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Abstract. Is it possible to prove that two DNA-fingerprints match, or that they do not match, with-
out revealing any further information about the fingerprints? Is it possible to prove that two objects
have the same design without revealing the design itself? In the digital domain, zero-knowledge is an
established concept where a prover convinces a verifier of a statement without revealing any informa-
tion beyond the statement’s validity. However, zero-knowledge is not as well-developed in the context of
problems that are inherently physical. In this paper, we are interested in protocols that prove physical
properties of physical objects without revealing further information. The literature lacks a unified for-
mal framework for designing and analyzing such protocols. We suggest the first paradigm for formally
defining, modeling, and analyzing physical zero-knowledge (PhysicalZK) protocols, using the Universal
Composability framework. We also demonstrate applications of physical zero-knowledge to DNA pro-
filing and neutron radiography. Finally, we explore public observation proofs, an analog of public-coin
proofs in the context of PhysicalZK.

1 Introduction

Zero-knowledge proofs are protocols that prove an assertion without revealing any information
beyond that assertion’s validity. Zero-knowledge proofs were first introduced by Goldwasser, Micali,
and Rackoff in 1985 [16]. The power of zero-knowledge proofs is quite remarkable: anything that
can be proved efficiently can be proved with a zero-knowledge protocol, under the cryptographic
assumption that one-way functions exist (see Goldreich [9]).

Zero-knowledge proofs have also been considered in a physical setting. A number of works have
explored constructions of zero-knowledge protocols that can be physically implemented [26, 19, 24,
23]. One goal of those works was to design protocols with simple procedures and security arguments
that the participating parties could easily understand. An added advantage of simple physical
protocols is that humans can implement them without the aid of computers. Moran and Naor [24]
give methods for polling people on sensitive issues using physical envelopes as an alternative to
electronic polling, where humans might not trust computers to behave honestly. Many works have
also addressed the incorporation of physical hardware into broader cryptographic schemes. In some
cases, these hybrid protocols achieve efficiency or security gains that are unachievable in a standard
computation model. Examples of physically realizable functionalities that have been suggested for
aiding general cryptographic protocols include tamper-evidence [23], tamper-proof tokens [12, 7, 21,
22, 25, 20, 18], one-time programs [15], and physically uncloneable functions [3].

Previous literature on zero-knowledge in a physical setting addressed physical protocols for tasks
that could otherwise be solved digitally. There is comparatively little formal work on protocols
for inherently physical tasks that cannot be solved digitally. One example that has been studied
rigorously is distance bounding protocols, introduced by Brands and Chaum in 1993 [2], in which a
verifier party determines or verifies an upper bound on its physical distance to a prover party. In
2012, Glaser, Barak, and Goldston [8] suggested applying zero-knowledge concepts to the task of
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proving that a nuclear weapon is authentic without revealing sensitive information about its actual
design, a problem that arises in the context of nuclear disengagement treaties. They presented an
ǫ-knowledge protocol for this task, but did not have a rigorous framework for formally defining and
analyzing the protocol’s ǫ-knowledge security.

Our contributions. We present the first formal treatment of physical zero-knowledge (Physi-
calZK) proofs for inherently physical claims. In our setting, a prover convinces a verifier that an
input object satisfies a given physical property. Our framework for designing and analyzing Phys-
icalZK protocols uses the Universally Composable (UC) security framework [4], popularly applied
in analysis of hybrid protocols involving physical hardware.

Expanding on Glaser et al., we present the first PhysicalZK protocols for the nuclear verification
problem, or the general task of verifying object neutron radiograph equality. We also demonstrate
an application of PhysicalZK proofs to DNA profiling in which a prover (e.g. a suspect) convinces
a verifier (e.g. the police) that its DNA profile does not match a target profile (e.g. obtained from
a crime scene) without revealing to the verifier any further information about the profiles, and
discuss a protocol for parental testing.

A further goal of our work is to initiate a rigorous study into the foundations of physical zero-
knowledge. We point out both differences and similarities between physical and standard ZK where
they arise. In particular, Section 3 compares the UC properties of physical vs. digital ZK, and
Section 6 explores a physical analog of public coin proofs.

2 What is physical zero-knowledge (PhysicalZK)?

A standard zero-knowledge proof involves a binary relation R and an input x. A prover convinces
a verifier that there exists a witness w such that (x,w) ∈ R. The verifier “learns nothing” from the
protocol except the existence of w, and possibly the fact that the prover “knows” w. (See Goldreich
[9] for formal definitions, classical theorems, and variants of zero-knowledge).

Previously, the term physical zero-knowledge was used for physically implemented ZK protocols,
involving physical tools such as scissors, playing cards, envelopes, or pez dispensers. However, the
underlying tasks in those protocols were still logical in nature (e.g. solving a Sudoku puzzle [19],
finding Waldo [26]).

In our definition of physical zero-knowledge (PhysicalZK), a prover convinces a verifier that a
physical input object has a physical property Π. The verifier should “learn nothing” except the
validity of the statement “X satisfies Π.” A physical measurement M verifies Π, possibly requiring
the assistance of a measurement device D. Asymmetry between the prover and the verifier arises
not from secret knowledge or computational power, but from access permissions to the object and
measurement device. Since a verifier might forcefully break its restricted access, the threat model
we consider only addresses adversaries that avoid being caught (similar to the covert adversary

model [1]). Before proceeding, we give a few simple examples.

1. Coke vs. Pepsi “blind test”: Alice demonstrates to Bob her ability to distinguish between the tastes of Coke
and Pepsi using the classic blind test. However, the simplest test is not zero-knowledge. Bob might give Alice
a cup of Sprite, and gain information from her response. One fix is to use indistinguishable coffee lids. Alice
observes that Bob prepares cups of Coke and Pepsi. Bob then supplies Alice with the lids, Alice marks the inside
of each lid with her secret signature, and covers the cups. After the blind test, Alice commits her response on a
piece of paper. But before handing the paper to Bob, she will remove the lid, and check for her signature.

2. Bins and Balls Equality: Alice proves to Bob that two bins X and Y (of capacity n) contain the same number
of balls. The following ǫ-knowledge protocol was given in [8]. Alice chooses N > n, and prepares two new pairs
of bins, each of capacity N + n, labelled B0 and B1 respectively. Alice chooses two independent random values
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r0 and r1 uniformly distributed in [0, N). Concealing the bins from Bob, she adds r0 balls to each bin in B0, and
r1 to each bin in B1. Bob randomly selects i ∈ {0, 1}, Alice hands Bob the pair Bi, and Bob checks that both
bins in the pair have equal numbers of balls. Alice then pours the contents of X into one bin in the remaining
pair, and the contents of Y into the other. Finally, Bob checks the final contents of the bins to verify that they
contain equal numbers of balls. Alice’s success of cheating is at most 1/2. (Appendix A contains a full analysis).

3. Litmus test: Alice proves to Bob that her solution is basic/acidic without revealing the actual pH. Blue litmus
paper turns red in acidic solution, and red litmus paper turns blue in basic solution. First, Bob tests Alice’s
litmus paper in known basic/acidic solutions to check that it operates correctly. After the protocol is complete,
the litmus paper must be completely destroyed (to prevent Bob from later examining traces of the solution
remaining on the paper).

