
Cryptography from Compression Functions:
The UCE Bridge to the ROM

Mihir Bellare1, Viet Tung Hoang1, and Sriram Keelveedhi

Dept. of Computer Science and Engineering, University of California San Diego, USA.

Abstract. This paper suggests and explores the use of UCE security for
the task of turning VIL-ROM schemes into FIL-ROM ones. The benefits
we offer over indifferentiability, the current leading method for this task,
are the ability to handle multi-stage games and greater efficiency. The
paradigm consists of (1) Showing that a VIL UCE function can instan-
tiate the VIL RO in the scheme, and (2) Constructing the VIL UCE
function given a FIL random oracle. The main technical contributions
of the paper are domain extension transforms that implement the sec-
ond step. Leveraging known results for the first step we automatically
obtain FIL-ROM constructions for several primitives whose security no-
tions are underlain by multi-stage games.Our first domain extender ex-
ploits indifferentiability, showing that although the latter does not work
directly for multi-stage games it can be used indirectly, through UCE, as
a tool for this end. Our second domain extender targets performance. It is
parallelizable and shown through implementation to provide significant
performance gains over indifferentiable domain extenders.

1 Introduction

Two forms of the random oracle model (ROM) of BR [9] have emerged, namely
the VIL-ROM and FIL-ROM. In the VIL-ROM, the random oracle, denoted RO,
is variable input length (VIL), meaning takes inputs of arbitrary length. In the
FIL-ROM, the random oracle, denoted ro, is fixed input length (FIL), meaning
only takes inputs of one, particular length. The VIL-ROM is preferable for the
design and analysis of ROM schemes and reflects the original view of BR [9]
that random oracles would be instantiated by cryptographic hash functions that,
like SHA-256, take variable length inputs. However hash functions are built in
a very structured way from their underlying compression functions. This lead
researchers beginning with Coron, Dodis, Malinaud and Puniya [14] to suggest
that it should be the compression function, rather than the hash function, that
is treated as “ideal,” leading to the FIL-ROM. Indeed, SHA-256 is built from
its compression function sha-256 in a way that renders SHA-256 subject to the
extension attack, which can lead to attacks when SHA-256 is used to instantiate
a VIL random oracle. Treating the compression function (rather than the full
hash function) as the ideal object is more reflective of the design goals and
intuition of practitioners and leads to better security.

2 Bellare, Hoang, Keelveedhi

The consensus then is that we should design schemes in the FIL-ROM. The
question is how best to do this. One option is to directly design and analyze
schemes in this model, but this is difficult and ad hoc. A better option is to
provide a construction Ero of a VIL function that can substitute a VIL RO,
meaning we would design schemes secure in the VIL-ROM as usual and then
automatically replace RO with Ero to obtain security in the FIL-ROM. We refer
to such an E as a domain extension construction or domain extender.

For this to work in some broad and useful way, we need a definition of some
property, call it X, that, if satisfied by Ero, allows the latter to securely replace
RO in the VIL-ROM and thus provide security in the FIL-ROM, for some useful
and hopefully large set of schemes that are proven secure in the VIL-ROM. The
leading proposal for X is “indifferentiability from a random oracle” as defined
by Maurer, Renner and Holenstein [19] and advocated by [14].

This paper suggests, and explores, an alternative X. We suggest that X be
the notion of UCE (Universal Computational Extractor) security defined by
BHK [6]. Our results will show both theoretical and practical benefits of X=
UCE over X= indifferentiability in this role. On the theoretical side, UCE allows
us to move from the VIL-ROM to the FIL-ROM for primitives whose security
is defined via multi-stage games, a setting where indifferentiability fails [23, 15].
On the practical side, we exhibit UCE domain extenders E that are significantly
more efficient than known indifferentiability ones, in particular parallelizable to
take advantage of modern multi-core machines, our efficiency claims being not
just asymptotic but supported by implementations and experiments. Conceived
as a way to remove random oracles, UCE now becomes a bridge to better security
in the ROM.

Limitations of indifferentiability. While indifferentiability works well in
some settings, it has two major limitations. The first is that indifferentiable-
from-RO functions do not suffice to securely replace a VIL random oracle for
primitives whose security definition is underlain by multi-stage games [23, 15].
This gap is more than academic, for we are seeing the emergence of numer-
ous primitives and security notions of practical importance whose definitions
are inherently multi-stage. Examples include Deterministic PKE (D-PKE) [5],
Message-Locked Encryption (MLE) [8], and proofs of storage. In each case there
are natural, efficient and canonical solutions in the VIL-ROM that we would like
to implement in the FIL-ROM, but indifferentiability offers no way to do this.

The second limitation of indifferentiability is performance. Typical indiffer-
entiable domain extenders iterate the compression function sequentially. This
means that instantiations are left unable to take advantage of modern multi-
core processors to provide performance gains. This reduces the potential for high
volume usage and deployment of cryptography based on compression functions.

Our perspective. We conceptualize the goal that motivated the use of in-
differentiability as aiming to design an X-secure domain extender —this being
a construction Ero that, given the FIL random oracle ro, computes a VIL, X-
secure function— for a “good” choice of X, meaning one that allows Ero to
securely replace RO in the VIL-ROM for some significant set of applications.

Cryptography from Compression Functions 3

Method Notions Performance Applications

Keyed-Indiff
UCE[Ssrs] About m/(m− n) times

All schemes in [6]
UCE[Scrs] the speed of M

AU-then-Hash UCE[Ssup]
Parallelizable MLE, key derivation,

∼ 0.4 cycles per byte storage auditing

Fig. 1. Our UCE domain extension constructions and their properties.
The second column gives the UCE notion that is achieved. M is the indifferen-
tiable domain extender used in the first construction. The numbers n and m are
the key length of the hash function and the input length of the ideal compression
function, respectively. Typically, n = 128 and m = 512.

While X=indifferentiability has been very successful in some domains, it also, as
discussed above, has important limitations. We ask if there are alternative defi-
nitions X that can overcome these limitations and complement indifferentiability
in its role.

The core limitation of indifferentiability is the inability to handle multi-
stage games. We suggest that a natural route around this is that X-security
itself be multi-stage. The particular candidate X we suggest is the UCE notion
of [6], which is indeed multi-stage. Our suggested UCE-based paradigm to move
schemes from the VIL-ROM to the FIL-ROM has two steps: (1) Show that
instantiating the VIL random oracle in the scheme with a VIL UCE function
preserves security, and (2) Implement the VIL UCE function as Ero to obtain
a FIL-ROM scheme. Prior work has already given us the first step for many
constructions: UCE-secure hash functions are shown in [6] to be able to securely
instantiate VIL random oracles for diverse multi-stage applications including the
important practical ones noted above and all examples of multi-stage schemes
listed in [23]. The missing element is UCE domain extenders E for the second
step. If we had those, we could immediately harvest the existing results to get
FIL-ROM constructions for many multi-stage primitives. The concrete quest
that emerges, then, is for UCE domain extenders.

