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Abstract. Protocols for secure two-party computation enable a pair of
mistrusting parties to compute a joint function of their private inputs
without revealing anything but the output. One of the fundamental tech-
niques for obtaining secure computation is that of Yao’s garbled circuits.
In the setting of malicious adversaries, where the corrupted party can
follow any arbitrary (polynomial-time) strategy in an attempt to breach
security, the cut-and-choose technique is used to ensure that the garbled
circuit is constructed correctly. The cost of this technique is the construc-
tion and transmission of multiple circuits; specifically, s garbled circuits
are used in order to obtain a maximum cheating probability of 2−s.
In this paper, we show how to reduce the amortized cost of cut-and-
choose based secure two-party computation in the batch and online/offline

settings to O
(

s
logN

)
garbled circuits when N secure computations are

run. Although O( s
logN

) may seem to be a mild efficiency improvement
asymptotically, it is a dramatic improvement for concrete parameters
since s is a statistical security parameter and so is typically small. Specif-
ically, instead of 40 circuits to obtain an error of 2−40, when running 210

executions we need only 7.06 circuits on average per secure computa-
tion, and when running 220 executions this is reduces to an average of
just 4.08. In addition, in the online/offline setting, the online phase per
secure computation consists of evaluating only 6 garbled circuits for 210

executions and 4 garbled circuits for 220 executions (plus some small
additional overhead). In practice, when using fast implementations (like
the JustGarble framework of Bellare et al.), the resulting protocol is
remarkably fast.
We present a number of variants of our protocols with different as-
sumptions and efficiency levels. Our basic protocols rely on the DDH
assumption alone, while our most efficient variants are proven secure in
the random-oracle model. Interestingly, the variant in the random-oracle
model of our protocol for the online/offline setting has online communi-
cation that is independent of the size of the circuit in use. None of the
previous protocols in the online/offline setting achieves this property,
which is very significant since communication is usually a dominant cost
in practice.
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1 Introduction

1.1 Background

In the setting of secure two-party computation, a pair of parties with private
inputs wish to compute a joint function of their inputs. The computation should
maintain privacy (meaning that the legitimate output but nothing else is re-
vealed), correctness (meaning that the output is correctly computed), and more.
These properties should be maintained even if one of the parties is corrupted.
The feasibility of secure computation was demonstrated in the 1980s, where it
was shown that any probabilistic polynomial-time functionality can be securely
computed [Yao86, GMW87].

The two main adversary models that have been considered in the litera-
ture are semi-honest and malicious. A semi-honest adversary follows the pro-
tocol specification but attempts to learn more than allowed by inspecting the
transcript. In contrast, a malicious adversary can follow any arbitrary (prob-
abilistic polynomial-time) strategy in an attempt to break the security guar-
antees of the protocol. On the one hand, the security guarantees in the semi-
honest case are rather weak, but there exist extraordinarily efficient protocols
[HEKM11, BHR12b, ALSZ13]. On the other hand, the security guarantees in
the malicious case are very strong, but they come at a significant computational
cost.

The goal of constructing efficient secure two-party (2PC) computation proto-
cols in the presence of malicious adversaries has been an active area of research
in the recent years. [JS07, NO09] construct 2PC protocols with a small number
of exponentiations per gate of the circuit, which is quite inefficient in prac-
tice. [IPS08, IKO+11] construct 2PC protocols based on the MPC-in-the-head
approach which (asymptotically) requires only a small number of symmetric-
key operations per gate of the circuit, though no implementation has been
presented yet to clarify the concrete complexity of this approach in practice.
[NNOB12, FJN+13] construct 2PC protocols in the random-oracle model with
(amortized) O(s/ log(|C|)) symmetric-key operations per gate of the circuit,
where s is a security parameter and C(·) is a boolean circuit that computes
the function of interest. [DPSZ12, DKL+13] construct secure multi-party com-
putation protocols with security against all-but-one corrupted parties, and thus,
could be used in the two-party setting as well. These protocols use somewhat
homomorphic encryption. The protocols of [NNOB12, DPSZ12, DKL+13] all re-
quire a number of rounds of communication that is in the order of the depth
of the circuit being computed.1 Thus, their performance is limited in the case
of deep circuits, and when parties are geographically far and so communication
latency is significant.