3 PhysicalZK in the UC security framework

The UC framework. The Universally Composable security framework (UC) of Canetti [4] defines
two worlds: the “real” world in which the real protocol is executed, and the “ideal” world in which
an ideal process is implemented with the help of a trusted third party. A protocol environment

machine Z interacts with the protocols in both worlds, setting each party’s inputs, and reading their
outputs. Although Z does not see internal communication between parties, it communicates freely
with an adversary A. When A corrupts a party, it assumes the party’s identity, and takes control
of its communication. A real protocol UC-emulates an ideal process if for every real adversary
A there exists an ideal world adversary S such that no environment Z can distinguish between
its interactions with A in the real protocol and S in the ideal process. The universal composition

theorem states that if π is a protocol involving sub-protocol calls to an ideal functionality F , ρ is
a protocol that UC-emulates F , and πρ/F is the hybrid protocol obtained by replacing calls to F
in π with calls to ρ, then πρ/F UC-emulates π.

Modeling physical protocols. We separate physical protocols into a logical layer and a physical

layer. All the physical operations of the protocol belong to the physical layer. Every physical oper-
ation serves an ideal function, and can be modeled by an ideal process in an abstract computation
model with interactive turing machines (ITMs). This translation is based on physical assumptions.
The logical layer is the hybrid world protocol obtained by replacing all physical operations with
oracle calls to their ideal functionalities.

For example, consider the operation of pouring x balls into a bin and sealing the bin. We can
define an ideal functionality T and an ideal process for this operation as follows. T stores tuples
of the form (value, id, creator, holder, state). Upon receiving the two commands Create(x, id) and
Seal(id) from party Pi, T stores the tuple (x, id, Pi, Pi, sealed), and will deny requests to view
the value x that come from any party other than Pi. However, any party Pj may send a special
command Force(id) to T , and T will respond by sending the entire tuple to Pj and broadcasting to
all other participating parties that Pj issued the Force command. This emulates the real behavior
of a party who forcefully breaks open the sealed bin without permission, and is labeled a cheater.

Rigorous analysis can be applied to the hybrid world logical layer. We can then interpret the
universal composition property of our model as formally reducing security to the most basic physical
assumptions necessary: if the hybrid world logical layer UC-emulates F , then any real world physical
protocol emulating the hybrid protocol also realizes F .

UC physical commitments. Bit-commitment is impossible to UC-realize in the standard com-
putation model without trusted setup assumptions [5]. However, physical assumptions change mat-
ters. Consider the following trivial protocol in which the parties continuously observe each other.

3



Alice commits to her bit by placing it in a sealed container, and de-commits by opening the con-
tainer. To prevent Bob from forcibly cheating, Alice could run the protocol behind a secure glass
screen (see Section 6 on public observation protocols). There is also a more sophisticated UC secure
bit-commitment protocol using tamper-evident envelopes [23], which does not require continuous
observation.

Likewise, ZK is not UC-realizable without setup assumptions, but there are UC-secure ZK
proofs for any NP relation given UC bit-commitment [5, 6]. Therefore, it is possible to implement
UC-secure ZK protocols for any NP relation using UC physical commitments.

Ideal functionality F
Π

ZK
. The ideal functionality FΠ

ZK is described in Figure 1, running with
parties Prover, Verifier, and an oracle FC that compiles the ideal functionalities for a collection C
of physical operations in the real world.

Functionality FΠ
ZK

Π is a unary predicate representing a physical property Π . If idX uniquely identifies a physical set X, the
statement idX ∈ Π translates the physical world statement “X satisfies property Π .” FC includes an ideal
functionality FMΠ for the physical measurement operation Mπ required to verify Π , which outputs Π(idX) ∈
{0, 1}. The parameter leak(idX) represents information that is leaked when Verifier forcefully cheats.

– Upon receiving (idX , pidC,Prover,Verifier) from the party Prover, FΠ
ZK queries the FC specified by the

process identifier pidC to compute Π(idX), and sends (Π(idX), idX ,Π) to Verifier.
– Upon receiving the instruction cheat from Verifier, send (idX , leak(idX)) to Verifier, and send

(Cheater,Verifier) to Prover. If Prover sends cheat, send (Cheater,Prover) to Verifier. Upon receiving the
instruction fail from either party, send Failed to both parties.

Fig. 1. Ideal world PhysicalZK

Let ρFC/C denote the FC-hybrid model translation of a physical protocol ρ with physical opera-
tion collection C. A proof that ρFC/C UC-emulates FΠ

ZK captures (up to physical assumptions) that ρ
is secure against any adversary in the real physical world whose behavior is restricted to operations
in C.4A generic procedure for this analysis is outlined in Figure 2. Appendix A includes a full UC
modeling and security proof for the Bins and Balls Equality protocol of [8]. Let hybridρ,FC ,A,Z and
idealFΠ

ZK ,FC ,S,Z
respectively denote the random variables describing the output of environment Z

after interacting with A in ρFC/C and S in the ideal process for FΠ
ZK .

Definition 1. 5A physical protocol ρ is a physical zero-knowledge protocol for property Π with

respect to the physical operation set C if for any A there exists S such that for all environments Z
outputting a single bit:

hybridρ,FC ,A,Z ≈ idealFΠ
ZK ,FC ,S,Z

Main differences from standard F
R

ZK
. One difference is to allow the verifier to obtain leakage

by overtly cheating; however, FR
ZK could be extended similarly. A more fundamental difference is

4 Ideally, C should define a sufficient set of operations such that any action outside this set will either be recognized
as malicious or irrelevant to the protocol. This is not a formal mathematical notion, but a physical assumption.

5 To differentiate statistical, computational, and perfect PhysicalZK, we can easily extend the definition to depend
on the type of indistinguishability (statistical/computational/perfect) that the relation ≈ describes.
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the way FΠ
ZK verifies Π. FR

ZK requires the prover to submit a witness w along with the input x
so that FR

ZK may efficiently verify (x,w) ∈ R. FR
ZK cannot find a witness w on its own since UC

requires the trusted party to be computationally efficient. In contrast, FΠ
ZK verifies idX ∈ Π on its

own, as it only needs the prover to transfer access permissions, not secret knowledge.

This difference has significant consequences. FR
ZK cannot be realized in UC without trusted

setup because the simulator must straight-line extract a witness from its interaction with the real
prover, implying that the real verifier could do so as well. UC-emulation of FΠ

ZK does not require
extraction. Standard ZK proofs in UC are zero-knowledge proofs-of-knowledge (ZKPoK), whereas
FΠ
ZK is not. Thus, although UC protocols for FΠ

ZK may rely on physical assumptions, they do not
fundamentally require trusted setup assumptions.

FC-hybrid protocol UC-emulation of FΠ
ZK

We can assume that A acts as a proxy for the environment Z [4].

– When A corrupts Verifier, Z either sees a successful run of ρFC/C, or receives (0, idX ,Π). Since S only
receives a receipt (Π(idX), idX ,Π), it must simulate the hybrid world proof, invoking an instance of FC,
and dummy parties P and V . S plays the role of prover (P), and uses Z’s messages to play the verifier (V),
whose messages S forwards to Z. If failure occurs or cheating is detected in the simulation, S sends either
fail or cheat to FΠ

ZK .
– S ’s simulation must be straight-line (it cannot rewind Z), but S can extract any hybrid world “physical

commitments” that the dummy party V makes with FC . (S omits from its messages to Z any notification
of the command Force it internally uses with FC to force open the commitments).

– When A corrupts Prover, S simulates the hybrid world protocol with Z, but now playing the verifier’s role
(no secret input needed). If the simulation succeeds, S forwards Z’s input to FΠ

ZK . If failure or cheating
occurs, S sends either fail or cheat to FΠ

ZK .