Our results. Our core contribution is two new domain extenders for UCE
that together allow us to reach the above goals of security and speed. These
are constructions E that take a FIL random oracle ro and return a VIL, keyed
function Ero that meets UCE security notions of BHK in the FIL-ROM. (UCE
hash functions are keyed, whence the introduction of a key in this setting. Also,
UCE is not a monolithic or single security notion, but rather a framework in
which one parameterizes notions of security by classes of “sources.” Applica-
tions rely on different choices of the starting class. The framework is recalled in
Section 3. Here we will avoid the details beyond noting for which classes each of
our constructions is secure and what this entails for applications.) See Fig. 1 for
a summary of the two domain extenders and their properties.

Our first construction is generic, turning any indifferentiable domain extender
into a UCE domain extender. Given an indifferentiable domain extender M, we
show that the hash family Hhk = Mro(hk ‖ ·) is UCE-secure. The forms of UCE

4 Bellare, Hoang, Keelveedhi

for which this works are enough to prove security for all schemes listed in [6],
for example the EwH D-PKE scheme of [5], or the storage-auditing scheme used
in [23] as a counterexample for the failure of the indifferentiability framework in
multi-stage settings.

This construction illustrates what we believe is an interesting relation be-
tween UCE and indifferentiability. Indifferentiability cannot directly yield the
applications we have obtained for multi-stage primitives. However, it can be
used, in a blackbox way, to create a domain extender that meets a particular
multi-stage notion of security, namely UCE. Then, exploiting known UCE re-
sults, we can obtain FIL-ROM security for many multi-stage primitives. Thus
our construction shows how to use UCE to leverage indifferentiability to solve a
problem that indifferentiability could not solve directly.

While our first construction delivers, we believe, important advances on the
theoretical front, its performance is that of the underlying indifferentiable con-
struction. Our second construction targets speed. It follows the Carter-Wegman
paradigm [13], first using an almost-universal hash to condense the input, and
then running ro(K ‖ ·) on the result, where K is the hash key. This gives us
highly efficiently, fully parallelizable hash constructions that are not achievable
if the target is indifferentiability. In more detail, we show that if F is almost-
universal, then the hash family Hhk(x) = ro(K ‖Ffk(x)), with hk = (fk,K), is
UCE-secure. The most important application here is the message-locked encryp-
tion (MLE) scheme CE of [8]. Due to the space constraint, we leave the proofs
of our theorems to the full version [7].

General domain extension. Above we presented the domain extension prob-
lem for notion X as being to design E such that Ero is a VIL X-secure function in
the FIL-ROM. More generally, the problem is to design E such that if H is a FIL

X-secure function then EH is a VIL X-secure function. Here H can be a FIL-ROM
function, and thus the prior formulation is the special case Hhk(·) = ro(hk‖·).
Our first construction discussed above generalizes to solve this problem, letting

Hhk = MH(hk ‖ ·) where M, as before, is an indifferentiable domain extender.
Setting Hhk(·) = ro(hk‖·) recovers the result stated above. The generalization
however yields something new, namely a standard model domain extender for
UCE. This follows by letting H be a standard model FIL UCE function. This
is interesting because it shows that indifferentiability, which so far has been a
ROM notion and tool, can be leveraged to get results purely in the standard
model.

Instantiation and experimental results. We give a very fast instantiation
of F based on reduced-round AES and polynomial-based evaluation. Our con-
struction makes use of the fact that four-round AES, with the four subkeys cho-
sen uniformly and independently, is an almost-xor-universal hash [18]. We stress
that our universal hashing construction is unconditional, making no assumption
on AES. This leads to a highly efficient, parallelizable UCE-secure hash FastHash.
Our experiments show that even in the sequential setting, FastHash is about 5.3
times faster than SHA-256. When parallelism is employed, FastHash achieves a

Cryptography from Compression Functions 5

much better speedup, about 24 times faster than SHA-256. Finally, we demon-
strate the utility of FastHash by giving an extremely fast MLE scheme.

Related work. Mittelbach [21] defines restrictions on a multi-stage game so
that the indifferentiability composition theorem still holds for a subclass of indif-
ferentiable domain extenders called iterative domain extenders, and is thereby
able to show that the latter suffice for applications like D-PKE and MLE. He
also shows that if M is an iterative domain extender then Mro is UCE-secure.
In comparison, our first construction is more general in the following ways: It
is able to use any indifferentiable domain extender, and as a result our applica-
tions are able to use a broader class of domain extenders; it turns any FIL UCE
function into a VIL one; it works both in the standard model and the ROM. On
the other hand, Mittelbach’s construction is about m/(m−n) times faster than
ours, where m is the input length of the compression function, and n is the key
length.

Dodis, Ristenpart, and Shrimpton [16] define preimage-awareness (PrA) as a
strengthening of collision resistance and show that the plain Merkle-Damg̊ard is a
PrA extender. PrA can also be used in multi-stage games: Ristenpart, Shacham,
and Shrimpton [23] show how to compose a PrA-secure hash with a FIL RO to
achieve D-PKE.

Some versions of UCE are shown by [12] to be unachievable in the standard
mode if indistinguishability obfuscation for all circuits exists, but most of the
applications in [6] only need weaker versions of UCE where our domain extenders
work but the attacks in [12] do not. All versions of UCE in [6] are shown by the
latter to be achievable in the VIL-ROM, so our domain extenders achieve all the
applications in the FIL-ROM.

2 Preliminaries

Concrete security bounds are important for applications. However, notions in the
current domain, involving simulators and multiple conditions and adversaries,
are complex. The result is that when theorems are stated purely concretely, it is
hard to understand the (much more simple) conceptual import. We will try to
achieve the “best of both worlds.” We formulate definitions asymptotically. The
first cut theorem statements are asymptotic so that one can quickly see the core
implication and result. This is followed by a concrete statement with bounds.

