {0, 1}l , h(y)
def
=h · y, where y ∈ GF (2l), 0 6=h ∈ GF (2l) } ,

let trunc : {0, 1}l → {0, 1}n−s be a truncating function, where s = s(n) is effi-
ciently computable. Then, we have that

G1
def
= { (trunc ◦ h ◦ f ) : {0, 1}n → {0, 1}n−s , h ∈ H }

is a family of (t − nO(1), 2s+1 · ε)-UOWHFs with key and output length Θ(n),
and shrinkage s.

Proof. Suppose for contradiction that there exists a G1-collision finder A of run-
ning time t′ that on input (x, h), breaks the target collision resistance with some
non-negligible probability ε′, i.e.,

Pr
x

$←−{0,1}n,h $←−H
[ x′←A(x, h) : x 6= x′ ∧ h(f(x))[n−s] = h(f(x′))[n−s] ] = ε′ > 2s+1 · ε

We define algorithm InvA (that inverts f on input y∗
$←− {0, 1}l by invoking A)

as in Algorithm 1. Define event Eneq
def
= (f(x) 6=y∗). We argue that InvA inverts f

with the following probability (see the rationale below)

Pr
y∗

$←−{0,1}l, x $←−{0,1}n, v $←−V
[ f(InvA(y∗)) = y∗ ]

≥ Pr
x

$←−{0,1}n,y∗ $←−{0,1}l
[ Eneq ] · Pr

x
$←−{0,1}n, y∗ $←−{0,1}l\{f(x)}, v $←−V

[ f(InvA(y∗)) = y∗ | Eneq ]

≥ (1− 2−l) · Pr
x

$←−{0,1}n,h $←−H,x′←A(x,h),v
$←−V

[x 6= x′ ∧ h(f(x))[n−s] = h(f(x′))[n−s] ∧ y∗ = f(x′) ]

≥ (1− 2−l) · ε′ · Pr
v

$←−V
[y∗ = f(x′) | Eneq ∧ x 6= x′ ∧ h(f(x))[n−s] = h(f(x′))[n−s]]

=
(1− 2−l) · ε′

|V|
=

(1− 2−l) · ε′

2l−n+s − 1
>

ε′/2

2l−n+s
> ε·2−(l−n) ,

11 In fact, H constitutes a family of universal hash permutations. However, our proofs
only use the concrete construction of H and benefit from its algebraic property over
finite fields, rather than assuming a universal H plus a constructible property [13]

(given any x and y there exists a PPT sampler to output h
$←− {h ∈ H : h(x) = y}).



Algorithm 1 InvA that inverts f on input y∗ using random coins (x, v).

Input: y∗
$←− {0, 1}l

Sample x
$←− {0, 1}n

if f(x) = y∗ then
Output x and terminate.

end if

sample h := (f(x)− y∗)−1 · v, where v
$←− V = {v ∈ {0, 1}l \ {0} : v[n−s] =

n−s︷ ︸︸ ︷
0 . . . 0}

{The above implies h
$←− {h ∈ H : h(f(x))[n−s] = h(y∗)[n−s]} by the GF (2l)

arithmetics. }
x′ ← A(x, h)
if f(x′)=y∗ then

Output x′

else
Output ⊥

end if
Terminate

where the first inequality is straightforward (note that conditioned on Eneq the
sampling of x and y∗ are uniform over {0, 1}n and {0, 1}l \ {f(x)} respectively),
the second inequality follows from Claim 1, namely, conditioned on Eneq it is

equivalent to consider (x, h, v)
$←− {0, 1}n×H×V and then y∗ := f(x)−v ·h−1,

and the third inequality is due to that A takes only x and h as input (i.e.,
independent of v). That is, conditioned on that A produces a valid x′ 6= x
satisfying h(f(x′))[n−s] = h(f(x))[n−s], we have by Claim 1 that string y∗ is

uniformly distributed over set Y∗def={f(x)− v·h−1, v ∈ V}. Note that the already
fixed f(x′) is also an element of Y∗ and thus y∗ hits f(x′) with probability
1/|Y∗|=1/|V|. We complete the proof by reaching a contradiction to Fact 2.

Claim 1 (equivalent sampling) Let the values h, v, x, y∗ be sampled as in

Algorithm 1, and conditioned on event Eneq
def
= (f(x)6=y∗), it is equivalent to

sample (x, h, v)
$←− {0, 1}n × H × V uniformly and independently and then

determine y∗ := f(x)− v · h−1.