Fig. 2. The FC-hybrid model security proof

4 Neutron radiography

Glaser, Barak, and Goldston [8] were the first to suggest applying zero-knowledge proofs to the
problem of authenticating nuclear warheads without revealing sensitive information about their
design. One approach to authentication is “template-matching.” The inspecting party possesses
a template warhead, presumably confirmed to be authentic. The opposing party must prove that
each warhead brought to the dismantlement queue is identical (in design) to the template.

Neutron radiography can be used to compare objects. An object is bombarded with neutrons,
and the intensity of neutron scattering is measured over a range of angles. Glaser et al. suggested
using passive bubble detectors6 to physically record the neutron counts at randomly selected angles.
The task of comparing the physically recorded counts essentially reduces to Bins and Balls Equality.
The GBG protocol for Bins and Balls Equality (see Section 2) only achieves ǫ-knowledge with
ǫ = n/N (security is broken with O(N) repetitions). We present a modified protocol that achieves
perfect PhysicalZK.

Protocol 4.1 guarantees that the number of balls the verifier eventually counts is uniformly
distributed in [N, 2N). Instead of preparing bin pair j containing rj ∈ [0, N) balls, the prover
prepares a quadruple j of bins: one pair of bins with rj ∈ [0, N) balls each, and a second with

6 A passive bubble detector contains droplets of superheated liquid dispersed throughout a clear gel. When a neutron
hits a droplet, it vaporizes the droplet producing a visible air bubble trapped in the gel.

5



N + rj balls each. If the number of balls in the prover’s original bins is x < N , then exactly one of
N + rj + x and rj + x lies in the interval [N, 2N). Only this bin pair is retained and displayed.

Protocol 4.1: Bins and Balls Quadruples

Input : Two bins X and Y, which both contain x and y balls respectively. The maximum capacity of each bin is
N.

1. Prover prepares and seals k “quadruples” of bins Q1, ..., Qk, where each “quadruple” Qi consists of two
pairs of bins, pairi,0 and pairi,1. Each bin has capacity at least 2N . For all 1 ≤ i ≤ k, Prover randomly
selects uniformly distributed values ri ∈ [0, N), and prepares each Qi such that each bin in pairi,0 contains
ri balls, and each bin in pairi,1 contains ri +N balls.

2. Verifier randomly selects j uniformly distributed in [1, k], and requests to view all Qi6=j. Prover reveals all
quadruples Qi6=j , and Verifier checks that these quadruples were initialized correctly.

3. Prover selects a final pair out of Qj : if x + rj ≥ N , then Prover chooses pairj,0, and if x + rj < N , then
Prover chooses pairj,1. Prover destroys the other pair.

4. Verifier labels the bins in the remaining pair as “binx” and “biny” (he can do this randomly to add a 1/2
factor to the soundness error).

5. Prover pours the contents of X into binx, and the contents of Y into biny . Prover reveals the contents of
binx and biny , and Verifier accepts the proof if and only if the two bins contain the same number of balls.

Soundness: The soundness error is at most 1
2k . The verifier would accept a false claim (when

x 6= y) only if it selects a quadruple j ∈ [k] and labeling of the bins in the final pair so that
x+rj = y+r′j, where rj and r′j are the initializations of the bins labelled binx and biny respectively.
If more than one quadruple contains an incorrect initialization such that rj 6= r′j, then the verifier
catches the prover. If one labeling results in x + rj = y + r′j , then the opposite labeling does not.

Therefore, this event occurs with probability at most 1
2k .

Perfect Zero-Knowledge: We show that the distribution of balls in the final pair of bins
(binx and biny) is the uniform distribution over [N, 2N). Fix an arbitrary input value 0 ≤ a < N
for the number of balls that bins X and Y each hold. Let Z denote the number of balls in binx and
biny at the end of the protocol. Z = rj +a when rj +a ≥ N , and Z = rj +a+N when rj +a < N .
Consider t ∈ [N, 2N). If t ∈ [N,N + a), then Pr[Z = t] = Pr[rj = t − a] = 1/N . Otherwise, if
t ∈ [N + a, 2N), then Pr[Z = t] = Pr[rj = t− a−N ] = 1/N .

The complete formal proof is very similar to the proof in Appendix A.2. Roughly, since the
distribution in the final pair is uniform and independent of the input, the simulator can run the
protocol on an empty input.

4.1 From bins and balls to neutron bombardment

We adapt Protocol 4.1 to the problem of proving object radiograph equivalence. Neutron detectors
are placed at a finite number of angles around each object, and a neutron source is fired at both
objects for the same duration of time. A measurement device is used to measure the counts of
neutrons that each detector has physically recorded.

Measurement devices. The parties mutually possess a neutron source with a known flow
rate, and physical neutron detectors. Each party has its own measurement device D for obtaining
the physically recorded neutron count of any neutron detector. In the hybrid world, D is modeled
as an ideal functionality FD. When given the input idX corresponding to an object X, FD records
a measurement value, and outputs a function of the measured value.
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Operation Init(d, r). This initializes the given neutron detector d to the integer value r. We
assume that the prover and verifier can perform this operation without the other party knowing
the value r. 7

Prover types. We consider two types of provers. Prover Type I has prior knowledge of the
exact neutron counts xθ and yθ at any angle θ that the verifier chooses to examine, and Prover
Type II does not possess this knowledge.

Drawbacks. A Type I prover is required to know the values of x and y for any angle θ. A
Type II prover is allowed to re-handle the detectors after the neutron collection, possibly giving
her the opportunity to dishonestly meddle with the results. In Appendix B we include a different
zero-knowledge protocol for ORE that avoids both of these issues. The protocol uses a measurement
device that outputs neutron counts modulo N.

Protocol 4.2: Perfect PhysicalZK protocol for Object Radiograph Equivalence (ORE)

Input : Two objects X and Y with equal ORE’s, denoted X ∼ Y .

1. Prover: Prepare k “quadruples” Q1, ..., Qk of neutron detectors (as in Protocol 4.1), selecting random values
ri ∈ [0, N) for 1 ≤ i ≤ k, and using the Init(d,ri) operation on each.

2. Verifier: For each Qi, 1 ≤ i ≤ k, randomly select bi ← {0, 1}.
– If bi = 0: examine the detectors in Qi, and check that the neutron count initialization is valid. Fail if

invalid.
– If bi = 1: run collection test on Qi.

Collection Test on Qi:

1. Verifier: For each pair of the quadruple Qi, randomly choose one detector to label dix, and label the other
diy. Select a random angle θ, and send this to the prover.

2. Prover: Run the neutron source on X and Y , collecting at the angle θ, using detectors labeled dix for X
and diy for Y .
– Type I Prover : Choose the unique detector pair that has a count in the range [N, 2N), and discard the

other pair. Hand this pair to the verifier.
– Type II Prover : Examine the contents of both detector pairs, and proceed as a Type I prover.

3. Verifier: Check that the detectors received from the prover have equal neutron counts. Fail if the counts
are not equal.

Tolerance δ. The verifier could accept if and only if |xθ − yθ| < δ. Two changes are necessary.
First, the prover should choose which pair to discard based on the lower of the two values x
and y. Unfortunately, the difference |x − y| is still revealed. Second, the verifier must ensure that
N ≥ maxθ{|xθ−yθ|+δ}. Otherwise the prover could fool the verifier into accepting that |xθ−yθ| < δ
when |xθ − yθ| > N − δ. Verifier can incorporate checking the size of N into the cut-and-choose
protocol, but needs to know some loose upper bound on xθ − yθ.