Notation. By λ ∈ N we denote the security parameter. If n ∈ N then 1n de-
notes its unary representation. We denote the size of a finite set X by |X|, the
number of coordinates of a vector x by |x|, and the length of a string x ∈ {0, 1}∗
by |x|. We let ε denote the empty string. If x is a string then x[i] is its i-th bit
and x[1, `] = x[1] . . . x[`]. By x‖y we denote the concatenation of strings x, y. If
X is a finite set, we let x←$X denote picking an element of X uniformly at
random and assigning it to x. Algorithms may be randomized unless otherwise
indicated. Running time is worst case. “PT” stands for “polynomial-time,” whe-
ther for randomized algorithms or deterministic ones. If A is an algorithm, we

6 Bellare, Hoang, Keelveedhi

let y ← A(x1, . . . ; r) denote running A with random coins r on inputs x1, . . . and
assigning the output to y. We let y←$A(x1, . . .) be the resulting of picking r
at random and letting y ← A(x1, . . . ; r). We let [A(x1, . . .)] denote the set of all
possible outputs of A when invoked with inputs x1, We say that f : N→ R
is negligible if for every positive polynomial p, there exists np ∈ N such that
f(n) < 1/p(n) for all n > np.

Games. We use the code based game playing framework of [10]. (See Fig. 3 for
an example.) By GA1,A2,...(λ) ⇒ y we denote the event that the execution of
game G with adversaries A1, A2, . . . and security parameter λ results in output y.
We abbreviate GA1,A2,...(λ)⇒ true by GA1,A2,...(λ), the occurrence of this event
meaning that A1, A2, . . . win the game.

For concrete security assessments, let the number of queries of A to an oracle
Proc be the function QProc

A that on input λ returns the maximum number of
queries that A makes to Proc when executed with security parameter λ, the
maximum over all coins and all possible replies to queries to all oracles of A.
Time assessments are simplified by the convention that running time is that
of the game rather than merely the adversary, and we let T(GA1,A2,...) denote
the function of λ that returns the maximum execution time of game G with
adversaries A1, A2, . . . and security parameter λ, the maximum over all coins,
and the time being all inclusive, meaning the time taken by game procedures to
compute replies is included.

Random oracles. A random oracle RO : U → {0, 1}n is a procedure that
maintains a table H, initially empty, and is defined by

RO(x)

If H[x] 6= ⊥ then H[x]←$ {0, 1}n ; Return H[x]

We say that RO is variable-input length (VIL) if U = {0, 1}∗ and fixed-input
length (FIL) if there is m ∈ N such that U = {0, 1}m. Formally, any random
oracle referred to in a game should appear explicitly in the game as a procedure
defined as above, but for the same of brevity of game descriptions, we omit
writing it explicitly, instead only indicating the domain and range of each random
oracle. By convention, RO indicates a VIL random oracle, and ro a FIL random
oracle.

3 UCE framework

The Universal Computational Extractor (UCE) framework of BHK [6] is in-
tended to define security notions for families of hash functions in the standard
model, but BHK also lift this to the ROM to show its achievability there. We use
the latter with the random oracle being FIL. We note that the standard-model
definition is the special case where parties and algorithms make no queries to
the random oracle.

BHK first give a single-key version of the definition and then extend it to a
multi-key one. We will work directly with the multi-key version, calling it UCE
rather than mUCE as in [6].

Cryptography from Compression Functions 7

Function families. Our syntax for function families follows [6], in particular
allowing variable output lengths. A family of functions H specifies the following.
On input the unary representation 1λ of the security parameter λ ∈ N, key
generation algorithm H.Kg returns a key hk ∈ {0, 1}H.kl(λ), where H.kl: N →
N is the keylength function associated to H. The deterministic, PT evaluation
algorithm H.Ev takes 1λ, a key hk ∈ [H.Kg(1λ)], an input x ∈ {0, 1}∗ with
|x| ∈ H.IL(λ), and a unary encoding 1` of an output length ` ∈ H.OL(λ) to return
H.Ev(1λ,hk, x, 1`) ∈ {0, 1}`. Here H.IL is the input-length function associated to
H, so that H.IL(λ) ⊆ N is the set of allowed input lengths, and similarly H.OL
is the output-length function associated to H, so that H.OL(λ) ⊆ N is the set of
allowed output lengths. The latter allows us to cover functions of variable output
length. If H has fixed input length then let H.il denote the function such that
H.IL(λ) = {H.il(λ)} for every λ ∈ N. If H has fixed output length, define H.ol
likewise. In the ROM, we allow H.Ev access to a FIL random oracle denoted ro.
We write H.Evro to indicate explicitly that H.Ev needs access to a FIL random
oracle ro.

Framework. Let H be a family of functions. Let S be an adversary called the
source and D an adversary called the distinguisher. We associate to them and H
the game UCES,DH (λ) in the left panel of Fig. 2. Initially, the source specifies a
unary-encoded integer n ≥ 1 to indicate the number of hash keys that it wants
to use. The game then chooses a secret vector hk of n uniformly random hash
keys and grants the source access to an oracle Hash. We require that any query
(x, 1`, i) made to this oracle satisfy |x| ∈ H.IL(λ), ` ∈ H.OL(λ) and i ∈ {1, . . . , n}.
When the challenge bit b is 1 (the “real” case) the oracle responds via H.Ev under
hk[i]. When b = 0 (the “random” case) it responds via the ith random-oracle
procedure. The source then leaks a string L to its accomplice distinguisher. The
latter does get the keys hk as input and must now return its guess b′ ∈ {0, 1}
for b. The game returns true iff b′ = b, and the uce-advantage of (S,D) is defined
for λ ∈ N via

Advuce
H,S,D(λ) = 2 Pr[UCES,DH (λ)]− 1 .

If S is a class (set) of sources, we say that H is UCE[S]-secure if Advuce
H,S,D(·)

is negligible for all sources S ∈ S and all PT distinguishers D. Trivial attacks
from [6] show that UCE[S]-security is not achievable if S is the class of all PT
sources. To obtain meaningful notions of security, BHK [6] impose restrictions
on the source. There are many ways to do this; below we’ll focus on what they
call unpredictable and reset-secure sources. To discuss the concrete security of
constructions it will be useful to say that S is a N -key source if we always have
n ≤ N(λ) when (1n, t)←$ S(1λ, ε).