Proof of Claim 1. We know that (x, v) is uniformly sampled from {0, 1}n×V by
definition, and thus it suffices to show that “fix any (x, v), and conditioned on
y∗ 6= f(x) (i.e., Y ∗ is uniform distributed over {0, 1}l \{f(x)}), it holds that h is
uniform over H”. This follows from that v 6= 0 (V excludes 0 by definition) and

hence h = (f(x)−Y ∗)−1 ·v is uniform over {0, 1}l \{0}, namely, h
$←− H. Finally,

for any given (x, h, v), one efficiently determines the value y∗ = f(x) − v · h−1
due to the arithmetics over the finite field. �



4 UOWHFs from Known Regular OWFs

We proceed to the more general case that f is a known almost-regular function.
Recall that by Fact 1 we can assume WLOG that the underlying almost regular
one-way function is length-preserving. We first show a construction where the
hardness parameter ε is known, and then remove the dependency on ε.

4.1 Compressing the Output is Necessary but Not Sufficient

We attempt to generalize the Naor-Yung approach for one-way permutations
(and 1-to-1 one-way functions) to almost regular one-way functions by com-
pressing (using trunc ◦ h) the output Y = f(X) into H∞(Y ) − s′ bits for
s′ ∈ O(log (1/ε)). However, this only gives a weak form of guarantee, as stated
in Lemma 2 below, that given a random x it is infeasible for efficient algorithms
to find any f(x′) 6= f(x) such that trunc(h(f(x′))) = trunc(h(f(x))). Otherwise
said, it does not rule out the possibility that one may easily find x′ 6= x satisfying
f(x′) = f(x). Hence, compressing the output is only a useful intermediate step
to obtain UOWHFs. Lemma 2 below further generalizes Theorem 1 to known-
(almost-)regular functions, whose proof is similar to that of Theorem 1 (see [20]).

Lemma 2. For any constant c, any efficiently computable r = r(n) and s′ =
s′(n), let f : {0, 1}n → {0, 1}n be any (2r, 2rnc)-almost regular (length-preserving)
(t, ε)-one-way function, let H be a family of permutations over {0, 1}n as below

H = {h : {0, 1}n → {0, 1}n , h(y)
def
=h·y, where y ∈ GF (2n), 06=h ∈ GF (2n) } ,

let trunc : {0, 1}n → {0, 1}n−r−c· logn−s′ be a truncating function. Then, for any
Ã of running time t− nO(1) (for some universal constant O(1)) we have that

Pr
x

$←−{0,1}n, h $←−H, x′←Ã(x,h)

[ f(x)6=f(x′) ∧ trunc(h(f(x))) = trunc(h(f(x′))) ] ≤ nc·2s
′+1 ·ε .

4.2 Known (Almost-)Regular OWFs with Known Hardness

We first give an optimal construction assuming that the inversion probability
upper bound ε is known. Note that in addition to hashing the output f(x) (as
we did in Lemma 2), we also hash the input x to ensure that no distinct x′

collides with x with respect to the resulting function.

Theorem 2 (UOWHFs from known-almost-regular ε-hard OWFs). Let
f : {0, 1}n → {0, 1}n be any (2r, 2rnc)-almost regular (length-preserving) (t,ε)-
one-way function as assumed in Lemma 2. Let shrinkage s = s(n) be any effi-
ciently computable function, and let H and trunc be as defined in Lemma 2 with
s′ = (s+ log(1/ε)− c log n)/2, and let H1 = {h1 : {0, 1}n → {0, 1}r+c logn+s′−s}
be a family of universal hash functions. Then, we have that

G2
def
= { g : {0, 1}n → {0, 1}n−s , g(x)

def
= (g1(x), h1(x)), g1 ∈ H , h1 ∈ H1 }



where g1
def
= (trunc ◦ h ◦ f), is a (t − nO(1), O(

√
2s · nc · ε))-universal one-way

hash function family with key and output length Θ(n).