Soundness and Completeness: Protocol 4.2 has perfect completeness and soundness error
at most (1+β

2 )k, where β < 1 is the probability that xθ = yθ at a uniformly distributed angle θ
(when X 6∼ Y ). Suppose Prover cheats on c out of k detector quadruples. The probability that
Verifier doesn’t check any of the c bad quadruples is 2−c. The probability Prover passes on all the
k − c good quadruples is 1

2 + 1
2 · β because it passes always if Verifier chooses to check and with

probability β if Verifier chooses to run a collection test. By independence, the soundness error is

7 The appropriate time to run the neutron source at a detector during initialization is calculated from the flow rate
of the source. However, the initialization value should be hidden from the other party. The initialization can be
done privately, or using a concealed on/off switch on the neutron source.
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thus (12 )
c · (12 + β

2 )
k−c. Since β ≥ 0, an optimal (cheating) strategy is to set c = 0, giving error at

most (12 +
β
2 )

k.
Perfect Zero-Knowledge: Follows from the analysis of Protocol 4.1.

5 DNA profiling

In recent years, genetic privacy in DNA profiling has become the subject of wide debate. Privacy
issues obstruct criminal investigations, deterring non-guilty suspects from otherwise providing DNA
samples, and giving guilty suspects legitimate excuses to refuse testing. We present a zero-knowledge
protocol through which a suspect can prove to the police that his DNA profile does not match a
crime scene profile. We also sketch an adaptation of the BBQ (Protocol 4.1) primitive to DNA
testing. One potential application is a zero-knowledge protocol for parental testing.

STR analysis. DNA profiling uses STR analysis. STR stands for “Short Tandem Repeats,”
which are short nucleotide sequences that repeat in tandem. In certain locations of the human
genome, although all humans posses the same repeating sequence, the exact number of repeat units
is highly variable from person to person. The variations of a gene or genetic locus in the human
population are called alleles. Every individual has two alleles of each gene, one from each parent.

CODIS profiles. In the United States, all forensic laboratories share CODIS (the Combined
DNA Index System), which uses 13 specific STR loci to identify individuals. A CODIS DNA profile
vector consists of 13 pairs of STR sequence lengths, one pair for each loci.

DNA primers. A genetic profile is generated through STR analysis. PCR (the polymerase
chain reaction) is run with oligonucleotide primers to isolate and amplify each STR repeat sequence.
Primers determine the specific start and end nucleotides of the sequence to be amplified, and thus
control the lengths of the flanking regions that are cut out along with the STR sequences (see
Figure 3). We will use the notation Pi,j to denote a primer pair that isolates the ith locus STR
sequence, and produces a pair of fragments of sizes mi,1 + j and mi,2 + j, when mi,1 and mi,2 are
the sizes of the ith locus alleles.

Electrophoresis. In capillary electrophoresis, the most popular technique for DNA profiling,
DNA fragments are fluorescently labelled during PCR, and passed through a capillary tube. Smaller
fragments pass faster than larger ones. A laser detects the fragments as they pass by. The length
of a fragment is deduced from the time the fragment takes to reach the laser.

δ-CE device. We imagine a slightly modified capillary electrophoresis apparatus in which the
laser can only be operated for a limited time window δ, effectively limiting the range of DNA
fragment sizes that will be detected.8

STR sequence mPrimer A Primer B

a b

Fig. 3. STR sequence of length m cut out with flanking region a+ b.

5.1 DNA Inequality

At a basic level, the police (POL) will give the defender (DEF) one of the two DNA samples at
random, and DEF must correctly identify the sample received. In general, DEF is not the sus-

8 Only the owner of the δ-CE can trust its operations. The party operating the δ-CE can ensure the limited-laser
functionality by using a charged capacitor to power the laser so that the laser retains power for at most time δ.
The operation can be repeated by recharging the capacitor.
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pect, but a public defender forensic team representing the suspect. There are two main challenges
in proving zero-knowledge. First, the protocol simulator needs to extract the verifier’s challenges
without rewinding. Second, we must prevent POL from substituting a third auxiliary DNA sam-
ple mid-protocol. (Similarly, in the ZK protocol for graph non-isomorphism (GNI), the verifier
proves it knows an isomorphism between its challenge graph and one of the two input graphs [11]).
Additionally, we rely on the physical assumption that two DNA samples from the same person
are always indistinguishable, whereas samples from individuals with distinct profiles are always
distinguishable.

Random seals. We require non-forgeable tamper-evident seals. We imagine that tamper-
evident seals could be manufactured with a “random” pattern that is uniformly and independently
distributed in a sufficiently large domain. A similar random pattern trick was suggested in [26].

Seal covers. Our protocol also requires seal covers that function as physical commitments.
The covers should be designed to hide any identifiable markings on the tamper-evident seals, and
it should be possible to open the seals without removing their covers.

Protocol 5.1: Zero-knowledge proof for DNA inequality

Preparation: Two test tubes are jointly prepared, one with DNA sample C, and one with S. DEF places
identifiable tamper-evident seals on each test tube: one identifies S, and the other identifies C. POL covers the
seals.

1. POL conceals the two test tubes, selects one randomly, and hands it back to DEF.
2. DEF checks that the seal has not yet been opened, and then opens the seal without removing its cover.

DEF determines the profile of the sample in the test tube, and physically commits to the identity of the
sample in the test tube.

3. POL “de-commits” to the challenge test tube by removing the cover on its seal.
4. DEF checks and identifies the uncovered seal to see that it wasn’t replaced. If it is not the original seal,

then DEF terminates the protocol. Otherwise, DEF opens its commitment from Step 2.
5. POL checks that DEF committed to the correct identity of the challenge sample.

Completeness and Soundness. As DEF is able to differentiate between two distinct DNA
samples, the protocol has perfect completeness. If the DNA samples are the same, DEF guesses the
challenge sample correctly with probability 1/2. (The error is exponentially reduced by repetition).

Hybrid model. The compiler holds tuples for each DNA sample input. The value attribute
of each tuple is the DNA profile vector. The random seal operations queries an RO for a value
r, tags r to the tuple, locks read/write access, and outputs r to the calling party. The scramble

functionality swaps the id attributes of two tuples with probability 1/2. The environment machine
initializes and locks tuples for each DNA input sample. This emulates the “joint preparation” for
the physical reason that no information is revealed to either party until they use analysis tools,
such as electrophoresis, to examine the products of the PCR preparation.

Zero-Knowledge. The ideal functionality DNA Inequality is denoted FDI
ZK . The job of the

simulator S in the case that A corrupts the hybrid world prover (DEF) was handled generically in
Section 3, Figure 2. The case that A corrupts the hybrid world verifier (POL) is more interesting.
First, S learns from FDI

ZK if DEF passes or fails the ideal execution on the environment Z’s input.
Next, S simulates the hybrid model protocol, playing the role of DEF while Z usesA to control POL.
Recall that S can straight-line extract physical commitments in the hybrid world (see Figure 2).
Thus, S always knows the identity of POL’s challenge sample, or that POL is cheating. S sets DEF’s
commitment in Step 2 to the correct identity of the challenge if DEF should pass, and the incorrect
if DEF should fail. S only de-commits in Step 4 if POL did not cheat. If POL did not cheat, both S
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and the hybrid world DEF supply identical responses to Z, namely the identity of POL’s challenge.
If POL did cheat on its challenge, then S terminates its simulation. The hybrid world DEF will
also terminate unless it fails to catch POL cheating, which only occurs with negligible probability
(POL must guess the secret RO tag in order to fool DEF).

