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Abstract. We revisit the impossibility of a variety of cryptographic
tasks including privacy and differential privacy with imperfect random-
ness. For traditional notions of privacy, such as security of encryption,
commitment or secret sharing schemes, dramatic impossibility results
are known [MP90,DOPS04] for several concrete sources R, including a
(seemingly) very “nice and friendly” Santha-Vazirani (SV) source. Some-
what surprisingly, Dodis et al. [DLMV12] showed that non-trivial differ-
ential privacy is possible with the SV sources. This suggested a qualita-
tive gap between traditional and differential privacy, and left open the
question of whether differential privacy is possible with more realistic
(i.e., less structured) sources than the SV sources.

Motivated by this question, we introduce a new, modular framework for
showing strong impossibility results for (both traditional and differential)
privacy under a general imperfect source R. As direct corollaries of our
framework, we get the following new results:
(1) Existing, but quantitatively improved, impossibility results for tradi-

tional privacy, but under a wider variety of sources R.
(2) First impossibility results for differential privacy for a variety of re-

alistic sources R (including most “block sources”, but not the SV
source).

(3) Any imperfect source allowing (either traditional or differential) pri-
vacy under R admits a certain type of deterministic bit extraction
from R.

1 Introduction

Traditional cryptographic tasks take for granted the availability of perfect ran-
dom sources, i.e., sources that output unbiased and independent random bits.
However, in many situations it seems unrealistic to expect a source to be perfectly
random, and one must deal with various imperfect sources of randomness. Some
well known examples of such imperfect random sources are physical sources [B-
ST03,BH05], biometric data [BDK+05,DORS08], secrets with partial leakage,
and group elements from Diffie-Hellman key exchange [GKR04,Kra10].

Imperfect Sources. To abstract this concept, several formal models of imper-
fect sources have been described (e.g., [vN51,CFG+85,B86,SV86,CG88,LLS89,Z-
⋆⋆ Most of this work was done while the author visited New York University.
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uc96,ACRT99,D01]). Roughly, they can be divided into extractable and non-
extractable. Extractable sources (e.g., [vN51,CFG+85,Blu86,LLS89]) allow for
deterministic extraction of nearly perfect randomness. And, while the question of
optimizing the extraction rate and efficiency has been very interesting, from the
qualitative perspective such sources are good for any application where perfect
randomness is sufficient. Unfortunately, it was quickly realized many imperfect
sources are non-extractable [SV86,CG88,Dod01]. The simplest example is the
Santha-Vazirani (SV) source [SV86], which produces an infinite sequence of bits
r1, r2, . . ., with the property that Pr[ri = 0 | r1 . . . ri−1] ∈ [ 12 (1 − γ), 1

2 (1 + γ)],
for any setting of the prior bits r1, . . . , ri−1. Namely, each bit has almost one bit
of fresh entropy, but can have a small bias γ < 1. Santha and Vazirani [SV86]
showed that there exists no deterministic extractor Enc : {0, 1}n → {0, 1} ca-
pable of extracting even a single bit of bias strictly less than γ from the γ-SV
source, irrespective of how many SV bits r1, . . . , rn it is willing to wait for.

Despite this pessimistic result, ruling out the “black-box compiler” from im-
perfect (e.g., SV) to perfect randomness for all applications, one may still hope
that specific “non-extractable” sources, such as SV-sources, might be sufficient for
concrete applications, such as simulating probabilistic algorithms or cryptogra-
phy. Indeed, a series of results [VV85,SV86,CG88,Zuc96,ACRT99] showed that
very “weak” sources (including SV-sources and even much more realistic “weak”
and “block” sources) are sufficient for simulating probabilistic polynomial-time
algorithms; namely, for problems which do not inherently need randomness, but
which could potentially be sped up using randomization. Moreover, even in the
area of cryptography — where randomness is essential (e.g., for key generation)
— it turns out that many “non-extractable” sources (again, including SV sources
and more) are sufficient for authentication applications, such as the designs of
MACs [MW97,DKRS06] and even signature schemes [DOPS04,ACM+14] (under
appropriate hardness assumptions). Intuitively, the reason for the latter “success
story” is that authentication applications only require that it is hard for the at-
tacker to completely guess (i.e., “forge”) some long string, so having min-entropy
in our source should be sufficient to achieve this goal.

Negative Results for Privacy with Imperfect Randomness. In con-
trast, the situation appears to be much less bright when dealing with privacy
applications, such as encryption, commitment, zero-knowledge, and a few oth-
ers. First, McInnes and Pinkas [MP90] showed that unconditionally secure sym-
metric encryption cannot be based on SV sources, even if one is restricted to
encrypting a single bit. This result was subsequently strengthened by Dodis et
al. [DOPS04], who showed that SV sources are not sufficient for building even
computationally secure encryption (again, even of a single bit), and, in fact,
essentially any other cryptographic task involving “privacy” (e.g., commitmen-
t, zero-knowledge, secret sharing and others). This was again strengthened by
Austrin et al. [ACM+14], who showed that the negative results still hold even if
the SV source is efficiently samplable. Finally, Bosley and Dodis [BD07] showed
an even more negative result: if a source of randomness R is “good enough” to
generate a secret key capable of encrypting k bits, then one can deterministically
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extract nearly k almost uniform bits from R, suggesting that traditional privacy
requires an “extractable” source of randomness.1

What about Differential Privacy? While the above series of negative
results seem to strongly point in the direction that privacy inherently requires
extractable randomness, a recent work of Dodis et al. [DLMV12] put a slight
dent into this consensus, by showing that SV sources are provably sufficient for
achieving a more recent notion of privacy, called differential privacy [DMNS06].
Intuitively, a differentially private mechanism M(D, r) uses its randomness r to
add some “noise” to the true answer q(D), where D is some sensitive database of
users, and q is some useful aggregate information (query) about the users of D.
This noise is added in a way as to satisfy the following two conflicting properties
(see Definitions 6 and 7 for formalism):

(a) ε-differential privacy (ε-DP): up to “advantage” ε, the returned value z =
M(D, r) does not tell any information about the value D(i) of any individual
user i, which was not already known to the attacker before z was returned;

(b) ρ-utility: on average (over r), |z − q(D)| is upper bounded by ρ, meaning
that perturbed answer is not too far from the true answer.