Proof. Define shorthands E1
def
=
(
x 6= x′ ∧ f(x) = f(x′) ∧ h1(x) = h1(x′)

)
and

E2
def
=
(
f(x) 6= f(x′) ∧ g1(x) = g1(x′)

)
. For any G2-collision finder A, we have

Pr
x

$←−{0,1}n, (h,h1)
$←−(H,H1), x

′←A(x,h,h1)

[ x 6=x′ ∧ g(x) = g(x′) ]

≤ Pr
x

$←−{0,1}n, (h,h1)
$←−(H,H1), x′←A(x,h,h1)

[ E1 ∨ E2 ]

≤ Pr
x

$←−{0,1}n, h1
$←−H1

[ ∃ x′ 6= x ∧ f(x) = f(x′) ∧ h1(x) = h1(x′) ]

+ Pr
x

$←−{0,1}n, (h,h1)
$←−(H,H1), x′←A(x,h,h1)

[ f(x) 6=f(x′) ∧ g1(x) = g1(x′) ]

≤ 2−(s
′−s) + nc·2s

′+1 · ε =
√

2s · nc · ε + 2
√

2s · nc · ε = 3
√

2s · nc · ε ,

where the first inequality refers to that any collision on g ∈ G2 (for x′ 6= x) must
satisfy either E1 or E2 and the second inequality follows by a union bound. We
already know by Lemma 2 that the second term is bounded by nc·2s′+1ε, and it
thus remains to show that the first term is bounded by 2−(s

′−s). Conditioned on
any y = f(X) random variable X is a flat distribution on a set of size at most
2r·nc, so we apply Lemma 1 (setting a = r+ c · logn, d≥s′− s and k = 1) to get

Pr
x

$←−{0,1}n, h1
$←−H1

[ ∃ x′ 6= x ∧ f(x) = f(x′) ∧ h1(x) = h1(x′) ]

= Ey←f(Un)

[
Pr

x
$←−f−1(y), h1

$←−H1

[ ∃ x′ 6= x ∧ f(x) = f(x′) ∧ h1(x) = h1(x′) ]

]
≤ Ey←f(Un)[ 2−(s

′−s) ] = 2−(s
′−s) ,

which completes the proof.

4.3 An Alternative Approach to Section 4.2

A neater (and perhaps more intuitive) approach is to construct an almost 1-to-1
one-way function f ′ (with input and output lengths Θ(n)) based on f (stated
as Theorem 3) and then plug f ′ into Theorem 1 (using f ′ in place of f) 12 .
This statement is interesting in its own right as it implies that almost 1-to-1
one-way functions and known-(almost-)regular one-way functions (with known
hardness) are equivalent. Taking a closer look at Theorem 3 we find that this
almost 1-to-1 f ′ is also present (as an intermediate function) in construction G2
of Theorem 2 (except with slightly different length parameters). Lemma 3 and
Lemma 4 state the almost injectiveness and one-way-ness of f ′ respectively, for
which we determine a judicious value for d (assuming knowledge about ε) in
Theorem 3 to achieve injectiveness and one-way-ness simultaneously.

12 Strictly speaking, we need to show that the construction works even if the underlying
OWF is only 1-to-1 on an overwhelming fraction of inputs. The proof is given in [20].



Theorem 3 (almost 1-to-1 OWF from almost-regular ε-hard OWF).
Let f : {0, 1}n → {0, 1}n be any (2r, 2rnc)-almost regular (length-preserving)
(t,ε)-one-way function as assumed in Lemma 2. For efficiently computable d =
d(n) ∈ N, define

f ′ : {0, 1}n ×H1 → {0, 1}n × {0, 1}r+c·logn+d ×H1

f ′(x, h1)
def
= (f(x), h1(x), h1)

where H1 is a family of universal hash functions from n bits to r + c·log n + d

bits. Then, for d = log(1/ε)−c·logn−3
3 we have that f ′ is 2 3

√
ε · nc-almost 1-to-1

and (t−O(n), 2 3
√
ε · nc)-one-way with input and output lengths Θ(n).

Proof. The almost 1-to-1-ness and one-way-ness of f ′ follow from Lemma 3 and

Lemma 4 respectively by setting parameter d = log(1/ε)−c·logn−3
3 .

Lemma 3 (f ′ is almost 1-to-1 [20]). f ′ defined in Theorem 3 is 2−d-almost
1-to-1.

Lemma 4 (f ′ is one-way [20]). f ′ defined in Theorem 3 is a (t − O(n),√
2d+3 · nc · ε)-one-way function.