Testing a village. There are cases where entire villages have been tested to see if the DNA profile
of anyone in the population matches the crime scene DNA profile. Protocol 5.1 can be naturally
extended for proving that a DNA profile does not exist in a population. Consider a population of 400
people. The verifier DEF receives 401 DNA samples, one from every individual in the population,
plus a crime scene sample, all delivered in a set of 401 identical, covered, sealed, and randomly
permuted test-tubes. DEF is required to find the crime scene sample C and hand it back to POL.
If another individual has the same profile as C, then DEF fails with probability at least 1

2 .

5.2 Parental testing

To prove a parent-child relationship using DNA profiling, it is necessary to show that DNA samples
from the parent and child share at least one allele in each STR locus. We construct a zero-knowledge
protocol for this task using an analogous technique to the Bins and Balls Quadruples (BBQ) scheme
from Section 4.

Recall that a primer Pi,j is used to cut out the ith locus STR alleles with flanking regions of
total length j. Performing STR analysis with randomized primers Pi,ri for ri uniformly distributed
in [0, N) is analogous to adding a random number of balls to a bin. The quadruples of bins in
BBQ translate to quadruples of test tubes running reactions with randomized primers. However,
a technical caveat arises: each ith locus actually contains a pair of alleles that will be amplified
with the same Pi,ri , producing a pair of fragment lengths whose joint distribution is not necessarily
uniform!

In the special case of paternity testing, this issue can be easily avoided by choosing to compare
STR regions on the Y chromosome, which is uniquely passed from father to son. In more general
circumstances, the prover can choose to reveal only one allele from each locus (using δ-CE), which
is sufficient for showing that the two DNA samples share at least one allele in each STR locus.

6 Public coin and public observation proofs

A private coin protocol is one in which the verifier’s random bits (“coin flips”) must be kept private
during the protocol. In contrast, the verifier’s messages in a public coin protocol only consist of the
outcomes of its coin flips. Public-coin physical protocols are publicly observable in the sense that
the verifier can sit behind a glass screen throughout the protocol’s execution, sending messages
to the prover, and observing the prover’s physical operations. Thus, unlike general physical zero-
knowledge protocols, public observation physical zero-knowledge protocols do not rely on tamper-
evident functionalities or (as heavily) on a covert threat model. While all public-coin protocols are
publicly observable, not all publicly observable protocols need to be public-coin. For instance, the
protocol may involve private-coin computational subprotocols.

In this section, we present an example of a public observation protocol for a special case of DNA

Inequality in which the suspect’s DNA S should pass if in at least one of the 13 CODIS loci it has
an allele that is not present in the crime scene DNA C (notated S 6⊂ C). The protocol becomes a
perfectly complete test for DNA Inequality when only homozygotic gene regions are compared (e.g.
X or Y chromosomes in males). The construction of the protocol involves a reduction to standard
cryptography, using bit-commitment and generic ZK proofs for NP statements. Our protocol takes
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advantage of the fact that when S 6⊂ C, the total number of distinct gene alleles in S ∪C increases.
Our protocol is closely related to the well-known public-coin protocol for GNI, making use of a
classical set lower-bound protocol [17, 10].

In the digital setting, public-coin ZK equals private-coin ZK [27, 13, 14, 28]. In contrast, we
don’t know of a general method for converting any physical zero-knowledge protocol into a pub-
lic observation zero-knowledge protocol. The known constructions of public-coin ZK proofs from
private-coin ZK proofs involve simulating the private-coin verifier and applying universal hash
functions to its messages. We do not know of any general analogous method for hashing physi-
cal messages. Furthermore, the public-coin verifier must be able to check set containment in the
private-coin verifier’s messages. In the physical setting, it is unclear whether the public-coin verifier
can always assess the physical content of the private-coin verifier’s messages, particularly when they
involve physical concealment.f

Protocol 6.1: Public Observation ZK Protocol for DNA Inequality

– Allele vector sets. V (C) is the set of distinct vectors of length 13 that can be formed by
choosing one allele from each STR locus of C. 1 ≤ |V (C)| ≤ 213. Similarly, we define V (S ∪C),
where each allele can be chosen from either S or C. If S introduces a new allele in at least one
locus, then |V (S ∪ C)| ≥ 3

2 |V (C)|, and otherwise, |V (S ∪ C)| = |V (C)|.
– Equipment. DEF has a mod δ-CE device, which is a δ-CE device that displays the lengths of

DNA fragments modulo N , where N is a power of 2 greater than the longest possible fragment
that will be measured. DEF also has access to a collection of DNA primers {Pi,j}.

– Parameters ℓ and m. Choose the smallest integers ℓ and m that satisfy the following condi-
tions: (32 )

ℓ ≥ 2m and 2m−
1

2 ≤ (32 )
ℓ · |V (C)|ℓ ≤ 2m.9

– Allele length vector set Z. Z ⊂ (ZN )13 is the set of possible vectors whose ith component is
the length mod N of an allele taken from the ith locus of either S or C. It is the set of vectors
of allele lengths mod N corresponding to V (S ∪ C).

– Randomized allele length vector set r(Zℓ). Let r be a random uniformly distributed vector
in (ZN )13ℓ. Define r(Zℓ) = {r+ z | z ∈ Zℓ} where addition is over (ZN )13ℓ.

– Hash function family. Set k = log(N) · 13ℓ, and choose a canonical encoding of (ZN )13ℓ

in GF (2k). We will use a family Hk,m := {ha,b} of universal hash functions from GF (2k) →
GF (2m) where a, b ∈ GF (2k), a 6= 0, and ha,b maps x 7→ ax + b and truncates the last k −m
bits.

– Hash function shift. For any vector r ∈ (ZN )13ℓ and h ∈ Hk,m, define r(h) = ha,b−r·a, where
r is the encoding of r in GF (2k). Note that r(h)(r + z) = h(z).

– Preparing r(Zℓ). DEF prepares ℓ sets of test tubes T1, ..., Tℓ. Each Ti consists of test tubes
{Ci,j}j∈[13] containing C and {Si,j}j∈[13] containing S. For all (i, j), DEF selects an independent
random value ri,j uniformly distributed in [0, N), and then runs PCR on Ci,j and Si,j with the
primer pair Pj,ri,j .

10 To display a vector z ∈ r(Zℓ) to POL, DEF chooses from every Ti the
appropriate set of 13 test tubes containing the target fragments contained in z, and then chooses
time windows ti,1, ..., ti,13 to run the mod δ-CE device on each test tube in order to only detect
the target fragments.

Perfect Completeness: We use the fact that for any set A ⊆ {0, 1}m of size |A| ≥ 2m−
1

2 , there
there exists an (expected polynomial time computable) set of m hash functions h1, ..., hm ∈ Hk,m

9 Let K = |V (C)|. Note that K = 2r for r ≤ 13. Choose the smallest integer x such that ( 3
2
)x ≥ 2x · log( 3

2
K) + 1.

One can verify that x ≤ 15. Now find the smallest ℓ ≥ x such that the fractional part of ℓ · log( 3
2
K) is in [ 1

2
, 1)∪{0}.

This will hold for either x, x+1, or x+2. Finally, set m to be the unique integer such that m− 1

2
≤ ℓ ·log( 3

2
K) ≤ m.

Now ℓ and m satisfy ( 3
2
)ℓ ≥ 2ℓ · log( 3

2
K) + 1 ≥ 2m and 2m− 1

2 ≤ ( 3
2
K)ℓ ≤ 2m.

10 POL observes that the same primer is applied to Ci,j and Si,j .
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Protocol 6.1 - Public observation ZK for DNA Inequality

POL observes DEF throughout the rounds. We assume that DEF cannot change the behavior of the mod

δ-CE device while under observation. Let (com, dec) denote a commitment scheme.