Unpredictable sources. A source is unpredictable if it is hard to guess the
source’s Hash queries even given the leakage, in the random case of UCE game.
Formally, let S be a source and P an adversary called a predictor. Consider
game PredPS (λ) in the middle panel of Fig. 2 associated to S, P . Given 1n and
the leakage, the predictor outputs a set Q′. The predictor wins if Q′ contains a

8 Bellare, Hoang, Keelveedhi

Game UCES,DH (λ)

(1n, t)←$ S(1λ, ε)

For i = 1, . . . , n do hk[i]←$ H.Kg(1λ)

b←$ {0, 1} ; L←$ SHash,ro(1λ, t)

b′←$Dro(1λ,hk, L) ; Return (b′ = b)

Hash(x, 1`, i)

If T [x, `, i] = ⊥ then

If b = 0 then T [x, `, i]←$ {0, 1}`

Else T [x, `, i]← H.Evro(1λ,hk[i], x, 1`)

Return T [x, `, i]

Game PredPS (λ)

(1n, t)←$ S(1λ, ε)

Q← ∅ ; L←$ SHash,ro(1n, t)

Q′←$ P ro(1λ, 1n, L)

Return (Q′ ∩Q 6= ∅)

Hash(x, 1`, i)

Q← Q ∪ {x}
If T [x, `, i] = ⊥ then T [x, `, i]←$ {0, 1}`

Return T [x, `, i]

Game ResetRS (λ)

U ← ∅ ; (1n, t)←$ S(1λ, ε)

L←$ SHash,ro(1n, t) ; b←$ {0, 1}
If b = 0 then // reset the array T

For (x, `, i) ∈ U do T [x, `, i]←$ {0, 1}`

b′←$RHash,ro(1λ, L) ; Return (b = b′)

Hash(x, 1`, i)

If T [x, `, i] = ⊥ then T [x, `, i]←$ {0, 1}`

U ← U ∪ {(x, `, i)} ; Return T [x, `, i]

Fig. 2. Games UCE (top), Pred (bottom left), and Reset (bottom right)
to define UCE security. Here ro : {0, 1}ro.il(λ) → {0, 1}ro.ol(λ) is a random
oracle.

Hash-query of the source. For λ ∈ N we let

Advpred
S,P (λ) = Pr[PredPS (λ)] .

We require that the size of Q′, as well as the number of queries that P makes to
ro, be bounded by a polynomial (allowed to depend on P) in λ. We say that S is

computationally (respectively, statistically) unpredictable if Advpred
S,P (·) is negligi-

ble for all PT (respectively, all, even computationally unbounded) predictors P .
We let Scup be the class of computationally unpredictable PT sources, and Ssup
the class of statistically unpredictable PT sources. The corresponding security
notions for H are UCE[Scup] and UCE[Ssup].

Reset-secure sources. We recall the second restriction on sources from [6],
called reset security. Let S be a source and R an adversary called a reset adver-
sary. The source again is executed with its Hash being a random oracle. The reset
adversary is either given access to the same random oracle or to an independent
one. The requirement is that it should not be able to tell which. Formally, con-
sider game ResetRS (λ) at the right panel of Fig. 2 associated to S,R. For λ ∈ N
we let

Advreset
S,R (λ) = 2 Pr[ResetRS (λ)]− 1 .

We require that the number of queries that P makes to Hash and ro be bounded
by a polynomial (allowed to depend on R) in λ. We say S is computationally
(respectively, statistically) reset-secure if Advreset

S,R (·) is negligible for all PT (re-
spectively, all, even computationally unbounded) reset adversaries R. We let Scrs
be the class of all PT computationally reset-secure sources, and Ssrs the class of

Cryptography from Compression Functions 9

Game IndiffA
M,M

(λ)

b←$ {0, 1} ; st← ε

b′←$APrim,Func(1λ)

Return (b = b′)

Func(x)

If b = 1 then return Mro(1λ, x)

Else return RO(x)

Prim(x)

If b = 1 then return ro(x)

(y, st)←$ M
RO

(1λ, st, x)

Return y

Fig. 3. Game Indiff defining indifferentiability. Here RO : {0, 1}∗ →
{0, 1}M.fol(λ) and ro : {0, 1}M.pil(λ) → {0, 1}M.pol(λ) are random oracles.

all PT statistically reset-secure sources. The corresponding security notions for
H are UCE[Scrs] and UCE[Ssrs].
Relations and achievability. Reset security is a relaxation of unpredictabil-
ity. In particular BHK [6] show that UCE[Scrs]-security of H implies UCE[Scup]-
security of H and UCE[Ssrs]-security of H implies UCE[Ssup]-security of H. The
converses are not necessarily true. BFM [12] show that if indistinguishability
obfuscation for all circuits is possible then UCE[Scrs]-security is not achievable
in the standard model. In the ROM however BHK [6] show that both UCE[Scrs]-
security and UCE[Ssrs]-security are achievable.

4 UCE from indifferentiability

We first review necessary definitions of the indifferentiability framework [19].

Indifferentiability. We consider an algorithm M that, given a FIL random
oracle ro, attempts to have input-output behavior approximating that of a VIL
random oracle. Indifferentiability provides one definition of what it means for M
to succeed at this task. Consider game IndiffA

M,M
(λ) of Fig. 3 associated to M, an

algorithm M called a simulator, and an adversary A. In the first world (b = 1),
oracle Prim implements the FIL random oracle ro while oracle Func implements
the construction, namely Mro, that aims to approximate a VIL random oracle.
In the second world (b = 0), oracle Func implements a true VIL random oracle
RO while replies to Prim queries are determined by the simulator that itself has
access to RO. The simulator is stateful, its state st being maintained by the game.
The input x to M has arbitrary length, the oracle provided to M maps M.pil(λ)-
bit inputs to M.pol(λ)-bit outputs, and M returns outputs of length M.fol(λ),
where M.pil,M.pol,M.fol : N→ N are functions associated to M called the input-
length of M’s primitive, output-length of M’s primitive, and output-length of M’s
functionality, respectively. For λ ∈ N we let

Advindiff
M,M,A

(λ) = 2 Pr[IndiffA
M,M

(λ)]− 1 .

We require that the number of queries that A makes to its oracles be bounded
by a polynomial (allowed to depend on A) in λ. Then we say that M is a pseu-
dorandom oracle (PRO) if there is a PT simulator M such that Advindiff

M,M,A
(·) is

negligible for every (even computationally unbounded) adversary A.
For concrete security assessments we let QM,q be the function that on input λ

returns the maximum, over all x1, . . . , xq ∈ {0, 1}M.pil(λ), of the total number of

10 Bellare, Hoang, Keelveedhi

oracle queries that M makes when run sequentially on inputs x1, . . . , xq, starting
from state ε. Also let TM,q be the function that on input λ returns the maximum,

over all x1, . . . , xq ∈ {0, 1}M.pil(λ), of the total running time of M when run
sequentially on inputs x1, . . . , xq, starting from state ε, the time for an oracle
query being taken as linear in the length of the query and reply.