Since we will be mainly talking about negative results, for the rest of this work we
will restrict our attention to the simplest concrete example of differential privacy,
where a “record” D(i) is a single bit, and q is the Hamming weight wt(D) of the
corresponding bit-vector D (i.e., wt(D) =

∑
D(i)). In this case, a very simple

ε-DP mechanism [DMNS06] M(D, r) would simply return wt(D)+e(r) (possibly
truncated to always be between 0 and |D|), where e(r) is an appropriate noise2

with ρ = E[|q(r)|] ≈ 1/ε. Intuitively, this setting ensures that when D(i) changes
from 0 to 1, the answer distribution M(D, r) does not “change” by more than ε.

Coming back to Dodis et al. [DLMV12], the authors show that although no
“additive noise” mechanism of the form M(D, r) = wt(D) + e(r) can simulta-
neously withstand all γ-SV-distributions r ← R, a better designed mechanism
(that they also constructed) is capable of working with all such distributions,
provided that the utility ρ is now relaxed to be polynomial in 1/ε, whose degree
and coefficients depend on γ, but not on the size of the database D. Moreover, the
value ε can be made an arbitrarily small constant (e.g., ε ≪ γ). This should be
contrasted with the impossibility results for the traditional privacy [MP90,DOP-
S04] with SV sources, where it was shown that ε = Ω(γ), meaning that even
a fixed constant (let alone “negligible”) security is impossible. Hence, the result
of [DLMV12] suggested a qualitative gap between traditional and differential pri-
vacy, but left open the question of whether differential privacy is possible with
more realistic (i.e., less structured) sources than the SV sources. Indeed, the SV
sources seem to be primarily interesting from the perspective of negative results,
1 On the positive side, [DS02] and [BD07] showed that extractable sources are not

strictly necessary for encrypting a “very small” number of bits. Still, for natural
“non-extractable” sources, such as SV sources, it is known that encrypting even a
single bit is impossible [SV86,DOPS04,ACM+14].

2 So called Laplacian distribution, but the details do not matter here.
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since real-world distributions are unlikely to produce a sequence of bits, each of
which has almost a full unit of fresh entropy.

Our Results In Brief. In part motivated by solving this question, we abstract
and generalize prior techniques for showing impossibility results for achieving
privacy with various imperfect sources of randomness. Unlike prior work (with
the exception of [BD07]), which focused on specific imperfect sources R (e.g.,
SV sources), we obtain most of our results for general sources R, but then use
various natural sources (namely, SV sources [SV86], weak/block sources [CG88],
and Bias-Control Limited sources [Dod01]) as specific examples to illustrate
our technique. In particular, we introduce the concepts of expressiveness and
separability of a given imperfect source R as a measure of its “imperfectness”,
and show the following results:

– Low levels of expressiveness generically imply strong impossibility results for
differential as well as traditional privacy.

– We reduce expressiveness to separability and prove the equivalence between
“weak bit extraction” and NON-separability.

– Though the separability of some concrete (e.g., SV) sources R was implic-
itly known, we show new separability results for several important sources,
including general “block sources”.

We stress that the first two results are completely generic, and reduce the
question of feasibility of privacy under R to a much easier and self-contained
question of separability of R. And establishing the latter is the only “source-
specific” technical work which remains. In particular, after explicitly stating
known separability results for weak and SV sources, and establishing our new
separability results for block and Bias-Control Limited (BCL) sources, we obtain
the following direct corollaries:

– Existing, but quantitatively improved, impossibility results for traditional
privacy, but under a wider variety of sources R (i.e., weak, block, SV, BCL).

– First impossibility results for differential privacy. Although, unsurprisingly,
these results (barely) miss the highly structured SV sources, they come back
extremely quickly once the source becomes slightly more realistic (e.g., a very
“constrained” weak/block/BCL source).

– Any imperfect source allowing (either traditional or differential) privacy ad-
mits a certain type of deterministic bit extraction. (This result is incompa-
rable to the result of [BD07].)

We briefly expand on these results below, but conclude that, despite the result
of [DLMV12], our results seem to unify and strengthen the belief that, for the
most part, privacy with imperfect randomness is impossible, unless the source is
(almost) deterministically extractable. More importantly, they provide an intu-
itive, modular and unified picture elucidating the (im)possibility of privacy with
general imperfect sources.
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1.1 Our Results in More Detail

At a high level, our results follow the blueprint of [DOPS04] (who concentrated
exclusively on the SV sources), but in significantly more modular and quanti-
tatively optimized way (making our proofs somewhat more illuminating, in our
opinion). In essence, they establish an impossibility of a given privacy task P
under a source R using three steps:

Step 1: impossibility of task P under R −→ expressiveness of R.
Intuitively, expressiveness of R means that R is rich enough to “distinguish”
any functions f and g which are not point-wise equal almost everywhere (see
Definition 1): there exists R ∈ R s.t. SD(f(R), g(R)) is “noticeable”, where SD
is the statistical distance between distributions.3 With this clean abstraction,
we almost trivially show (see Theorem 1) that most traditional privacy tasks
P (extraction, encryption, secret sharing, commitment) imply the existence of
sufficiently-distinct functions f and g that violate the expressiveness of R. For
example, such f(r) and g(r) are simply the encryptions of two different plaintexts
under key r when P is encryption, and similar arguments hold for commitment,
extraction and secret sharing schemes.

More interestingly, we show expressiveness is again sufficient to rule out even
differential privacy (Theorem 2). The proof follows the same high-level intuition
as for the traditional privacy, but is somewhat more involved. This is because
DP only gives us security for “close” databases, while the utility guarantees are
only meaningful for “far” databases. In particular, for this reason it will turn out
that the expressiveness requirement on R for ruling out differential privacy will
be slightly higher than that for traditional privacy (Theorem 2 vs. Theorem 1).4
Still, aside from this quantitative difference, there is no qualitative difference
between our arguments for traditional and differential privacy.

Overall, the deceptive simplicity of our “privacy-to-expressiveness” arguments
is actually a feature of our framework, as these arguments are the only place when
the specific details of P matter, as the rest of the framework — described below
— will only concentrate on the expressiveness of R!

Step 2: expressiveness of R −→ separability of R.
Intuitively, separability of R means that R is rich enough to “separate” any
sufficiently large disjoint sets G and B (see Definition 8; wlog, assume that
|G| ≥ |B|): there exists R ∈ R s.t. (Pr[R ∈ G] − Pr[R ∈ B]) is “noticeable”.5 A
moment reflection shows that separability is closely related to expressiveness, but
restricted to boolean functions f and g of disjoint support (i.e., the characteristic

3 Like in [DOPS04] and unlike [MP90], our distinguishers between f(R) and g(R) will
be very efficient, but we will not require this in order not to clutter the notation.