1. DEF: Choose a random uniformly distributed r ∈ (ZN)13ℓ and prepare r(Zℓ). Find a set of m hash functions
H = {hi}

m
i=1 ⊂ H so that

⋃m
i=1

hi(Z
ℓ) = {0, 1}m. Compute commitments to the hash functions r(hi) for

each i, denoted ComH = {com(r(h1)), ..., com(r(hm))}. Send ComH to POL.
2. POL: Pick a uniformly distributed y ∈ {0, 1}m.
3. DEF: Find an hi ∈ H and z ∈ Zℓ such that hi(z) = y. Display the allele vector v = z + r from the set

r(Zℓ).
4. DEF and POL: Execute a UC-secure ZK proof of the NP statement “there exists x ∈ ComH such that

dec(x) = h and h(v) = y.”

such that ∪ihi(A) = {0, 1}m. (We include a proof of this fact using the Probabilistic Method in the
full version of this paper).When S has at least one distinct allele from C, then |Zℓ| = |V (S∪C)ℓ| ≥

(32 )
ℓ · |V (C)ℓ| ≥ 2m−

1

2 . Given any z there is at least one hi among the m preselected functions that
satisfies hi(z) = y. Since r(hi)(z+ r) = hi(z) = y, there exists h ∈ ComH such that h(v) = y.

Soundness error 1/2:When S does not contain any distinct alleles from C, then |Z| = |V (C)|.
For any set ofm hash functions {hi}

m
i=1, the size of ∪

m
i=1hi(Z

ℓ) is at mostm·|V (C)|ℓ ≤ m·(32)
−ℓ·2m ≤

m
2m · 2m = 2m−1. Thus, the probability that a uniformly selected target y ∈ {0, 1}m is in the image
∪ihi(Z

ℓ) is at most 1
2 . Note that this soundness error bound is independent of the prover’s mod δ-

CE device behavior, whether randomized or deterministic. The device output ensemble consists
of at most 2m−1/m distinct random variables over {0, 1}m, i.e. one variable Xz for each input
configuration z ∈ Zℓ. Given the uniformly selected target y, the probability that hi(Xz) = y for
some i and z is (by a union bound) at most 1/2.

Zero-Knowledge: We separately analyze the physical (DEF reveals v to POL) and compu-
tational (DEF proves there exists x ∈ ComH such that dec(x) = h and h(v) = y) stages of the
protocol. In the physical stage, POL only sees the indices of v = z + r, and since r is uniformly
distributed independent of z, v is also uniformly distributed. In the computational stage, DEF
and POL execute a ZK protocol that is UC-secure under either physical assumptions or compu-
tational setup assumptions. The composed protocol securely realizes PhysicalZK by the universal
composition theorem.

7 Conclusion and Future Directions

The need for privacy pervades not only the world of digital information, but physical information as
well. Privacy in nuclear disengagement treaties and DNA profiling are just two examples of pertinent
real world problems requiring inherently physical rather than digital solutions, and motivate the
importance of developing a better theoretical foundation for physical cryptography.

A starting point is the rigorous analysis of protocols. The approach presented in this work sepa-
rates the logical and physical components of a protocol using the language of modern cryptography,
formally reducing mathematical claims of security and correctness to the underlying physical as-
sumptions theory cannot address. Beyond that, there are structural questions: are there ZK proofs
for every physical property, or secure computation protocols for every physical task? We noted
parallels between public observation physical ZK protocols and public coin digital ZK protocols.
Can any physical ZK protocol be made into a publicly observable one?

In the physical world, opposite to the digital, general theories and impossibility results seem
difficult or impossible to achieve with only the tools of mathematics. Nonetheless, investigating
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general theories is an interesting direction for future work, perhaps beginning with restricted classes
of physical operations. An orthogonal direction is to explore other models. In subsequent work, we
show several techniques for solving generic physical tasks using a disposable circuits model in which
digital information can be destroyed.
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A Full Security Proof Example: GBG ǫ-Knowledge

The basic Bins and Balls Equality (BBE) protocol of [8] is described in Section 2. The protocol
does not actually achieve PhysicalZK, but it does achieve the closely related notion of ǫ-knowledge.
Here ǫ = n/N , where n is the capacity of the input bins, and N is the range of the random number
of balls added.

Definition 2. A protocol ρ UC ǫ-emulates an ideal functionality T if for any A there exists S
such that for all environments Z outputting a single bit: ∆(realρ,A,Z , idealT ,S,Z) ≤ ǫ, where ∆
denotes statistical variation distance. Equivalently, |Pr[realρ,A,Z = 1]− Pr[idealT ,S,Z = 1]| ≤ ǫ

A physical protocol π is a physical ǫ-knowledge protocol for property Π with respect to the physical

operation set C if its FC-hybrid translation ρ UC ǫ-emulates FΠ
ZK .

Hybrid world modeling of the GBG protocol. The operations of the hybrid model com-
piler FBB are listed in Figure 4. A bin in the hybrid world is represented by a tuple of the form
(id, value, holder, state) stored by FBB. Every operation listed models a real world operation used
in the GBG protocol. In the real world protocol, parties can monitor each other by seeing who is
holding or operating on a bin. To model this in the hybrid world, FBB allows any party to request
the (id, holder, state) of any tuple. Additionally, FBB notifies all parties of any operation executed,
and its status (accept or reject). The hybrid world GBG protocol is described in Figure 5.

Ideal functionality modeling for BBE Recall the definition of the general PhysicalZK ideal
functionality FΠ

ZK in Figure 1 of Section 3. The corresponding ideal functionality of a PhysicalZK
protocol for BBE is FBBE

ZK , where BBE denotes the physical property of bins containing equal
numbers of balls. The GBG protocol, however, has a non-negligible soundness error of 1/2. While
normally the error would be exponentially reduced by repetition, this protocol cannot be repeated
on the same physical input. The input is consumed when new balls are added to the input bins.
Thus, we will use a modified functionality FBBE

ZK,δ that allows the prover to cheat with probability
at most δ (Figure 6).

FBBE

ZK,δ runs with a party Prover, a party Verifier, and an instance of FBB specified by a process
identifier pidBB. If (idX , x, holder, state) and (idY , y, holder, state) are two tuples stored by FBB,
the relation (idX , idY ) ∈ BBE holds if and only if x = y.
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Hybrid model compiler FBB

For the following descriptions, each command is sent from party Pi to FBB.

– Create (value): Initializes a new bin with value number of balls. Generate a unique id for the bin, store
the tuple (id, value, Pi, “open”), and send the receipt (id, value, Pi, “open”) to Pi.

– Seal (id): Seals a bin. Check in the tuple (id, value, holder, state) that holder = Pi and state = “open”. If
yes, updates the tuple to (id, value, Pi, “sealed”). Otherwise reject.

– Break (id): Unseals a bin. Check in the tuple (id, value, holder, state) that holder = Pi. If yes, updates
the tuple to (id, value, Pi, “open”). Otherwise reject.

– Combine (id1, id2): Combines the contents of two bins. Check that holder1 = holder2 = Pi, state1 =
state2 = “open”. If yes, then update the tuples to (id1, 0, Pi, “open”) and (id2, value1+value2, Pi, “open”).
Otherwise reject.

– Open (id): Opens and returns the bin contents count. Check in (id, value, holder, state) that state = “open”
and holder = Pi. If yes, send (id, value) to Pi. Otherwise reject.

– Send (m,Pj): Relays message to Pj. Relay the message m to Pj . In the physical setting this could be
implemented using a number of equivalent forms of communication (speech, writing, etc.)