The Keyed-Indiff extender. Let H be a FIL function family that is UCE[Sxxx]-
secure for some xxx. We want to build a VIL family of functions H that is also
UCE[Sxxx]-secure. Our construction uses as a tool any PRO M with M.pil =
H.il and M.pol = H.ol. We associate to M and H the family of functions H =
Keyed-Indiff[M,H] defined as follows. We let H.IL = N, meaning H is VIL. The
output length of H is H.ol = M.fol. We let H.Kg = H.Kg, meaning keys for H
are the same as for H. Finally for any λ ∈ N, any hk ∈ [H.Kg(1λ)] and any
x ∈ {0, 1}∗ we let

H.Evro(1λ,hk, x, 1H.ol(λ)) = MH.Ev
ro
(1λ,hk,·,1H.ol(λ))(1λ, x) . (1)

This needs some explanation. Begin by ignoring ro, so that we are looking at a
standard-model construction. Recall that M takes an oracle mapping {0, 1}M.pil(λ)

to {0, 1}M.pol(λ). In the indifferentiability setting, this is a random oracle. Our
construction however does something different. It implements M’s oracle via the
given UCE[Sxxx]-secure family H. The key hk is held fixed. Our claim will be that
H is itself UCE[Sxxx]-secure for xxx ∈ {crs, srs}. Something we consider interest-
ing is that this result is entirely standard model, yet uses ROM theory, in the
form of a PRO, for the construction and proof. Finally the ro in the construction
simply reflects that the result lifts to the ROM. In case H was a ROM family of
functions, H will be as well. This extension, together with known applications of
UCE[Sxxx]-security, allow us to implement in the FIL-ROM many constructions
given in the VIL-ROM.

Result. We view Keyed-Indiff[M, ·] as a domain extension transform taking a
FIL family H and returning a VIL family H = Keyed-Indiff[M,H]. The following
says that this transform preserves UCE[Sxxx]-security for xxx ∈ {crs, srs}.

Theorem 1. Let H be a hash function family. Let M be a PRO such that M.pil =
H.il and M.pol = H.ol. Let H = Keyed-Indiff[M,H]. Let xxx ∈ {crs, srs}.

Asymptotic result: If H is UCE[Sxxx]-secure then so is H.

Concrete result: Let M be a simulator for M. Let S be an N -key source, D a
distinguisher and R a reset adversary. Then we construct an N -key source S,
indifferentiability adversaries A,B and a reset adversary R such that

Advuce
H,S,D(λ) ≤ Advuce

H,S,D
(λ) +N(λ) · Advindiff

M,M,A
(λ) (2)

Advreset
S,R

(λ) ≤ Advreset
S,R (λ) + 3N(λ) · Advindiff

M,M,B
(λ) (3)

for all λ ∈ N. Furthermore:

Cryptography from Compression Functions 11

QPrim
A = 0; QFunc

A = QFunc
B = QHash

S ; QPrim
B = QHash

R

Qro
R = Qro

R
; QHash

R = QM,q where q = QHash
R

; Qro
S

= Qro
S

QHash
S

is the number of oracle queries of M in the execution of UCES,DH

T(IndiffA
M,M

) = T(UCES,DH); T(UCES,D
H

) = T(UCES,DH)

T(ResetRS) = T(ResetR
S

) + TM,q where q = QHash
R

T(IndiffB
M,M

) = T(ResetRS) + T(ResetR
S

) ut

We emphasize that Keyed-Indiff works in both the standard and the random
oracle models. In particular if FIL family H is UCE[Sxxx]-secure in the standard
model, then so is Keyed-Indiff[M,H], for xxx ∈ {crs, srs}. This resolves an open
problem from [6] to construct UCE domain extenders in the standard model.

Instantiation. To obtain a concrete result that can be used in applications,
we now instantiate H above in a simple way, namely (1) H.Kg(1λ) returns

hk←$ {0, 1}λ, and (2) H.Evro(1λ,hk, x, 1H.ol(λ)) returns ro(hk ‖x). This is shown
by BHK [6] to be UCE secure in the FIL-ROM for all forms of UCE they define.
From Theorem 1 we obtain the following.

Theorem 2. Let H be constructed as above. Let M be a PRO such that M.pil =
H.il and M.pol = H.ol. Let H = Keyed-Indiff[M,H]. Let xxx ∈ {crs, srs}.

Asymptotic result: H is UCE[Scrs]-secure.

Concrete result: Let M be a simulator for M. Let S be an N -key source and D
a distinguisher. We can construct a reset adversary R and an indifferentiability
adversary A such that

Advuce
H,S,D(λ) ≤ Advreset

S,R (λ) + 4N(λ) · Advindiff
M,M,A

(λ) +
2N(λ) · q(λ) +N2(λ)

2λ

for every λ ∈ N. Furthermore,

QPrim
A = QHash

S ; QFunc
A = Qro

R = Qro
D; and QHash

R = QM,q, where q = Qro
D

T(IndiffA
M,M

) = T(ResetRS) = T(UCES,DH) + TM,q, where q = Qro
D ut

Theorem 2 is the one that can be used for the applications, namely to ob-
tain FIL-ROM constructions for (possibly multi-stage) primitives that have been
constructed using a VIL UCE function, such as those in BHK [6]. We simply
instantiate the VIL UCE function with H given by Theorem 2. The broader
paradigm to move from the VIL-ROM to the FIL-ROM is thus the following.
Take a primitive with a VIL-ROM proof, and show that the random oracle can
be UCE-instantiated. Then apply Theorem 2.

5 UCE from universal hashing

In this section, we show how almost universal hash functions can be used to
build a domain extender for UCE.

12 Bellare, Hoang, Keelveedhi

H.Kg(1λ)

fk←$ F.Kg(1λ) ; hk←$ H.Kg(λ)

hk ← (hk, fk) ; Return hk

H.Evro(1λ,hk, x, 1`)

(hk, fk)← hk ; u← F.Ev(1λ, fk, x, 1F.ol(λ))

y ← H.Ev
ro

(1λ, hk, u, 1`) ; Return y

Fig. 4. The H = AU-then-Hash[F,H] construction, built from a AU hash
F and a FIL UCE-secure hash H.

AU hash families. For any function family F let

Coll1F(λ,m) = max
|y|=F.ol(λ),|x|≤m

{
Pr

fk←$ F.Kg(1λ)
[y = F.Ev(1λ, fk, x, 1F.ol(λ))]

}
,

and define Coll2F(λ,m0,m1) as

max
{

Pr
fk←$ F.Kg(1λ)

[F.Ev(1λ, fk, x0, 1
F.ol(λ)) = F.Ev(1λ, fk, x1, 1

F.ol(λ))]
}

;

the maximum is taken over distinct strings x0, x1 such that each |xi| ≤ mi. Let

CollF(λ,m0,m1) = max
{
Coll2F(λ,m0,m1),Coll1F(λ,min{m0,m1})

}
.

A hash family F is almost universal (AU) if f(λ) = CollF(λ,m0,m1) is negli-
gible for all polynomials m0,m1. This generalizes the Carter-Wegman notion of
universal hashing [13].