4 Jumping ahead, this will be the reason although our new impossibility results for
DP will (barely) miss the SV sources, they will come back very quickly once the
source becomes more realistic.

5 For example, if R only consists of the uniform distribution Un, the latter is impossible
when |G| = |B|. In contrast, we will see that natural “non-extractable” sources (i.e.,
weak, block, SV, and BCL sources) are separable.
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functions of G and B), which makes it noticeably easier to work with (as we will
see).

Nevertheless, we show that separability generically implies expressiveness,
with nearly identical parameters (see Theorem 3). This is where we differ and
quantitatively improve the argument implicit in [DOPS04]: while [DOPS04] used
a bit-by-bit hybrid argument to show expressiveness (for the SV source), our
proof of Theorem 3 used a more clever “universal hashing trick”, 6 allowing us to
obtain results which are independent of the ranges of f and g (which, in turn,
will later correspond to bit sizes of ciphertexts, commitments, secret shares, etc.)

Of independent interest, we also show that NON-separability of R is equiv-
alent to some type of “weak bit extraction” from R (see Theorem 4): (a) when
produced, the extracted bit is guaranteed to be almost unbiased, (b) although
the extractor is allowed to fail, it will typically succeed at least on the uniform
distribution.7

Coupled with Step 1, we get the following two implications. First, we reduce
the impossibility of many privacy tasks P under R to a much easier question
of separability of R (which is independent of P ). Second, we generically show
that the feasibility of P under R implies deterministic weak bit extraction from
R, incomparably complementing the prior result of [BD07]. Namely, [BD07]
showed that several traditional privacy primitives, including (only multi-bit)
encryption and commitment (but not secret sharing) imply the existence of
multi-bit deterministic extraction schemes capable of extracting almost the same
number of bits as the plaintext. On the positive, our result applies to a much
wider set of primitives P (e.g., secret-sharing, as well as even single-bit encryption
and commitment). On the negative, we can only argue a rather weak kind of
single-bit extraction, where the extractor is allowed to fail, while [BD07] showed
traditional, and possibly multi-bit, extraction.

Step 3: separability of various sources R.
Unlike the prior results in [MP90,DOPS04,ACM+14], all the above results are
true for any imperfect source R. To get concrete impossibility results for natural
sources, though, we finally must establish good separability bounds for specif-
ic R. Such bounds were already implicitly known [DOPS04] (or trivial to see)
for the SV and general weak sources, but we show how they can also be demon-
strated for other natural sources: block sources [CG88] and Bias-Control Limited
sources [Dod01]. In particular, our separability bounds for block sources turned
out to be quite non-trivial, and form one of the more technical contributions of
this work. See the proof of Lemma 2(b).

Aside from being natural and interesting in their own right, the new separabil-
ity results for block/BCL sources are especially interesting from the perspective
of differential privacy (see below). Indeed, both of them can be viewed as real-
istic relaxations of highly-structured (and unrealistic!) SV sources, but yet not

6 Similar trick with randomness extractors was used, in a slightly different context,
by [ACM+14].

7 Unfortunately, we demonstrate that the limitation of part (b) holding only for the
uniform distribution is somewhat inherent in this great level of generality.
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as general/unstructured as weak sources. And since we already know that DP
is possible with SV sources [DLMV12], it is interesting to know how soon it will
take for the impossibility results to come back, once the source slowly becomes
more realistic/unstructured, but before going “all the way” to being weak.

Putting them all together: New and Old Impossibility Results. Ap-
plying Steps 1-3 to specific sources of interest (i.e., weak, block, SV, and BCL
sources), we immediately derive a variety of impossibility results for traditional
privacy (see Table 1). Although these results were derived mainly as a “warm-
up” to our (completely new) impossibility results for differentially privacy, they
offer quantitative improvements to the results of [DOPS04] (due to stronger
expressiveness-to-separability reduction). For example, they rule out even con-
stant (as opposed to negligible) security for encryption/commitment/secret shar-
ing, irrespective of the sizes of ciphertexts/commitments/shares. Relatedly, we
unsurprisingly get stronger impossibility results for block/BCL sources than the
more structured SV sources.

More interestingly, we obtain first impossibility results for differential pri-
vacy with imperfect randomness. In light of the positive result of [DLMV12],
our separability result for SV sources is (barely) not strong enough to rule out
differential privacy under SV sources. As we explained, this failure happened
not because our framework was too weak to apply to SV sources or differential
privacy, but rather due to a “local-vs-global gap” between the privacy and utility
requirements for differential privacy.

However, once we consider general weak sources, or even much more struc-
tured BCL/block sources, the impossibility results come back extremely quickly!
For example, when studying ε-DP with utility ρ, n-bit weak sources of min-
entropy k are ruled out the moment k = n − log(ερ) − O(1) (Theorem 6(a)),8
while BCL sources are ruled out the moment the number of “SV bits” b the
attacker can fix completely (instead of only bias by γ) is just b = Ω(log(ερ)/γ)
(Theorem 6(c)). As ερ is typically desired to be a constant, log(ερ) is an even s-
maller constant, which means we even rule out constant entropy deficiency (n−k)
(or m− k for block source) or number of “interventions” b, respectively. We also
compare impossibility results for traditional and differential privacy in Table 2,
and observe that the latter are only marginally weaker than the former. This
leads us to the conclusion that differential privacy is still rather demanding to
achieve with realistic imperfect sources of randomness.

Due to space limitations, most proofs are deferred to the full version [DY14].

2 Preliminaries

Let US be the uniform distribution over a set S. For simplicity, Un
def
= U{0,1}n .

For a distribution or random variable R, let r ← R denote the operation of

8 More generally, even n-bit block sources with block length m and fresh min-entropy
k per block are ruled out when k = m− log(ερ)−O(1), irrespective of the number
of blocks n/m. See Theorem 6(b).
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sampling a random r according to R , and H∞(R)
def
= minr∈supp(R) log

1
Pr[R=r]

denote the min-entropy of R. We call a family of distributions over {0, 1}n a
source, denoted as Rn. All logarithms are to the base 2.

For two random variables R and R′ over {0, 1}n, the statistical distance
between R and R′ is defined as SD(R,R′)

def
= 1

2

∑
r∈{0,1}n

|Pr[R = r]−Pr[R′ = r]|.