4.4 UOWHFs from any Known (Almost-)Regular OWFs

Removing the dependency on ε. Unfortunately, Theorem 2 doesn’t im-
mediately apply to an arbitrary regular function as in general we assume no
knowledge about ε (other than that ε is negligible). To see the difficulty, check
the proof of Theorem 2 where the security of the resulting UOWHF is bounded
by the sum of two terms, i.e., 2−(s

′−s) + nc·2s′+1 · ε. Without knowing ε, one
may end up setting some super-polynomial 2s

′
(to make the first term negli-

gible) which kills the second term nc·2s′+1 · ε. Same problems arise in similar
situations (e.g., construction of PRGs from regular OWFs [22]). A remedy for
this is parallel repetition: run q ∈ ω(1) copies of f on x = (x1, . . . , xq), apply
hash-then-truncate (setting s′ = 2 log n) to every copy f(xi), which shrinks the
entropies by 2q log n bits and yields a bound O(ε·nc+2). Next, apply a single
hashing to x that expands q· log n bits (to yield another negligible term n−q).
This gives a family of UOWHFs with shrinkage 2q log n− q log n = q log n, and
key and output length O(q · n) for any (efficiently computable) q ∈ ω(1). The
proof is similar in spirit to that of Theorem 2 (see [20]).

Definition 8 (parallel repetition). For any function g : X → Y, we define
its q-fold parallel repetition gq : X q → Yq as

gq(x1, ..., xq) = ( g(x1) , ..., g(xq) ) .

For simplicity, we use shorthand x
def
= (x1, . . . , xq) and thus gq(x)=gq(x1, . . . , xq).



Theorem 4 (UOWHFs from any known almost-regular OWFs). Let
f : {0, 1}n → {0, 1}n be any (2r, 2rnc)-almost regular (length-preserving) (t,ε)-
one-way function as assumed in Lemma 2. Then, for any efficiently computable
q = q(n) = ω(1), let H and trunc be as defined in Lemma 2 with s′ = 2 log n,
and let H1 = {h1 : {0, 1}q·n → {0, 1}q(r+(c+1) logn)} be a family of universal hash
functions, we have that

G3
def
= { g : {0, 1}qn → {0, 1}qn−q logn , g(x)

def
= (g1(x), h1(x)), h ∈ H , h1 ∈ H1 }

where g1
def
= (trunc ◦ h ◦ f)q, is a (t−nO(1),n−q + 2q·nc+2 · ε)-universal one-way

hash function family with key and output length O(q · n), and shrinkage q· log n.

5 Going Beyond Almost-Regular OWFs

Although (almost) optimal, our foregoing constructions need at least almost-
regularity, i.e., the one-way function f satisfies α ≤ |f−1(f(x))| ≤ α · β for all
(or at least an overwhelming portion of) x, where α is efficiently computable and
β = poly(n) (or at most β = O(log (1/ε)) for an (ε−1,ε)-hard f). Complementary
to our work, Ames et al. [1] gave an elegant construction from unknown-(almost-
)regular one-way functions, namely, without knowledge about α, for which they
pay a cost of much increased number of one-way function calls (i.e., O(n/logn))
and key length O(n log n). In this section, we further weaken the assumption so
that f can have an arbitrary structure (i.e., β is not bounded) as long as the
fraction of x’s with (nearly) maximal number of siblings is noticeable.

5.1 A More General Class of OWFs

The following class of one-way functions was introduced in [21] as a relaxation
to unknown-(almost-)regular one-way functions.

Definition 9 (weakly unknown-regular OWFs [21]). Let f : {0, 1}n →
{0, 1}l(n) be a one-way function, and for every n ∈ N, divide domain {0, 1}n

into sets X1, . . . ,Xn (i.e., X1 ∪ . . . ∪ Xn = {0, 1}n) such that Xj
def
= {x : 2j−1 ≤

|f−1(f(x))| < 2j}, and define max = max(n) to be the maximal subscript of
the non-empty sets, i.e., |Xmax| > 0 and |Xmax+1 ∪ . . . ∪ Xn| = 0. We say that
f is weakly unknown-regular if there exists a constant c such that for all
sufficiently large n :

Pr[Un ∈ Xmax] ≥ n−c . (1)

Note that max(·) can be arbitrary (not necessarily efficient) functions and thus
unknown-regular one-way functions fall into a special case13 for c = 0.

13 In fact, our construction #4 only assumes a relaxed condition than (1), i.e., Pr[Un ∈
Xmax−O(logn)∪. . .∪Xmax] ≥ n−c, so that unknown-almost-regular one-way functions
become a special case for c = 0.



5.2 UOWHFs from Beyond Almost-Regular OWFs

We state below the main results of this section, namely, the fourth construction
which is based on weakly unknown-regular one-way functions (see Definition 9).

Theorem 5. Assume that f is a weakly unknown-regular one-way function on
an n−c-fraction of domain for constant c. Then, there exists an explicit con-
struction of UOWHF family with output length Θ(n), key length O(n · logn) by
making n2c+1 · ω(1) black-box calls to f .