A similar definition is given in [11], which is very useful when one needs to
work with arbitrarily large input and short hash keys. In Section 6, we’ll show
how to concretely instantiate a very fast AU hash for λ = 128, from reduced-
round AES and a classic polynomial-based universal hash. Define

Advcoll
F (λ, p, σ) = max

`≤p,`′≤p,m1+···+m`≤σ,m′
1+···+m′

`′≤σ

{∑̀
i=1

`′∑
j=1

CollF(λ,mi,m
′
j)
}
.

If F is AU then Advcoll
F (λ, p, σ) is negligible for all polynomials p and σ: since

Coll(λ, ·, ·) is increasing in both arguments, it follows that Advcoll
F (λ, p, σ) ≤

p2CollF(λ, σ, σ).

UCE extender from an AU hash. We now describe a UCE extender from
AU hash. Intuitively, one first uses the AU hash to condense the input, and then
applies the resulting string to the (keyed) compression function. Formally, let
H be a hash function family of fixed input length, and F be a universal hash
function family with F.ol = H.il and F.IL = N. Consider the hash function family
H = AU-then-Hash[F,H] as given in Fig. 4, with H.OL = H.OL and H.IL = N. The
construction essentially follows the widely used Carter-Wegman paradigm [24]
Below, we show that AU-then-Hash[F, ·] is also a domain extender for UCE[Ssup]
security.

Theorem 3. Let H be a function family of fixed input length, and F be an AU
hash function family with F.ol = H.il and F.IL = N. Let H = AU-then-Hash[F,H].

Cryptography from Compression Functions 13

Asymptotic result: If H is UCE[Ssup]-secure then so is H.

Concrete result: Let S be a N -key source, D a distinguisher, and P a predictor.
We can construct a source S, a distinguisher D, and a predictor P such that

Advuce
H,S,D(λ) ≤ Advuce

H,S,D
(λ) + Advcoll

F (λ, p, σ) (4)

Advpred

S,P
(λ) ≤

√
2qAdvcoll

F (λ, p, σ) +
√
qAdvpred

S,P (λ) (5)

where p = QHash
S , q is the maximum of the size of P ’s output in the execution of

PredP
S

, and σ is the maximum of the total length of Hash queries that S makes

in UCES,DH . Furthermore,

Qro
S

= Qro
S ; QHash

S
= QHash

S ; Qro
D

= Qro
D

T(UCES,D
H

) = T(UCES,DH), and P outputs a set of size at most QHash
S ut

We emphasize that AU-then-Hash works in both the standard and the random-
oracle models. In particular If FIL family H is UCE[Ssup]-secure in the standard
model then so is AU-then-Hash[F,H].

The intended applications for the AU-then-Hash[F, ·] transform, as listed in
Fig. 1, use only a single hash key, that is, they only need UCE[Ssup∩Sone] security,
where Sone is the class of 1-key sources. AU-then-Hash[F, ·] is also a domain
extender for UCE[Ssup ∩ Sone] security because the value of N is preserved.

Instantiation. So far we have assumed the existence of a fixed-input-length
UCE-secure hash H. In the full version, we’ll construct hash family Hrom, of
variable output length, in the ROM, by using a pseudorandom permutation
(PRP) E, which will be instantiated by AES. We conclude the following.

Theorem 4. Let F be an AU hash function family with F.ol = Hrom.il and F.IL =
N. Let H = AU-then-Hash[F,Hrom].

Asymptotic result: H is UCE[Ssup]-secure.

Concrete result: Let S be an N -key source and D a distinguisher. We can con-
struct a predictor P and a PRP adversary A such that

Advuce
H,S,D(λ) ≤ 2

√
q(λ)Advcoll

F (λ, p(λ), σ(λ)) +
√
q(λ)Advpred

S,P (λ) +

2p(λ) · Advprp
E,A(λ) +

2s2(λ) +N2(λ) + q2(λ)

2λ

for every λ ∈ N, where p = QHash
S ; q = Qro

S + Qro
D; σ and s are the maximum of

the total length of the first components and the total number of λ-bit blocks in
the second components, respectively, of Hash queries in the execution of UCES,DH .
Furthermore

QLR
A is maximum of the number of λ-bit blocks in the second component of

a Hash query in UCES,DH

T(PRPAE) = T(UCES,DH), and P outputs a set of size at most QHash
S ut

14 Bellare, Hoang, Keelveedhi

6 Fast, parallelizable AU hash from reduced-round AES

We now show how to construct a fast parallelizable AU hash, which we call Faes4.
In this section, let n = 128, C = 215, and let r be a small integer, say r = 5. All
function families in this section are concrete; the security parameter λ is hidden
in the formulas, but implicitly, it is λ = 128. For any integer m, let ‖m‖n denote
bm/nc + 1. We’ll first describe two building blocks: Fpoly, a polynomial-based
AU hash that operates on {0, 1}∗, and Ftree, a highly efficient AU hash based
on reduced-round AES that operates on {x ∈ ({0, 1}n)+ : |x| ≤ 2rn}. We then
show how to combine them to produce a highly efficient AU hash Faes4 whose
domain is {0, 1}∗.

The Fpoly construction. We now describe a variant of a classic polynomial-
based universal hash [13], which we call Fpoly. Let Fpoly.ol = n. As described in
the pseudocode below, the key fk is picked as a random element of GF(2n). To
hash, we parse the input string x ∈ {0, 1}∗ to a unique sequence (w0, . . . , wm),
where each wi ∈ GF(2n) and wm is not the zero element. This is performed by
(i) parse v0 ‖ · · · ‖ vm ← x ‖ 10s1, where s ∈ N is the smallest number such that
s+ |x| ≡ −2 (mod n) and each |wi| = n, and (ii) let each wi be the encoding of
vi in GF(2n). Then, the hash is computed as

∑m
i=0 wi · fk

i.

Fpoly.Kg()

fk←$ GF(2n)

Return fk

Fpoly.Ev(fk, x, 1n)

(w0, . . . , wm)← x ; y ← w0

For i = 1 to m do y ← y + wi · fki

Return y

Proposition 5. (a) For any m ∈ N, we have Coll1Fpoly
(m) ≤ ‖m‖n/2n, and

(b) for any m0,m1 ∈ N, we have Coll2Fpoly
(m0,m1) ≤ max{‖m0‖n, ‖m1‖n}/2n.