One can observe that SD(R,R′) = max
Eve
|Pr[Eve(R) = 1] − Pr[Eve(R′) = 1]|,

where Eve is a distinguisher. We say that the relative distance between R and R′

is ε, denoted as RD(R,R′) = ε, if ε is the smallest number such that e−ε ·Pr[R′ =
r] ≤ Pr[R = r] ≤ eε · Pr[R′ = r] for all r ∈ {0, 1}n. It’s easy to see that
RD(R,R′) ≤ ε implies SD(R,R′) ≤ eε − 1.

3 Expressiveness and its Implications to Privacy

In this section, we introduce the concept of expressiveness of a source. Then we
study its implications to both traditional and differential privacy.

Informally, an expressive source Rn can separate two distributions f(R) and
g(R), unless the functions f and g are point-wise equal almost everywhere.

Definition 1. We say that a source Rn is (t, δ)−expressive if for any functions
f, g : {0, 1}n → C, where C is any universe, such that Pr

r←Un

[f(r) ̸= g(r)] ≥ 1
2t for

some t ≥ 0, there exists a distribution R ∈ Rn such that SD(f(R), g(R)) ≥ δ.

3.1 Implications to Traditional Privacy

We recall (or define) some cryptographic primitives related to traditional privacy:
bit extractor, bit encryption scheme, weak bit commitment, and bit T -secret
sharing as follows.

Definition 2. We say that Ext : {0, 1}n → {0, 1} is (Rn, δ)-secure bit extractor
if for every distribution R ∈ Rn, | Pr

r←R
[Ext(r) = 1] − Pr

r←R
[Ext(r) = 0]| < δ

(equivalently, SD(Ext(R), U1) < δ/2).

In the following, we consider the simplest encryption scheme, where the plain-
text is composed of a single bit x.

Definition 3. A (Rn, δ)−secure bit encryption scheme is a tuple of functions
Enc : {0, 1}n × {0, 1} → {0, 1}λ and Dec : {0, 1}n × {0, 1}λ → {0, 1}, where,
for convenience, Enc(r, x) (resp. Dec(r, c)) is denoted as Encr(x) (resp. Decr(c)),
satisfying the following two properties:

(a) Correctness: for all r ∈ {0, 1}n and x ∈ {0, 1}, Decr(Encr(x)) = x;
(b) Statistical Hiding: SD(EncR(0),EncR(1)) < δ, for every distribution R ∈ Rn.
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Commitment schemes allow the sender Alice to commit a chosen value (or
statement) while keeping it secret from the receiver Bob, with the ability to
reveal the committed value in a later stage. Binding and hiding properties are
essential to any commitment scheme. Informally, “binding” means that it’s “hard”
for Alice to alter her commitment after she has made it; “hiding” means that it’s
“hard” for Bob to find out the committed value without Alice revealing it.

Each of them can be computational or information theoretical. However,
we can’t achieve information theoretically binding and information theoretically
hiding properties at the same time. Instead of defining computational notions,
we relax binding to some very weak property, so that hiding and this new (very
weak) binding properties both can be information theoretical. Since we aim to
show an impossibility result, such relaxation is justified.

Definition 4. A (Rn, δ)−secure weak bit commitment is a function Com :
{0, 1}n × {0, 1} → {0, 1}λ satisfying that: for any distribution R ∈ Rn,

(a) Weak Binding: Pr
r←Un

[Com(0; r) ̸= Com(1; r)] ≥ 1
2 ;

(b) Statistical Hiding: SD(Com(0;R),Com(1;R)) < δ.

Note that in the traditional notion of commitment, the binding property
holds if it is “hard” to find r1 and r2 such that Com(0; r1) = Com(1; r2). Here
we give a much weaker binding notion. We only require that the attacker can
not win with probability ≥ 1

2 by choosing r1 = r2 uniformly at random. For
example, Com(x; r) = x ⊕ r, where x, r ∈ {0, 1} can be easily verified to be a
weak bit commitment for any δ > 0 (despite not being a standard commitment).

In the notion of T -party Secret Sharing, two thresholds T1 and T2, where
1 ≤ T1 < T2 ≤ T , are involved such that (a) any T1 parties have “no information”
about the secret, (b) any T2 parties enable to recover the secret. Because our
purpose is to show an impossibility result, we restrict to T1 = 1 and T2 = T ,
and only consider one bit secret x.

Definition 5. A (Rn, δ)−secure bit T−Secret Sharing scheme is a tuple (Share1,
Share2, . . . , ShareT ,Rec) satisfying the following two properties:

(a) Correctness: Rec(Share1(x, r), . . . , ShareT (x, r)) = x for all r ∈ {0, 1}n and
each x ∈ {0, 1};

(b) Statistical Hiding: SD(Sharej(0;R), Sharej(1;R)) < δ, for every index j ∈ [T ]
and any distribution R ∈ Rn.

Now we abstract and generalize the results of [MP90,DOPS04] to show that
expressiveness implies the impossibility of security involving traditional privacy.
See [DY14] for the proof.

Theorem 1.
(a) When Rn is (0, δ)−expressive, no (Rn, δ)-secure bit extractor exists.
(b) When Rn is (0, δ)−expressive, no (Rn, δ)-secure bit encryption scheme ex-

ists.
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(c) WhenRn is (1, δ)−expressive, no (Rn, δ)-secure weak bit commitment exists.
(d) When Rn is (log T, δ)−expressive, no (Rn, δ)-secure bit T -secret sharing

exists.

3.2 Implications to Differential Privacy

Dodis et al. [DLMV12] have shown how to do differential privacy with respect
to the γ-SV source for all “queries of low sensitivity”. Since we aim to show
impossibility results, henceforth we only consider the simplest case: let D =
{0, 1}N be the space of all databases and for D ∈ D, the query function q is the
Hamming weight function wt(D) = |{i | D(i) = 1}|, where D(i) means the i-th
bit (“record”) of D. If the source Rn has only one distribution Un, Rn is denoted
by Un for simplicity. For any D,D′ ∈ D, the discrete distance function between
them is defined by ∆(D,D′)

def
= wt(D⊕D′), where ⊕ is the bitwise exclusive OR

operator. We say that D and D′ are neighboring if ∆(D,D′) = 1. A mechanism
M is an algorithm that takes as input a database D ∈ D and a distribution
R ∈ Rn, and outputs a random value z. Informally, we wish z = M(D,R) to
approximate the true value wt(D) without revealing too much information about
any individual D(i). More formally, a mechanism is differentially private for the
Hamming weight queries if replacing an entry in the database with one containing
fake information only changes the output distribution of the mechanism by a
small amount. In other words, evaluating the mechanism on two neighboring
databases, does not change the outcome distribution by much. On the other
hand, we define its utility to be the expected difference between the true answer
wt(D) and the output of the mechanism. More formally,

Definition 6. Let ε ≥ 0 andRn be a source. A mechanism M (for the Hamming
weight queries) is (Rn, ε)-differentially private if for all neighboring databases
D1, D2 ∈ D, and all distributions R ∈ Rn, we have RD(M(D1, R),M(D2, R)) ≤
ε. Equivalently, for any possible output z:

Pr
r←R

[M(D1, r) = z]

Pr
r←R

[M(D2, r) = z]
≤ eε.