– Transfer (id, Pj): Transfers bin possession to Pj . Check in (id, value, holder, state) that holder = Pi. If
yes, update the tuple to (id, value, Pj , state).

– Force (id): Forcefully opens a bin. Send the entire tuple (id, value, holder, state) to Pi.

Fig. 4. The FBB-hybrid model ideal functionalities for BB

Hybrid protocol experiment. Z activates FBB and sets the input to π, the FBB-hybrid protocol,
by initializing the tuples (idX , x,Prover, “sealed”) and (idY , y,Prover, “sealed”). Next, Z activates
Prover and Verifier, sending them the process identifier pidBB for FBB. Prover and Verifier execute π
as described in Figure 5. A corrupts one, both, or none of the parties. A controls the communication
of any party it corrupts, but only acts as a proxy for Z. After π has completed, each party sends
its output to Z, who’s final view of the experiment consists of its communication tape with A and
the outputs of Prover and Verifier. Finally, Z outputs a single decision bit hybridπ,FBB,A,Z .

Ideal process experiment. Z activates FBB with process identifier pidBB and initializes the
tuples (idX , x,Prover, “sealed”) and (idY , y,Prover, “sealed”). Z sends (idX , idY , pidBB) to both
Prover and Verifier. Prover will activate FBBE

ZK,δ, whose PID we denote as ⊥. First, Prover transfers

input tuple access to FBBE

ZK,δ, executing Transfer(idX ,⊥) and Transfer(idY ,⊥). Next, it sends

pidBB and the input (idX , idY , pidBB,Prover,Verifier) to FBBE

ZK,δ, which in turn proceeds according to

Figure 6. As in [4], FBBE

ZK,δ will also mediate the ideal adversary corruption mechanism. S corrupts

a party P by sending the command (corrupt P ) to FBBE

ZK,δ. Since S cannot corrupt P before FBBE

ZK,δ

is activated, S cannot modify the environment’s input before FBBE

ZK,δ receives it. Thus, while S may
modify outputs to its corrupted parties, it cannot compromise the ideal process’s output to an
uncorrupted party. Prover and Verifier both forward the outputs they receive to Z, and Z outputs
a single decision bit ideal

FBBE

ZK ,FBB,S,Z
.

Lemma 1. The FBB-hybrid protocol π of Figure 5 UC ǫ-emulates the ideal functionality FBBE

ZK,δ

with δ = 1/2 and ǫ = n/N . In other words, for any A there exists S such that for any Z:

|Pr[hybridπ,FBB,A,Z = 1]− Pr[ideal
FBBE

ZK,δ ,FBB,S,Z
= 1]| ≤ ǫ

Proof. We use the following simple fact. Given any distinguisher algorithm D and random variables
X and Y with finite range Ω:

|Pr[D(X) = 1]− Pr[D(Y ) = 1]| ≤ ∆(X,Y )
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FBB-hybrid protocol π

Input: FBB has the input stored as (idX , x,Prover, “sealed”) and (idY , y,Prover, “sealed”) where 0 ≤ x, y ≤ n.

If x 6= y, Prover sends (Reject, (idX , idY ),BBE) to Verifier. If x = y:

1. Prover: Randomly select r0, r1 in [0,N). Create (r0) twice and Create (r1) twice, receiving receipts from
FBB with four unique id values B0,0, B0,1, B1,0, and B1,1. For each Bi,j , Seal(Bi,j) and Send(Bi,j ,Verifier).

2. Verifier: Select a random choice bit σ ∈ {0, 1}. Send (σ, Prover).
3. Prover: Break(B1−σ,0), and Break(B1−σ,1). Transfer (B1−σ,0,Verifier) and Transfer (B1−σ,1,Verifier).
4. Verifier: Open (B1−σ,0) and Open (B1−σ,1), receiving from FBB two receipts (B1−σ,0, v) and (B1−σ,1, v

′).
Check that v = v′. If v 6= v′, output (Cheater,Prover).

5. Prover: Combine (idX , Bσ,0), and Combine(idY , Bσ,1). Transfer (Bσ,0,Verifier) and Transfer
(Bσ,1,Verifier).

6. Verifier: Open (Bσ,0) and Open (Bσ,1), receiving (Bσ,0, v) and (Bσ,1, v
′) from FBB. Check that v = v′. If

yes, output (Accept, (idX , idY ),BBE). Otherwise, output (Reject, (idX , idY ),BBE).

If the protocol prematurely fails due to an invalid message or operation, both parties output Failed. If Prover
ever receives a receipt (Force,Verifier, accept) from FBB , it outputs (Cheater,Verifier).

Fig. 5. The FBB-hybrid model protocol for BBE

Functionality FBBE

ZK,δ

– Upon receiving (idX , idY , pid,Prover,Verifier) from the party Prover, query the instance of FBB spec-
ified by pid to obtain the tuples (idX , x,⊥, “sealed”) and (idY , y,⊥, “sealed”). If x = y, send
(Accept, (idX , idY ),BBE) to the party Verifier. If x 6= y, send (Reject, (idX , idY ),BBE).

– Upon receiving the instruction (Cheat, µ) from Prover for 0 ≤ µ ≤ δ, with probability µ send
(Accept, (idX , idY ),BBE) to Verifier, and otherwise send (Cheater,Prover). Upon receiving the instruc-
tion Cheat from Verifier, send (Cheater,Verifier) to Prover, and (Cheater, x, y) to Verifier.

– If the queries to FBB are unsuccessful, the initial input is invalid, or upon receiving the instruction Fail
from either party, send Failed to both parties.

Fig. 6. Ideal functionality for a ZK proof of BBE with soundness error δ

We will show that for all A there exists S such that for any environment Z, the environment’s
respective views in the hybrid protocol experiment with A and the ideal process experiment with
S are ǫ-close in statistical distance. We consider separately the four cases in which A corrupts the
Prover, the Verifier, both parties, or neither parties. (We continue to write FBBE

ZK,δ, but it should be
understood that δ = 1/2).

A corrupts Prover. S obtains (idX , idY , pidBB) from FBBE

ZK,δ. S runs a separate instance of
FBB, and simulates the hybrid protocol π using empty entries for idX and idY , and two dummy
parties P (for Prover) and V (for Verifier). S plays P using the messages coming from Z. S sends
back to Z any receipts that P receives from FBB. However, S does not send P’s output from the
simulation Z. Instead, it sends one of the following messages to FBBE

ZK,δ:

– If either P or V output Failed, then S sends Fail.
– If P cheated in the initialization of only one pair, then S sends (Cheat, 1/2).
– If P cheated in the initialization of both pairs, then S sends (Cheat, 0).
– If none of the above apply, then S sends (idX , idY , pidBB,Prover,Verifier).

Verifier writes the output received from FBBE

ZK,δ to its local output tape. S receives Prover’s

output from FBBE

ZK,δ, and writes it to Prover’s output tape. Z’s view is identical to its view in the
hybrid protocol experiment with A corrupting Prover.
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A corrupts Verifier. S obtains Z’s input (idX , idY , pidBB), and receives output from FBBE

ZK,δ:
either (Accept, (idX , idY ),BBE) in the case that x = y, or (Reject, (idX , idY ),BBE) in the case
that x 6= y. If Reject, then S writes the output to Verifier’s output tape. If Accept, then S must
simulate A’s view of the hybrid protocol π.