The Ftree construction. Let E : {0, 1}4n×{0, 1}n → {0, 1}n denote a function
based on 4-round AES which works as follows. Parse the key K as the concate-
nation of n-bit substrings S0, S1, S2, S3, and let S4 = 0n. The input is initially
xored with S0, and each Si is used as the subkey of the i-th AES round, for
i ∈ {1, 2, 3, 4}. One can build from E a hash of domain {n, 2n, 3n, . . . , 2rn} as
follows. Let Halve denote the following operation. On input (K,x) ∈ {0, 1}4n ×
({0, 1}n)∗, we partition x into n-bit blocks x1 · · ·xm. For every two consecutive
blocks x2i−1 and x2i, we compute yi ← EK(x2i−1)⊕x2i. If m is odd then let
ydm/2e ← xm. Finally output y1 ‖ · · · ‖ ydm/2e. Consider the following tree-hash
construction Ftree, with Ftree.IL = {n, 2n, 3n, . . . , 2rn} and Ftree.ol = n.

Ftree.Kg()

For i = 1 to r do Ki←$ {0, 1}4n

hk ← (K1, . . . ,Kr) ; Return fk

Ftree.Ev(fk, x, 1n)

z0 ← x ; (K1, . . . ,Kr)← fk

For i = 1 to r do zi ← Halve(Ki, zi−1)

Return zr

Cryptography from Compression Functions 15

Minematsu and Tsunoo [20] show that

Coll2Ftree(m0,m1) ≤ Cr

2n
(6)

for any m0,m1 ≤ 2r. We stress that the result in [20] makes no assumption on
AES. This is based on the fact that four-round AES, with the subkeys chosen
uniformly and independently, is an almost-xor-universal hash [18].

Combining Ftree and Fpoly. One can “cascade” Ftree and Fpoly to produce a hash
Ffast of domain {0, 1}∗ as follows.

Ffast.Kg()

fk1←$ Ftree.Kg()

fk2←$ Fpoly.Kg()

Return (fk1, fk2)

Ffast.Ev(fk, x, 1n)

(fk1, fk2)← fk

y ← Shrink(fk1, x)

z ← Fpoly.Ev(fk2, y, 1
n)

Return z

Shrink(fk1, x)

w1w2 · · ·wk ← x ; uk ← wk
For i = 1 to k − 1 do

ui ← Ftree.Ev(fk1, wi, 1
n)

y ← u1 ‖ · · · ‖uk ; Return y

In the procedure Shrink above, we parse a string x as the concatenation of
substrings w1, . . . , wk, where the length of each wi, with i ≤ k−2, is exactly 2rn,
and |wk−1| > 0 is a multiple of n but does not exceed 2rn, and 0 ≤ |wk| < n−1.
Note that on a large input x, the hash F will make at most (1− 2−r)dx/ne calls
on E, and then run Fpoly on a string of length about |x|/2r.
Proposition 6. For any m0,m1 ∈ N, we have

CollFfast
(m0,m1) ≤ Cr + max{‖m0‖n, ‖m1‖n}

2n

Using with AU-then-Hash. The hash Ffast can’t be used directly with the
AU-then-Hash transform in Section 5, because the term (qAdvcoll

Ffast
(p, σ))1/2 in

Theorem 3 is about (
√
qpσ + Crp

√
q)/2n/2, which is inferior. The reason for

this is that the output length of this hash is only n bits, which is too short. We
therefore need to “double” the output length. Formally, given a hash family F,
the family F = Double[F], with F.IL = F.IL and F.ol = 2F.ol, is constructed as
follows.

F.Kg()

fk1, fk2←$ F.Kg()

fk ← (fk1, fk2) ; Return fk

F.Ev(fk, x, 1F.ol)

(fk1, fk2)← fk

For i = 1 to 2 do yi ← F.Ev(fki, x, 1
F.ol)

Return y1 ‖ y2

Let Faes4 denote Double[Ffast]. In Proposition 7 below, the term (qAdvcoll
Ffast

(p, σ))1/2

in Theorem 3 is bounded by (Crp
√

2q + 2(‖σ‖n + p)
√
pq)/2n, which is good.

Proposition 7. For any p and σ, we have Advcoll
Faes4

(p, σ) ≤ 2C2r2p2+4p(‖σ‖n+p)2
22n .

Key length. The key material of FastHash = AU-then-Hash[Faes4,Hrom] is rel-
atively large: 672B for r = 5. It’s slightly bigger than that of some widely used
schemes such as RSA [22] (256B). This is acceptable because the key is used as
a public parameter.

16 Bellare, Hoang, Keelveedhi

Hash function Setting
Speed (cycles per byte)
1MB 16MB 128MB

SHA-256 [1] 11.5 12.0 12.0

FastHash
sequential 2.1 2.2 2.2

parallel - 12 threads 0.4 0.4 0.5

Fig. 5. Running time of the hash constructions. The first column lists the
hash names, the second column lists the setting, namely sequential or parallel,
along with the number of threads, and the last three columns list the running
time on messages of sizes 1MB, 16MB, and 128MB respectively.

7 Implementation

In this section, we’ll describe how to instantiate the AU hash Faes4 in Section 6,
and the FIL UCE-secure hash Hrom in Section 5. We then compare the speed of
FastHash, the resulting instantiation of AU-then-Hash[Faes4,Hrom], with a stan-
dard hash function, SHA-256. We first describe our choices for components and
parameters to instantiate the construction, and then provide an overview of the
implementation, before outlining the testing environment and test specifications.
We also compare the convergent encryption (CE) MLE scheme 1 from FastHash
and SHA-256. Our results indicate a speedup of 5.3x for our hash function over
SHA-256 and 6.3x for CE in the sequential setting, and 24x and 20x speedups,
respectively, once parallelism is enabled.

Instantiations. To instantiate Faes4, we use the standard irreducible polyno-
mial p(x) = x127 +x7 +x2 +x+1 for multiplication over GF(2128). For Hrom, the
FIL RO is instantiated by the compression function of SHA-256, and the PRP
by AES128.

Implementation. We implemented FastHash in C with inline assembly. We used
Intel’s library for multiplication over GF(2128) [3], Intel’s optimized SHA256 im-
plementation [1], and Intel’s AES-NI library [2] for the code involving AES oper-
ations. We used the pthreads library for implementing threads for parallelization.

Setup. We performed experiments on an Intel Core i7-970 processor clocking at
3201 MHz with a 12288 KB L1 cache. The machine provides hardware support
for SSE4 vector instructions, AES operations (AES-NI), and multiplication in
GF(2128). Tests were compiled with gcc version 4.6 optimization level -O3, with
support for SSE4 via -msse4 flag, AES-NI instructions through the -maes flag,
GF(2128) multiplications via the -mpcmulqdq flag, and parallelization via the
-pthread flag. We ran the tests in isolation, after turning off processor frequency
scaling. We used the rdtsc instruction to count cycles.