Note that for ε < 1, we can rather accurately approximate eε by 1 + ε.

Definition 7. Let 0 < ρ ≤ N/4 and Rn be a source. A mechanism M has
(Rn, ρ)-utility for the Hamming weight queries, if for all databases D ∈ D and
all distributions R ∈ Rn, we have Er←R[|M(D, r)− wt(D)|] ≤ ρ.

We show that, much like with traditional privacy, expressiveness implies im-
possibility of differential privacy with imperfect randomness, albeit with slightly
more demanding parameters.

Theorem 2. Assume 1/(8ρ) ≤ ε ≤ 1/4 and the source Rn is (log(ρεδ ) + 4, δ)−
expressive, for some 2ε ≤ δ ≤ 1. Then no (Rn, ε)−differentially private and
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(Un, ρ)-accurate mechanism for the Hamming weight queries exists. In particu-
lar, plugging δ = 2ε and δ = 1

2 , respectively, this holds if either
(a) Rn is (3 + log(ρ), 2ε)−expressive; or (b) Rn is (5 + log(ρε), 1

2 )−expressive.

The high-level idea is as follows. For two databases D and D′, define two
functions f(r)

def
= M(D, r) and g(r)

def
= M(D′, r). Intuitively, for all R ∈ Rn,

since RD(f(R), g(R)) ≤ ε · ∆(D,D′) implies SD(f(R), g(R)) ≤ eε·∆(D,D′) − 1,
we could use expressiveness to argue that f(r) = g(r) almost everywhere, which
must eventually contradict utility (even for uniform distribution). However, we
can’t use this technique directly, because if ε · ∆(D,D′) is large enough, then
eε·∆(D,D′) − 1 > 1, which is greater than the general upper bound 1 of the
statistical distance. Instead, we simply use this trick on close-enough databases
D and D′, and then use a few “jumps” from D0 to D1, etc., until eventually we
must violate the ρ-utility.

Proof. Assume for contradiction that there exists such a mechanism M . Let
D′ def= {D | wt(D) ≤ 4ρ}. Denote

Trunc(x)
def
=


0, if x < 0;

x, if x ∈ {0, 1, . . . , 4ρ};
4ρ, otherwise.

For any D ∈ D′, define the truncated mechanism M ′
def
= Trunc(M) by

M ′(D, r)
def
= Trunc(M(D, r)). Since for every D ∈ D′, we have wt(D) ∈ {0, 1, . . . ,

4ρ}, M ′ still has (Un, ρ)−utility on D′. Additionally, from Definition 6, it’s s-
traightforward that M ′ is (Rn, ε)-differentially private on D′. In the following,
we only consider the truncated mechanism M ′ on D′.

Let t = log(ρεδ ) + 4 and s = δ
2ε . Notice, 1 ≤ s ≤ 1/(2ε) ≤ 4ρ, eεs − 1 < δ,

and 2t = 8ρ/s.
We start with the following claim:

Claim. Consider any databases D,D′ ∈ D′, s.t. ∆(D,D′) ≤ s, and denote
f(r)

def
= M ′(D, r) and g(r)

def
= M ′(D′, r). Then Pr

r←Un

[f(r) ̸= g(r)] < 1
2t .

Proof. Since M ′ is (Rn, ε)-differentially private, then for all R ∈ Rn, we have
RD(f(R), g(R)) ≤ ε ·∆(D,D′) ≤ ε · s. Hence, SD(f(R), g(R)) ≤ eε·s − 1 < δ, by
our choice of s. Since this holds for all R ∈ Rn and Rn is (t, δ)−expressive, we
conclude that it must be the case that Pr

r←Un

[f(r) ̸= g(r)] < 1
2t .

2

Coming back to the main proof, consider a sequence of databases D0, D1, · · · ,
D4ρ/s such that wt(Di) = i ·s and ∆(Di, Di+1) = s. Denote fi(R)

def
= M ′(Di, R)

for all i ∈ {0, 1, . . . , 4ρ/s}. From the above Claim, we get that Pr
r←Un

[fi(r) ̸=

fi+1(r)] <
1
2t . By the union bound and our choice of s and t,

Pr
r←Un

[f0(r) ̸= f4ρ/s(r)] <
4ρ

2t · s
≤ 1

2
(1)
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Let α
def
= Er←Un [ f4ρ/s(r)− f0(r) ]. From (Un, ρ)-utility, we get that

α ≥ (wt(D4ρ/s)− ρ)− (wt(D0) + ρ) = (4ρ− ρ)− (0 + ρ) = 2ρ.

On the other hand, from Inequation (1),

α ≤ Pr
r←Un

[f0(r) ̸= f4ρ/s(r)] ·max
r
|f4ρ/s(r)− f0(r)| <

1

2
· 4ρ = 2ρ,

which is a contradiction.
2

4 Separability and its Implications

Expressiveness is a powerful tool, but it’s hard for us to use it directly. In this
section, we introduce the concept of separability and show that it implies ex-
pressiveness, and also has its own applications to (weak) coin flipping. Several
typical examples can been seen in Section 5.

Intuitively, separable sources Rn allow one to choose a distribution R ∈ Rn

capable of “separating” any sufficiently large, disjoint sets G and B: increasing
a relative weight of one set w.r.t. R without doing the same for the counterpart
of the other one.

Definition 8. We say that a source Rn is (t, δ)−separable if for all G,B ⊆
{0, 1}n, where G∩B = ∅ and |G∪B| ≥ 2n−t, there exists a distribution R ∈ Rn

such that | Pr
r←R

[r ∈ G]− Pr
r←R

[r ∈ B] | ≥ δ.