The main idea is to transform any weakly unknown-regular one-way function
f into a family of functions F = {fu : u ∈ {0, 1}O(n logn)} such that F is almost
regular and that it preserves the one-way-ness of f . F is constructed based on
(the derandomized version of) the randomized iterate with a succinct description

u. Finally, we sample a random fu
$←− F and plug it into the construction by

Ames et al. to get the UOWHFs as desired. We refer to [20] for more details
about the explicit construction.

Definition 10 (the randomized iterate [10,7]). Let n ∈ N, function f :
{0, 1}n → {0, 1}n, and let H be a family of pairwise-independent length-preserving
hash functions over {0, 1}n. For k ∈ N, x1 ∈ {0, 1}n and vector hk = (h1, . . . , hk) ∈
Hk, recursively define the ith randomized iterate by:

x1
f

y1
h1

x2
f

y2
h2 · · · xk

f
yk

hk

yi = f(xi), xi+1 = hi(yi) .

We denote the ith iterate by function f i, i.e., yi = f i(x1,h
k), where hk is

possibly redundant as for i ≤ k + 1 yi only depends on hi−1.

The randomized version refers to the case where x1
$←− {0, 1}n and hk

$←− Hk.

The derandomized version refers to that x1
$←− {0, 1}n, u

$←− {0, 1}q∈O(n·logn),
hk := BSG(u), where BSG : {0, 1}q → {0, 1}k·log |H| is a bounded-space gener-
ator that 2−2n-fools every (2n+ 1, k, log |H|)-LBP (layered branching program),
and log |H| is the description length of H (e.g., 2n bits for concreteness).

Remark 2 (on what is proven in [21]). The authors of [21] introduced weakly
unknown-regular one-way functions from which they constructed a pseudoran-
dom generator with seed length O(n · log n) based on the randomized iterate.
They showed that “every k = n2c · log n ·ω(1) iterations are hard-to-invert”, i.e.,
for any j it is hard to predict xj given yj+k = f j+k(x1, BSG(u)) and u. A PRG
thus follows by outputting log n hardcore bits for every k iterations. In this pa-
per, we first adapt their findings to show that fu(·) = fk(·, BSG(u)) constitutes
a family of one-way functions, i.e., given yk = fu(x1) and u it is infeasible to find
any x′1 such that yk = fk(x′1, BSG(u)). This is stated as Lemma 6. However,
it is still insufficient to construct UOWHFs with the one-way-ness of fu. We

further show in Lemma 7 that a random fu
$←− F is almost regular (in a slightly

weaker sense than Definition 6 but already suffices for our needs).



Following [21], we define the following event and recall some inequalities.

Definition 11. For any n, j≤k ∈ N, define events

E ′j
def
=

(
(X1, Uq) ∈

{
(x1, u) : yj = f j(x1, BSG(u)) ∈ Ymax

})
where Ymax

def
= {y : 2max−1≤|f−1(y)| < 2max}, and (X1, Uq) are uniform over

{0, 1}n×{0, 1}q. Note that by definition Ymax = f(Xmax) (see Definition 9) and
thus Pr[f(Un) ∈ Ymax] ≥ n−c.
Lemma 5 (Some inequalities from [20]).

CP( Y ′k | Uq) ≤ k·2max−n+1 + 2−2n, (2)

Pr[E ′1 ∨ E ′2 ∨ . . . ∨ E ′k] ≥ 1− 2−k/n
2c

− 2−2n , (3)

where Y ′k
def
= fk(X1, BSG(Uq)).

Lemma 6 (F is one-way [20]). Assume that f is a (t, ε)-OWF that is weakly
unknown-regular on an n−c fraction of domain, define a family of functions

F def
= { fu : {0, 1}n → {0, 1}n, fu(x)=fk(x,BSG(u)), u ∈ {0, 1}O(n· logn) } (4)

where H,fk and BSG : {0, 1}q∈O(n·logn) → {0, 1}k·log |H| are as defined in Defi-
nition 10. Then, for any A of running time t− nO(1) it holds that

Pr
u

$←−{0,1}q, x $←−{0,1}n
[ A(u, fu(x)) ∈ f−1u ( fu(x) ) ] ≤

√
28·k4 · n3c · ε+2−k/n

2c

+ 2−2n . (5)

Lemma 7 (F is almost-regular). Let F = {fu} be as defined in Lemma 6.
Then, for any a ≥ 0 it holds that

Pr
u

$←−{0,1}q, x $←−{0,1}n
[ 2max−a−1 ≤ |f−1u ( fu(x) )| ≤ 2max+a+1 ] ≥ 1 − k

2a−2
− 1

2k/n2c ,

(6)
where u ∈ {0, 1}q∈O(n·logn) and fu(x)=fk(x,BSG(u)).