S runs a separate instance of FBB, creating empty entries for idX and idY , and dummy parties
P and V . S uses messages coming from Z to play V , and forwards any receipts that V receives to Z.
The only possible receipts V receives that could be statistically different in this simulated π and the
hybrid experiment π are the receipts (Bσ,0, vπ) and (Bσ,1, v

′
π) obtained in Step 6. Since the output is

Accept, we know that vπ = v′π. vπ is uniformly distributed in [x, x+N), and the simulation output
vsim is uniformly distributed in [0, N). The statistical difference is ∆(vπ, vsim) = x/N ≤ n/N = ǫ.

Next, S determines what message to send FBBE

ZK,δ. If P outputs Cheater, it sends Cheat to

FBBE

ZK,δ, receives (Cheater, x, y) as output, and writes to Verifier’s output tape whatever A would.
If P outputs Failed, S sends Fail, and writes Failed to Verifier’s output tape. Otherwise, S does
not send anything, and simply writes (Accept, (idX , idY ),BBE) to Verifier’s output tape.

The outputs are identical to the outputs in the hybrid protocol experiment given the same
inputs. Therefore, the statistical difference between Z’s views of the hybrid protocol experiment
and ideal process experiment on the same inputs is precisely the statistical difference in its com-
munication with A and S during π and the simulated π, which is at most ǫ = n/N .

A corrupts both or neither parties. If both, then S also corrupts both. Since there are
no secrets kept from S, it can run the hybrid world experiment without help. If neither, S does
nothing. For the same inputs, the outputs of Prover and Verifier are identical in the hybrid protocol
experiment and the ideal process experiment when there is no corruption.

By Lemma 1, the GBG protocol is a physical ǫ-knowledge protocol for BBE with respect to the
operation set BB.

B ORE with a mod-counter

We present an alternative zero-knowledge protocol for ORE using a mod-counter, a measurement
device that outputs neutron counts modulo N. When N is greater than the maximum possible
neutron count, the neutron counts are equal if and only if they are congruent modulo N.

Who brings the mod-counter M? The verifier cannot trust a prover’s device to output correct
values. Likewise, the prover cannot trust the verifier, who might program the device to secretly store
actual integer count values. Thus, our solution is to have the verifier program check the prover’s
mod-counter. We model M as an adaptive program computing a sequence of functions {fi} on a
sequence of inputs di, where each fi is a function of d1, ..., di, and each di is a physical neutron
detector. We assume that the prover cannot remotely change the device’s state once the verifier
takes possession of it.

1. Prover’s preparation: The prover prepares and labels m detector pairs. In each pair 1 ≤ i ≤
m, the prover initializes the count of both detectors, d1i and d2i , to a random ri ∈ [0, N). (Only
a dishonest prover may set d1i to r1i and d2i to r2i such that r1i 6= r2i ).

2. Verifier’s tests: We assume the verifier has a device to obtain the neutron count of any
detector. For each ith detector pair, the verifier performs RandomCompute with probability
1/5, and otherwise runs RandomTest :
– RandomCompute. Choose random values y1i , y

2
i ∈ [0, N). Increase the count of d1i by y1i to

r1i + y1i , and increase the count of d2i to r2i + y2i . Select random θi, and run the neutron
source, recording the scattering at θi from X using d1i and from X ′ using d2i . Query M with
d1i and d2i . The test passes if and only if M(d1i )− y1i = M(d2i )− y2i .
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– RandomTest. Measure the detectors to uncover r1i and r2i , and reject the protocol if r1i 6= r2i .
Select random t1i , t

2
i ∈ [0, 2N). Increase the count of d1i to r1i +t1i , and increase the count of d2i

to r2i + t2i . Query M with d1i and d2i . The test passes if and only if M(d1i ) ≡ r1i + t1i (mod N)
and M(d2i ) ≡ r2i + t2i (mod N).

Completeness: When xθi = x′θi for all i, then an honest prover will pass all rounds. Since M

behaves correctly, it will pass every RandomTest. For all i, the prover sets r1i = r2i = ri so that in
RandomCompute M(xθi + ri + y1i )− y1i = M(x′θi + ri + y2i )− y2i ≡ xθi + ri (mod N).

Zero-Knowledge: If the prover is honest, then on every round the initialization values are r1i =
r2i = ri and the neutron counts collected from X and X ′ and angle θi are xθi = x′θi = xi. Since ri is
uniformly distributed in [0, N), xi+ri (mod N) is also uniformly distributed in [0, N), independent
of xi.

Soundness: The success probability of a cheating prover is bounded by (4+β
5 )m where β < 1 is an

upper bound on the probability that xθ = x′θ at a uniformly distributed angle θ when X 6∼ X ′.

Proof: To simplify, assume M’s input on each round is the pair of detectors. In reality, M is
actually weaker, since it cannot examine the second detector before outputting a response for the
first. We’ll work with the hybrid model M, which is an oracle taking integer pair inputs. Denote
the output M(a, b) = (M1(a, b),M2(a, b)). Further, assume that the prover knows the values of
xθ and x′θ at every angle θ, and can predict the sequence of angles {θi}

2m
i=1 that the verifier selects.

(Soundness with a stronger prover holds against a weaker one). In calculating our upper bound we
only consider deterministic M strategies since the verifier’s strategy is independent and for any
fixed protocol input there is a deterministic strategy for M that maximizes the soundness error.

Case 1: xθi = x′θi , occurs with probability β. The prover doesn’t benefit from cheating. Case 2:

xθi 6= x′θi , the prover’s strategies are to either cheat on the initializations so that xθi +r1i = x′θi +r2i ,

or instead to keep r1i = r2i , and program M to cheat. In the latter case, the prover preselects the
ki ≤ N2 pairs for which M should pass RandomCompute. Setting M(a, b) = (a mod N, b+ xθi −
x′θi mod N) results in ki = N2.

If γi is the conditional probability that the prover passes RandomCompute on the ith round
given that xθi 6= x′θi , then Lemma 2 implies the prover succeeds in round i with probability at most:

β + (1− β)
(

1
5γi +

4
5(1−

γi
4 )

)

= β + (1− β)45 = 4+β
5 .

Lemma 2. The prover’s probability of passing RandomTest on the ith round given that xθi 6= x′θi
is at most 1− γi/4, and the optimal prover strategy achieves this probability exactly.

Proof. Consider first the case where r1i = r2i = ri. In this case, γi =
ki
N2 , where ki is the number of

pairs (y1i , y
2
i ) in [0, N) × [0, N) for which M1(xθi + r1i + y1i ) − y1i = M2(x

′
θi
+ r2i + y2i ) − y2i . For

each of these ki pairs, let t1i = xθi + y1i and t2i = x′θi + y2i . Either M1(t
1
i + ri) 6= t1i (mod N) or

M2(t
2
i + ri) 6= t2i (mod N), and so M would fail RandomTest if the verifier chooses the pair (t1i , t

2
i ).

Thus, there are at least ki distinct pairs in [0, 2N) × [0, 2N), that cause M to fail RandomTest,
and the prover’s conditional probability of passing RandomTest is at most 1 − ki

(2N)2
= 1 − γi

4 .

The prover can program M to pass (i.e. behave normally) on all other 4N2 − ki pairs, so there
is a prover strategy that passes RandomTest with probability exactly 1 − γi

4 . We will show that
this strategy is optimal. Consider the second case where the prover cheats by setting r1i and r2i
so that xθi + r1i = x′θi + r2i . With this strategy, γi = 1, but since r1i 6= r2i , the prover always fails
RandomTest, failing the overall round with probability 1/2. This strategy is suboptimal because
the previous strategy passes with probability 3/4 when setting ki = N2 so that γi = 1.
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