4.1 Separability Implies Expressiveness

We investigate the relationship between separability and expressiveness. We show
that separable sources must be expressive. The high-level idea of the proof comes
from the work of [DOPS04] (who only applied it to SV sources), but we quan-
titatively improve the technique of [DOPS04], by making the gap between ex-
pressiveness and separability independent of the range C of the functions f and
g. See [DY14] for the proof.

Theorem 3. If a source Rn is (t+ 1, δ)−separable, then it’s (t, δ)-expressive.

Remark 1. Note that if the universe C is a subset of {0, 1}poly(n), then the univer-
sal hash function family in the proof of Theorem 3 can be made efficient (in n).
Hence, the distinguisher Eve can be made efficient as well. Therefore, there exists
an efficient distinguisher Eve such that | Pr

r←R
[Eve(f(r)) = 1] − Pr

r←R
[Eve(g(r)) =

1]| ≥ δ. Namely, f(R) is “δ-computationally distinguishable” from g(R).

Combining Theorem 3 with Theorems 1 and 2, we get

Corollary 1.
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(a) If Rn is (1, δ)−separable, then no (Rn, δ)-secure bit extractor exists.
(b) If Rn is (1, δ)−separable, then no (Rn, δ)-secure bit encryption exists.
(c) IfRn is (2, δ)−separable, then no (Rn, δ)-secure weak bit commitment exists.
(d) If Rn is (log T +1, δ)−separable, then no (Rn, δ)-secure bit T -secret sharing

exists.
(e) Assume 1/(8ρ) ≤ ε ≤ 1/4 andRn is (log(ρεδ )+5, δ)−separable, for some 2ε ≤

δ ≤ 1. Then no (Rn, ε)−differentially private and (Un, ρ)-accurate mechanis-
m for the Hamming weight queries exists. In particular, plugging δ = 2ε and
δ = 1

2 , respectively, this holds if either (e.1) Rn is (4+log(ρ), 2ε)−separable;
or (e.2) Rn is (6 + log(ρε), 1

2 )−separable.

The above results are illustrated by several typical sources in Section 5.

4.2 Separability and Weak Bit Extraction

In this section, we define weak bit extraction and show that weak bit extraction
is equivalent to NON-separability. Then we propose its implications to privacy.

Recall, Bosley and Dodis [BD07] initiated the study of the general question:
does privacy inherently require “extractable” source of randomness? A bit more
formally, if a primitive P admits (Rn, δ)-secure implementation, does it mean
one can construct a (deterministic, single- or multi-) bit extractor from Rn?

They also obtained very strong affirmative answers to this question for several
traditional privacy primitives, including (only multi-bit) encryption and commit-
ment (but not secret sharing, for example). Here we make the observation that
our impossibility results give an incomparable (to [BD07]) set of affirmative an-
swers to this question. On the positive, our results apply to a much wider set of
primitives P (e.g., secret-sharing, as well as even single-bit encryption and com-
mitment). On the negative, we can only argue a rather weak kind of single-bit
extraction (as opposed to [BD07], who showed traditional, and possibly multi-bit
extraction). Our weak notion of extraction is defined below.

Definition 9. We say that Ext : {0, 1}n → {0, 1,⊥} is (Rn, δ, τ)-secure weak
bit extractor if
(a) for every distribution R ∈ Rn, | Pr

r←R
[Ext(r) = 1]− Pr

r←R
[Ext(r) = 0]| < δ;

(b) Pr
r←Un

[Ext(r) ̸= ⊥] ≥ τ .

We briefly discuss this notion, before showing our results. First, we notice that
setting τ = 1 recovers the notion of traditional bit-extractor given in Definition 2.
And, even for general τ < 1, the odds of outputting 0 or 1 are roughly the same,
for any distribution R in the source. However, now the extractor is also allowed to
output a failure symbol ⊥, which means that each of the above two probabilities
can occur with probabilities noticeably smaller than 1/2. Hence, to make it
interesting, we also add the requirement that Ext does not output ⊥ all the
time. This is governed by the second parameter τ requiring that Pr

r←R
[Ext(r) ̸=

⊥] ≥ τ . Ideally, we would like this to be true for any distribution R in the source.
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Unfortunately, such a desirable guarantee will not be achievable in our setting
(see Remark 2). Thus, to salvage a meaningful and realizable notion, we will only
require that this non-triviality guarantee at least holds for R ≡ Un. Namely,
while we do not rule out the possibility that some particular distributions R
might force Ext to fail the extraction with high probability, we still ensure that:
(a) when the extraction succeeds, the extracted bit is unbiased for any R in the
source; (b) the extraction succeeds with noticeable probability at least when R
is (“close to”) the uniform distribution Un.

We now observe (and prove in [DY14]) that the notion of weak bit-extraction
is simply a different way to express (the negation of) our notion of separability!

Lemma 1. Rn has a (Rn, δ, 2
−t)-secure weak bit extractor if and only if Rn is

not (t, δ)-separable.

Combining Lemma 1 with the counter-positive of Corollary 1, we get

Theorem 4.
(a) If (Rn, δ)-secure bit encryption scheme exists, then (Rn, δ,

1
2 )-secure weak

bit-extraction exists.
(b) If (Rn, δ)-secure weak bit commitment exists, then (Rn, δ,

1
4 )-secure weak

bit extraction exists.
(c) If (Rn, δ)-secure bit T -secret-sharing exists, then (Rn, δ,

1
2T )-secure weak bit

extraction exists.
(d) If (Rn, ε)−differentially private and (Un, ρ)-accurate mechanism for the Ham-

ming weight queries exists, then (Rn, 2ε,
1

16ρ )-secure weak bit extraction ex-
ists.

It is also instructive to see the explicit form of our weak bit extractor. For
example, in the case of bit encryption (part (a), other examples similar), we get

Ext(r)
def
=


1, if h∗(Encr(1)) = 1 and h∗(Encr(0)) = 0,

0, if h∗(Encr(1)) = 0 and h∗(Encr(0)) = 1,

⊥, otherwise (i.e., if h∗(Encr(1)) = h∗(Encr(0))),

where h∗ is the boolean universal hash function from the proof of Theorem 3,
chosen as to ensure Pr

r←Un

[Ext(r) ̸= ⊥] = Pr
r←Un

[h∗(Encr(0)) ̸= h∗(Encr(1))] ≥ 1
2 .

When the bit encryption (resp. commitment, secret sharing, DP mechanism) is
computationally efficient (in n), our bit extractor is efficient too. This means that
even computationally secure analogs of encryption (commitment, secret sharing,
DP mechanism) imply efficient, statistically secure weak bit extraction.