A different approach that has received a lot of attention is based on ap-
plying the cut-and-choose technique to Yao’s garbled-circuit protocol. In this
technique, one of the parties prepares many garbled circuits, and the other

1 The protocol of [FJN+13] is constant round. However, its concrete efficiency has not
been established.



asks to open a random subset of them in order to verify that they are cor-
rect; the parties then evaluate the remaining, unchecked circuits. This forces the
party generating the garbled circuits to make most of them correct, or it will be
caught cheating (solving perhaps the biggest problem in applying Yao’s protocol
to the malicious setting, which is that an incorrect garbled circuit that com-
putes the wrong function cannot be distinguished from a correct garbled circuit).
[MF06, LP07, LP11, SS11, Lin13, MR13, SS13] present different 2PC protocols
based on this approach, and several implementations have been presented to
study the concrete efficiency of it in practice (e.g.[PSSW09, SS11, KSS12, SS13]).
In this work we focus on the cut-and-choose approach.

Is it possible to go below s garbled circuits with 2−s error? Until the
recent work of [Lin13], protocols that use the cut-and-choose technique required
approximately 3s garbled circuits to obtain a bound of 2−s on the cheating prob-
ability by the adversary. Recently, [Lin13] showed that by executing another light
2PC, the number of garbled circuits can be reduced to s, which seems optimal
given that 2−s is the probability that a “cut” is as bad as possible (meaning that
all the checked circuits are good and all the unchecked circuits are bad). The
number of garbled circuits affects both computation time and communication.
In most applications, when |C| is large, sending s garbled circuits becomes the
dominant overhead. (For example, [HMSG13] showed a prototype for garbling
a circuit on GPUs, which generates more than 30 million gates per second. The
communication size of this number of gates is about 15GB, and transferring
15GB of data most likely takes much more than a second.) Thus, further reduc-
ing the number of circuits is an important goal. This goal is the focus of this
paper.

2PC with offline and online stages. In the online/offline setting, the parties
try to push as much work as possible to an offline stage in which they do not
know their inputs. Later, in the online stage, when they have their inputs, they
use the results of the offline stage to run a very efficient online phase, possibly
with much lower latency than their standard counterparts.

The protocols of [NNOB12, DPSZ12, DKL+13] are especially well suited
to the online/offline setting, and have extremely efficient online stages.2 How-
ever, these protocols require many rounds of interaction in the online stage (i.e.,
O(depth(C)) rounds). They therefore become considerably slower for deep cir-
cuits and over high-latency networks.

Previous cut-and-choose based protocols work only in the regular setting, in
which both parties run the protocol from beginning to its end. Note that cut-
and-choose based 2PC protocols are constant-round, which is another reason for
trying to apply them in the online/offline setting.

2 In fact, the protocols of [NNOB12, DPSZ12, DKL+13] allow the parties to choose
the function also in the online stage. In this work we assume that the function is
known in the offline stage, and it is only the inputs that are obtained later.



1.2 Our Contributions

As we have mentioned, the goal of this paper is to reduce the number of circuits
in cut-and-choose on Yao’s garbled circuits. We achieve this goal in the multiple-
execution setting, where a pair of parties run many executions of the protocol.
As we will see, this enables the parties to amortize the cost of the check-circuits
over many executions.

Amortizing checks over multiple executions. In the single-execution set-
ting, party P1 constructs s circuits and party P2 asks to open a random subset of
them. If P1 makes some of them incorrect and some correct, then it can always
succeed in cheating if P2 opens all of the good circuits and the remaining are
all bad. Since this bad event can happen with probability 2−s, this approach to
cut-and-choose seems to have a limitation of s circuits for 2−s error. However,
consider now the case that the parties wish to run N executions. One possibil-
ity is to simply prepare N · s circuits and work as in the single execution case.
Alternatively, P1 can prepare c · N circuits (for some constant c); then P1 can
ask to open a subset of the circuits; finally, P2 randomly assigns the remaining
circuits to N small buckets of size B (where one bucket is used for every execu-
tion). The protocol that we use, which is based on [Lin13], has the property that
P1 can cheat only if there is a bucket in which all of the circuits are bad. The
probability of this happening when not too many bad circuits are constructed
by P1 is very small, but if P1 does construct many bad circuits then it will be
caught even if a relatively small subset of circuits is checked.