Proof. We define Slow
def
=

(
(X1, Uq) ∈ {(x, u) : 0 < |f−1u (fu(x))| < 2max−a−1}

)
and Sup

def
=

(
(X1, Uq) ∈ {(x, u) : |f−1u (fu(x))| > 2max+a+1}

)
, where X1 is

uniform over {0, 1}n. The left-hand of (6) is lower bounded by 1 − Pr[Slow] −
Pr[Sup] and thus it suffices to upper bound both Pr[Slow] and Pr[Sup]. We have

Pr[Slow] = Pr[Slow ∧ (E ′1 ∨ E ′2 ∨ . . . ∨ E ′k)] + Pr[Slow ∧ ¬(E ′1 ∨ E ′2 ∨ . . . ∨ E ′k)]

≤ Pr[

k∨
j=1

(Slow ∧ E ′j)] + Pr[¬(E ′1 ∨ E ′2 ∨ . . . ∨ E ′k)]

≤
k∑
j=1

Pr[Slow ∧ E ′j ] + (2−k/n
2c

+ 2−2n)

≤ k·2−a + 2−k/n
2c

+ 2−2n



where the first inequality is trivial, the second is by the union bound and (3), and

the third is due to that for every j ∈ [k] with shorthand fu,j(x)
def
= f j(x,BSG(u))

it holds that

Pr[Slow ∧ E ′j ] =
∑
u

Pr[Uq = u] ·
∑

x: fu,j(x)∈Ymax ∧ 0<|f−1
u (fu(x))|<2max−a−1

Pr[X1 = x|Uq = u]

≤
∑
u

Pr[Uq = u] ·
∑

x: fu,j(x)∈Ymax ∧ 0<|f−1
u,j(fu,j(x))|<2max−a−1

Pr[X1 = x | Uq = u]

≤
∑
u

Pr[Uq = u] · |Ymax|·2max−a−1·2−n

≤ 2n+1−max · 2−n+max−a−1 = 2−a

where the first inequality is due to Fact 3 (setting f1=fu,j , f2 = f◦hk−1◦ . . . ◦f ◦
hj and thus f̄ = fu), the second follows from the fact that there are |Ymax|
possible values for fu,j(x) ∈ Ymax and every fu,j(x) has less than 2max−a−1

preimages (by definition of Slow), and the third is due to |Ymax|≤2n+1−max.
Next we proceed to bounding the second term, i.e., Pr[Sup] ≤ k·2−a+1.

k·2max−n+1 + 2−2n ≥ CP( Y ′k | Uq) = Eu←Uq

[∑
y

Pr[ fu(X1) = y | Uq = u]2
]

> 2max+a−n+1 · Eu←Uq

[ ∑
y: |f−1

u (y)|>2max+a+1

Pr[ fu(X1) = y | Uq = u]

]
= 2max+a−n+1 · Pr[Sup] ,

where the first inequality is by (2), and the second is due to that for any (y, u)
satisfying |f−1u (y)| > 2max+a+1 and it holds that

Pr[ fu(X1) = y | Uq = u] = Pr[X1 ∈ f−1u (y) ] > 2−n·2max+a+1 = 2max+a−n+1 .

It follows that Pr[Sup] ≤ (k·2max−n+1 + 2−2n)/2max+a−n+1≤k·2−a+1 and hence
completes the proof.

Fact 3 Let f1 : X → Y and f2 : Y → Z be any functions, and let f̄
def
= f2◦f1.

Then for any t ∈ N+ it holds that

{x : 0 < |f̄−1(f̄(x))| < t} ⊆ {x : 0 < |f−11 (f1(x))| < t} .

Proof. Any x satisfying 0 < |f̄−1(f̄(x))| < t implies 0 < |f−11 (f1(x))| < t.

Given that F is a family of unknown-(almost-)regular one-way functions with
description length O(n · log n), we just plug a random fu ∈ F into the Ames et
al.’s construction [1] to yield a family of UOWHFs with output length Θ(n) and
key length O(n · log n). We refer to a more complete version of this work [20],
where we put together all the necessary technical details.
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