Remark 2. As we mentioned, the major weakness of our weak bit extraction
definition comes from the fact that the non-triviality condition Pr

r←R
[Ext(r) ̸=

⊥] ≥ τ is only required for R ≡ Un. Unfortunately, we observe that the analog
of Theorem 4.(a)-(c) is no longer true if we require the extraction non-triviality
to hold for all R ∈ Rn. Indeed, this stronger notion of (Rn, δ, τ)-secure weak
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bit extraction clearly implies traditional (Rn, 1 + δ − τ)-secure bit extraction
(by mapping ⊥ to 1). On the other hand, Dodis and Spencer [DS02] gave an
example of a source Rn for which, for any ε > 0, there exists (Rn, ε)-secure bit
encryption (and hence, weak commitment and 2-secret sharing) scheme, but no
(Rn, 1−21−n/2)-secure bit-extraction. Thus, the only analogs of Theorem 4.(a)-
(c) we could hope to prove using the strengthened notion of weak bit extraction
would have to satisfy τ ≤ δ + 21−n/2, which is not a very interesting weak bit
extraction scheme (e.g., if δ is “negligible”, then the extraction succeeds with
“negligible” probability as well). 9

5 Privacy with Several Typical Imperfect Sources

Now we define several imperfect sources Rn: the (k, n)−source [CG88], n-bit
(k,m)-block source [CG88], n-bit γ-Santha-Vazirani (SV) source [SV86], and
(γ, b, n)-Bias-Control Limited (BCL) source [Dod01] below. Then we prove all
these sources are separable. Based on this result, we show they are all expressive.
Afterwards, we study the impossibility of traditional and differential privacy with
weak, block and BCL sources, and explain why the SV source does not work.
Finally, we compare the impossibility of traditional and differential privacy.

Definition 10. The (k, n)-source (or n-bit weak source with min-entropy at
least k) is defined by Weak(k, n)

def
= {R | H∞(R) ≥ k,where R is over {0, 1}n}.

Block sources are generalizations of weak sources, allowing n/m blocks R1, . . . ,
Rn/m each having k fresh bits of entropy.10

Definition 11. Let m divide n, and R1, . . . , Rn/m be a sequence of Boolean
random variables over {0, 1}m. A probability distribution R = (R1, . . . , Rn/m)
over {0, 1}n is an n-bit (k,m)-block distribution, denoted by Block(k,m, n), if
for all i ∈ [n/m] and for every s1, . . . , si−1 ∈ {0, 1}m, we have

H∞(Ri | R1 . . . Ri−1 = s1 . . . si−1) ≥ k.

We define the n-bit (k,m)-block source Block(k,m, n) to be the set of all n-bit
(k,m)-block distributions.

Hence, weak sources correspond to m = n (i.e., one block). From the other
extreme, SV sources as shown in Definition 12 correspond to 1-bit blocks (i.e.,
m = 1). In this case, it is customary to express the imperfectness of the source as
the function of its “bias” γ instead of min-entropy k. Of course, for 1-bit random
variables bias and min-entropy are related by 2−k = (1 + γ)/2.
9 For differential privacy (part (d)), we do not have an analog of the counter-example

in [DS02], and anyway the value τ = O(1/ρ) ≪ δ = O(ε) (so no contradiction). Of
course, this does not imply that a stronger bit extraction result should be true; only
that it is not definitely false.

10 For consistency with prior work, we only assume that Ri has k fresh bits conditioned
on the prior blocks, but our impossibility results easily extend to the case when we
condition on both the past and the future blocks.
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Definition 12. Let r1, . . . , rn be a sequence of Boolean random variables and
0 ≤ γ < 1. A probability distribution R = (r1, . . . , rn) over {0, 1}n is an n-bit
γ-Santha-Vazirani distribution, denoted by SV (γ, n), if for all i ∈ {1, . . . , n} and
every string s ∈ {0, 1}i−1, 1−γ

2 ≤ Pr[ri = 1 | r1 . . . ri−1 = s] ≤ 1+γ
2 holds. We

define the n-bit γ-SV source SV(γ, n) to be the set of all n-bit γ-SV distributions.

Finally, we define BCL sources [Dod01].

Definition 13. Assume that 0 ≤ γ < 1. The (γ, b, n)-Bias-Control Limited
(BCL) source BCL(γ, b, n) generates n bits r1, . . . , rn, where for all i ∈ {1, . . . , n},
the value of ri can depend on r1, . . . , ri−1 in one of the following two ways:
(a) ri is determined by r1, . . . , ri−1, but this can happen for at most b bits. This

rule of determining a bit is called an intervention.
(b) 1−γ

2 ≤ Pr[ri = 1 | r1r2 . . . ri−1] ≤ 1+γ
2 .

Every distribution over {0, 1}n generated from BCL(γ, b, n) is called a (γ, b, n)-
BCL distribution BCL(γ, b, n).

In particular, if b = 0, BCL(γ, b, n) degenerates into SV(γ, n) [SV86]; if γ = 0,
it yields the sequential-bit-fixing source of Lichtenstein, Linial, and Saks [LLS89].

5.1 Separability Results

In the following, we propose that the above sources are separable. It should be
noted that: (a) The results for the weak and SV sources are implicitly known;
(b) The BCL source was not considered before, but it is not hard to prove it-
s separability given careful application of prior work; (c) The separability of
the block source is new. It was not considered before because the SV source is
a block source with each block of length 1, and [MP90,DOPS04] showed tradi-
tional privacy impossible even with the SV source (hence with the block source).
But in light of [DLMV12], where differential privacy is possible with the SV
source, we find it important to precisely figure out the separability of the block
source. A naive approach would be to employ the so called γ-biased half-space
source (see [DY14]), introduced by [RVW04] and [DOPS04], which is both γ-SV
and (m− log 1+γ

1−γ ,m)-block sources. We can easily conclude that (1) SV(γ, n) is

(t, γ
2t+1 )−separable, and (2) Block(k,m, n) is (t, 2m−k−1

2t+1·(2m−k+1)
)−separable. How-

ever, these results are somewhat sub-optimal. Instead, we introduce a new sep-
arability bound for block sources in Lemma 2 (b), and use it to get an improved
result about the SV sources as well (see [DY14] for the proof).