This idea is very powerful and it enables us to obtain an extraordinary
speedup over the single-execution case. Asymptotically, only O( s

logN ) garbled

circuits are needed per execution (on average). Concretely, if the parties wish
to run N = 1024 executions and maintain an error of 2−40, then it suffices to
construct 7229 circuits, check 15% of them, and randomly map the remaining
into buckets of size 6. The number of circuits per execution is thus reduced from
40 to 7.06, which is a considerable improvement. As the number of executions
grows, the improvement is more significant. Specifically, for N = 1, 048, 576 and
an error of 2−40, it suffices to construct 4,279,903 circuits, check 2% of them, and
randomly map the remaining into buckets of size 4. The number of circuits per
execution is thus reduced to just 4.08, which is almost a tenfold improvement!
Finally, we note that improvements are obtained even for small numbers of N ;
e.g., for N = 10 the number of circuits per execution is reduced to 20, which is
half the cost.

The batch setting – parallel executions. In this setting, the parties run
N executions in parallel. Formally, they compute the functionality F (x,y) =
(f(x1, y1), . . . , f(xN , yN )) where x = (x1, . . . , xN ) and y = (y1, . . . , yN ). We
start with the protocol of [Lin13] and apply our amortized checking technique in

order to use only O
(

s
logN

)
garbled circuits per execution. However, the protocol

of [Lin13] does not work in a setting where the circuits are constructed without
knowing which circuits will be placed together in a single bucket. In Section 2.2
we describe the problems that arise and how we overcome them.



The online/offline setting. Next, we turn to the online/offline setting, with
the aim of constructing an efficient 2PC protocol with a constant-round online
stage and low latency. In order to achieve this, we show how to adapt the proto-
col of [Lin13] to the online/offline setting, and then use the amortized checking
technique described above to significantly reduce the number of circuits needed.
There are many issues that arise when trying to run cut-and-choose based pro-
tocols in the online/offline setting, mainly due to the fact that many of the
techniques used to prevent cheating when cut-and-choose is used assume that
the parties inputs are fixed even before the cut-and-choose takes place. In Sec-
tion 2.3 we present a high-level description of our protocol, and our solutions to
the problems that arise in this setting with cut-and-choose.

Our protocol achieves very high efficiency. First, the overall time (offline and
online) is much lower than running a separate execution for every computation.
Thus, we do not obtain a very fast online time at the expense of a very slow offline
time. Rather, the overall protocol is highly efficient, and most of the work can
be carried out in the offline phase. Second, our online phase requires very little
communication, the evaluation of a small number of circuits, and little overhead.
Concretely, when 1,000 executions are prepared in the offline phase, then the
online phase requires evaluating only 5 circuits; in modern implementations like
[BHR12b] and [HMSG13], this is extremely fast (with more executions, this is
even further reduced).

Our basic protocol for the online/offline setting is the first (efficient) 2PC
protocol in that setting with a constant-round online phase and security in the
standard model (with security under the DDH assumption). In the full version,
we show how to further reduce the complexity of the online stage, including a
method for significantly reducing the communication of the online stage to be
independent of |C|, in the random-oracle model. We stress that the most efficient
protocols of [NNOB12, DPSZ12, DKL+13], which also work in the random-oracle
model, require at least O(|C|) communication in the online stage, and at least
depth(C) rounds.

Concurrent work. In independent concurrent work, [HKK+14] show how to
amortize the number of garbled circuits for multiple-executions of secure compu-
tation in a similar fashion to ours. However, here, we additionally focus on reduc-
ing the overhead of the cheating-recovery step (e.g. by amortizing its number of
garbled circuits as well, and by moving most of its cost to the offline stage) and
on minimizing the number of exponentiations in the online stage. We note that
in the cut-and-choose of [HKK+14], P2 always checks half of the circuits. In con-
trast, we show that better results can be obtained using different parameters; we
believe that our analysis can be used in their protocol in a straightforward way.

1.3 Organization

Due to the lack of space in this abstract, we provide only an outline and high-
level description of our techniques. A full description of our protocols, proofs
of security, and a full combinatorial analysis of the number of circuits needed
appears in the full version.



2 High Level Description of Our Techniques

We describe the main ideas behind our protocols. For simplicity, we focus here
on specific parameters, though in Section 3 and in the full version we give a more
general analysis of the possible parameters.

We begin by describing how cut-and-choose on Yao’s protocol can be made
more efficient (with low amortized cost) in batch settings where many compu-
tations take place. Then, we show how to achieve security in the online/offline
setting where parties’ inputs are fixed in the online phase. The low amortized
cost for the batch setting is relevant both to the online/offline setting and to a
setting where many computations take place in parallel.