1 In CE [8], one first hashes the message x to derive a key K, and then runs AES-CTR
on key K to encrypt x. To use FastHash on CE, one needs to use the CE variant
of [6], in which AES-CTR on message m is replaced by FastHash(hk,K, 1|x|)⊕x.
Note that this doesn’t give us any speed advantage over the standard version of CE,
as the masking via FastHash is essentially AES-CTR. The only thing we gain is the
abstraction of AES as part of the hash, so that one can apply UCE[Ssup].

Cryptography from Compression Functions 17

MLE Scheme Setting
Speed (cycles per byte)
1MB 16MB 128MB

CE implementation in [8] 22.1 22.3 22.6

CE[FastHash]
sequential 3.5 3.6 3.7

parallel - 12 threads 1.2 1.1 1.1

Fig. 6. Running time of CE instantiations. The first column lists the in-
stantiations, the second column lists the setting, namely sequential or parallel,
along with the number of threads, and the last three columns list the running
time (key generation + encryption) on messages of size 1MB, 16MB, and 128MB
respectively.

Experiments. We measured the performance of instantiations of the hash func-
tions (i.e. FastHash and SHA-256) as well as CE schemes based on these hash
functions on messages of lengths 1MB, 16MB and 128MB. In each case, we
measured the median running times of the different hash functions over 100 it-
erations, repeated this process 100 times and obtained the mean of the medians.

In the case of parallelizable constructions, viz. FastHash and CE[FastHash],
we ran tests with multiple levels of parallelism, starting from single-threaded,
serial constructions, and increasing the number of threads until we reached a
point of thrashing where the performance starts to deteriorate because of other
bottlenecks in the system. We report both the single-thread sequential running
time, and the optimal parallel running time along with the optimal number of
threads. In the latter case, the reported time does not include the time to create
and destroy the threads.

In Fig. 5, we report the median running times of the hash function instanti-
ations, in cycles per byte. We compare these times with the best times reported
for SHA-256 on similar processors [1]. Our construction achieves substantially
better running times. On messages of 1MB, SHA runs at 11.5 cycles per byte,
but our instantiation runs more than 5.3 times faster, at a cost of 2.1 cycles per
byte. With parallelism, we achieve much better speeds, below one cycle per byte.

In Fig. 6, we demonstrate the benefits of having faster hash functions by com-
paring the speeds of CE implemented with FastHash with the implementation of
CE by SHA-256 and AES-CTR in [8]. Our experiments show that CE[FastHash],
even in the sequential setting, is about 6.3x faster than the speeds reported in [8].
When parallelism enabled, we achieve about 20x speedup.

Acknowledgments

Work done while Keelveedhi was a PhD student at UCSD. The authors were
supported in part by NSF grants CNS-1116800 and CNS-1228890.

References

1. Fast SHA-256 Implementations on Intel Architecture Processors. goo.gl/Hh81eB.

18 Bellare, Hoang, Keelveedhi

2. Intel AESNI Library. goo.gl/l2czm1.
3. Intel Carry-Less Multiplication Instruction and its Usage for Computing the GCM

Mode. goo.gl/qJLrF1.
4. B. Barak, Y. Dodis, H. Krawczyk, O. Pereira, K. Pietrzak, F.-X. Standaert, and

Y. Yu. Leftover hash lemma, revisited. In CRYPTO 2011, Springer, 2011.
5. M. Bellare, A. Boldyreva, and A. O’Neill. Deterministic and efficiently searchable

encryption. In CRYPTO 2007, Springer, 2007.
6. M. Bellare, V. T. Hoang, and S. Keelveedhi. Instantiating random oracles via

UCEs. Cryptology ePrint Archive, Report 2013/424, 2013. Preliminary version
appeared in CRYPTO 2013, Springer, 2013.

7. M. Bellare, V. T. Hoang, and S. Keelveedhi. Cryptography from compression
functions: The UCE bridge to the ROM. Cryptology ePrint Archive, 2014.

8. M. Bellare, S. Keelveedhi, and T. Ristenpart. Message-locked encryption and
secure deduplication. In EUROCRYPT 2013, Springer, 2013.

9. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In ACM CCS 93, ACM, 1993.

10. M. Bellare and P. Rogaway. The security of triple encryption and a framework for
code-based game-playing proofs. In EUROCRYPT 2006, Springer, 2006.

11. J. Black and P. Rogaway. CBC MACs for arbitrary-length messages: The three-key
constructions. Journal of Cryptology, 18(2):111–131, Apr. 2005.

12. C. Brzuska, P. Farshim, and A. Mittelbach. Indistinguishability obfuscation
and uces: The case of computationally unpredictable sources. Cryptology ePrint
Archive, Report 2014/099. To appear in CRYPTO 2014, Springer, 2014.

13. L. Carter and M. Wegman. Universal classes of hash functions. Journal of computer
and system sciences, 18(2):143–154, 1979.

14. J.-S. Coron, Y. Dodis, C. Malinaud, and P. Puniya. Merkle-Damg̊ard revisited:
How to construct a hash function. In CRYPTO 2005, Springer, Aug. 2005.

15. G. Demay, P. Gazi, M. Hirt, and U. Maurer. Resource-restricted indifferentiability.
In EUROCRYPT 2013, Springer, 2013.

16. Y. Dodis, T. Ristenpart, and T. Shrimpton. Salvaging Merkle-Damg̊ard for prac-
tical applications. In EUROCRYPT 2009, Springer, 2009.

17. J. H̊astad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom generator
from any one-way function. SIAM Journal on Computing, 28(4):1364–1396, 1999.

18. L. Keliher and J. Sui. Exact maximum expected differential and linear probability
for two-round advanced encryption standard. IET Information Security, 1(2):53–
57, 2007.

19. U. M. Maurer, R. Renner, and C. Holenstein. Indifferentiability, impossibility
results on reductions, and applications to the random oracle methodology. In
TCC 2004, Springer, 2004.

20. K. Minematsu and Y. Tsunoo. Provably secure macs from differentially-uniform
permutations and aes-based implementations. In FSE 2006, Springer, 2006.

21. A. Mittelbach. Salvaging indifferentiability in a multi-stage setting. In EURO-
CRYPT 2014, Springer, 2014.

22. PKCS #1: RSA cryptography standard. RSA Data Security, Inc., Sept. 1998.
Version 2.0.

23. T. Ristenpart, H. Shacham, and T. Shrimpton. Careful with composition: Limita-
tions of the indifferentiability framework. In EUROCRYPT 2011, Springer, 2011.

24. M. N. Wegman and L. Carter. New hash functions and their use in authentication
and set equality. Journal of Computer and System Sciences, 22:265–279, 1981.