Lemma 2.
(a) Assume that k ≤ n − 1. Then Weak(k, n) is (t, 1)−separable when k ≤

n − t − 1, and (t, 2n−t−k−1)−separable when n − t − 1 < k ≤ n − 1. In
particular, it’s (t, 1

2 )−separable when k ≤ n− t.

(b) Block(k,m, n) is
(
t, 1

1+2t+1·
(

2k−1

2m−2k

))−separable. In particular, it is (t, 1/(1+

22+t+k−m))−separable when k ≤ m− 1 (and, hence, (t, 1
2 )−separable when

k ≤ m− t− 2).
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(c) SV(γ, n) is (t, γ
2t )−separable.

(d) BCL(γ, b, n) is (t, 1− 2t+2

(1+γ)b
)−separable. In particular, it is (t, 1

2 )−separable
for b ≥ t+3

log(1+γ) = Θ( t+1
γ ).

5.2 Implications to Traditional and Differential Privacy

Impossibility of Traditional Privacy. From Lemma 2 and Corollary 1
(a)-(d), we conclude:

Theorem 5. For the following values of δ, shown in Table 1, no (Rn, δ)−secure
cryptographic primitive P exists, where Rn ∈ {Weak(k, n),Block(m− 1,m, n),
SV(γ, n),BCL(γ, b, n)} and P ∈ {bit extractor, bit encryption scheme, weak bit
commitment, bit T -secret sharing}.

XXXXXXXRn

P bit extractor
bit encryption

scheme

weak bit

commitment
bit T -secret sharing

Weak(k, n) 1, if k ≤ n− 2 1, if k ≤ n− 2 1, if k ≤ n− 3 1, if k ≤ n− log T − 2

Weak(n− 1, n) 1
2

1
2

1
4

1
2T

Block(m− 1,m, n) 1
5

1
5

1
9

1
4T+1

SV(γ, n) γ
2

γ
2

γ
4

γ
2T

BCL(γ, b, n) 1
2 , if b ≥ 4

log(1+γ)
1
2 , if b ≥ 4

log(1+γ)
1
2 , if b ≥ 5

log(1+γ)
1
2 , if b ≥ log T+4

log(1+γ)

Table 1: Values of δ for which no (Rn, δ)−secure cryptographic primitive P exists.

We notice that, while the impossibility results for the block and BCL sources
are new, the prior work of [MP90,DOPS04] already obtained similar results for
the weak and SV sources. However, our results still offer some improvements
over the works of [MP90, DOPS04]. First, unlike the work of [MP90], our dis-
tinguisher is efficient (see Remark 1), ruling out even computationally secure
encryption, commitment, and secret sharing schemes. Second, unlike the work
of [DOPS04], our lower bound on δ does not depend on the sizes of ciphertex-
t/commitment/shares. In particular, while [DOPS04] used a bit-by-bit hybrid
argument to show their impossibility results, our proof of Theorem 3 used a
more clever “universal hashing trick”. More importantly, instead of focusing the
entire proof on some specific weak/block/SV sources [MP90,DOPS04], our im-
possibility results for such sources were obtained in a more modular manner,
making these proofs somewhat more illuminating.

Impossibility of Differential Privacy with the Weak, Block and
BCL sources. Now we apply the impossibility results of differential privacy
to the sources Weak(k, n), Block(k,m, n), and BCL(γ, b, n). In particular, by
combining Corollary 1 (e.2) with Lemma 2 (a), (b), and (d), respectively, we get

Theorem 6. For the following sourcesRn, no (Rn, ε)−differentially private and
(Un, ρ)-accurate mechanisms for the Hamming weight queries exist:
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(a) Weak(k, n) where k ≤ n− log(ερ)− 6;
(b) Block(k,m, n) where k ≤ m− log(ερ)− 8;
(c) BCL(γ, b, n) where b ≥ log(ερ)+9

log(1+γ) = Ω( log(ερ)+1
γ ).

We discuss the (non-)implications to the SV source below, but notice the strength
of these negative results the moment the source becomes a little bit more “ad-
versarial” as compared to the SV source. In particular, useful mechanisms in
differential privacy (called “non-trivial” by [DLMV12]) aim to achieve utility ρ
(with respect to the uniform distribution) which only depends on the differ-
ential privacy ε, and not on the size N of the database D. This means that
the value log(ερ) is typically upper bounded by some constant c = O(1). For
such “non-trivial” mechanisms, our negative results say that differential privacy
is impossible with (1) weak sources even when the min-entropy k = n − O(1);
(2) block sources even when the min-entropy k = m − O(1); (3) BCL sources
even when the number of interventions b = Ω(1). So what prevented us from
strong impossibility for the SV sources, as is expected given the feasibility results
of [DLMV12]? The short answer is that the separability of the SV sources given
by Lemma 2 (c) is just not good enough to yield very strong results. We explain
it in more detail in [DY14].

5.3 Comparing Impossibility Results for Traditional and Differential
Privacy

In this section, we compare the impossibility of traditional privacy and differ-
ential privacy (see Table 2). For traditional privacy, we consider bit extractor,
bit encryption scheme, weak bit commitment, and bit T -secret sharing (i.e., set
T = 2 for concreteness). We observe that the impossibility results for differential
privacy are only marginally weaker than those for traditional privacy.

Source Traditional Privacy δ Differential Privacy ε & Utility ρ

Block(k,m, n) Impossible if δ ≤ 1
9 , even if k = m− 1 Impossible if k ≤ m− log(ερ)−O(1)

SV(γ, n) Impossible if δ = O(γ)
Impossible if ρ = O( 1

ε ), even for Un

(Possible if ρ = poly1/(1−γ)(
1
ε )≫

1
ε )

BCL(γ, b, n)
Impossible if δ = O(γ), even if b = 0;

Impossible if δ ≤ 1
2 and b = Ω( 1

γ )
Impossible if b = Ω(

log(ερ)+1
γ )

Table 2: Comparison about the Impossibility of Traditional Privacy and Differential Privacy.

In particular, while a very “structured” (and, hence, rather unrealistic) SV
source is sufficient to guarantee loose, but non-trivial differential privacy, with-
out guaranteeing (strong-enough) traditional privacy, once the source becomes
more realistic (e.g., number of interventions b becomes super-constant, or one
removes the conditional entropy guarantee within different blocks), both notion-
s of privacy become impossible extremely quickly. In other words, despite the
surprising feasibility result of [DLMV12] regarding differential privacy with SV
sources, the prevalent opinion that “privacy is impossible with realistic weak
randomness” appears to be rather accurate.
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