2.1 Amortized Cut-and-Choose in Multiple Executions

We now describe how the number of circuits in cut-and-choose can be dramat-
ically reduced in the case that many secure computation executions are run
between two parties (either in parallel or in an online/offline setting). Assume
that P1 and P2 would like to execute N protocols with maximum error proba-
bility of 2−s, where s is a statistical security parameter. The naive approach of
running the protocol of [Lin13] N times would require them to use a total num-
ber of garbled circuits of N·s. As discussed earlier, our main goal in this paper is
to reduce the number of garbled circuits by amortizing the overhead when many
invocations of 2PC are executed.3 The ideas described here will be used in both
the batch protocol (Section 2.2) and the online/offline protocol (Section 2.3).

Recall that in cut-and-choose based two-party computation, P1 prepares s
garbled circuits, P2 asks P1 to open a random subset of them which are then
checked by P2, and then P2 evaluates the remaining circuits. The main idea
behind our technique is to run the cut-and-choose on many circuits, and then
randomly combine the remaining ones into N sets (or “buckets”), where each
set will be used for a single evaluation. The intuition behind this idea is as
follows. The cheating recovery method of [Lin13] (described below in Section 2.2)
ensures that security is preserved unless all evaluation circuits in a single set are
incorrect. Now, by checking many circuits together and randomly combining
them, the probability that one set will have all incorrect circuits (but yet no
incorrect circuits were checked) is very small.

In more detail, in our technique P1 prepares 2N · B garbled circuits and
sends them to P2, where B is a parameter we define later. For each circuit, P2

chooses with probability 1/2 whether to check it or to use it later for evaluation.
(This means that on average, P2 checks N · B circuits. In our actual protocol
we make sure that exactly N · B circuits remain. In addition, as we discuss
below, we will typically not check half of the circuits and lower probabilities give

3
We remark that it is possible to increase the number of check circuits and reduce the number of
evaluated circuits in an online/offline version of the protocol of [Lin13], in order to improve the

online time. For example, in order to maintain error of 2−40, one can construct 80 circuits overall,
and can check 70 and evaluate only 10. This will reduce the online time from approximately 20 to
10 (since in [Lin13] approximately half the circuits are evaluated). However, as we can see from
this example, the total number of circuits grows very fast, rendering this approach ineffective.



better results.) Then, P2 chooses a random mapping function π : [N ·B]→ [N ]
that maps each of the remaining circuits in a “bucket” of B circuits, which will
later be used as the evaluation-circuits of a single two-party protocol execution.
Clearly, a malicious P1 could prepare a small number of incorrect garbled circuits
(say O(β)), and not be caught in the checks with good probability (here β < s
and so 2−β probability is too high). However, since π is chosen at random by
P2, we show that unless there are many incorrect circuits, the probability that
any one of the buckets contains only incorrectly constructed garbled circuits
is smaller than 2−s. We prove that when B ≥ s

1+logN + 1, the probability

that any bucket contains B incorrect circuits (and so all are incorrect) is at
most 2−s. Thus, the total number of circuits is 2N · B = 2Ns

1+logN + 2N . When

logN > 2s
s−2 − 1 we have that 2N ·B < N · s and so a concrete improvement is

obtained from just using [Lin13] even for just a few executions. Asymptotically,
the number of circuits per execution is O( s

logN ), which shows that when N
gets larger, the amortized number of circuits becomes small. When plugging in
concrete numbers that are relevant in practice, the improvement is striking. For
example, consider s = 40 and N = 512 executions (observe that logN = 9 and
2s
s−2 − 1 = 1.10 and so the condition is fulfilled). Now, for these parameters we
have B = d s

1+logN + 1e = 5, and so only 512 × 10 garbled circuits are needed
overall, with just 5 circuits evaluated in each execution. This is better by a
factor of 4 compared to the Ns option. When many executions are run, even
better numbers are obtained. For example, with N = 524288 we obtain that
only 524288 × 6 circuits are needed overall (better by a factor of 6 2

3 than the
naive option).

We remark that the probability of checking or evaluating a circuit greatly
influences the number of circuits. Above, we have assumed that this probability
is 1

2 . In Section 3 we analyse the above parameters in the general case. As we will
see, better parameters are typically achieved with lower probabilities of checking
a circuit. In addition, when working in the online/offline setting, this flexibility
actually provides a tradeoff between the number of circuits in the online and
in the offline phases. This is due to the fact that checking more circuits in the
offline stage reduces the number of circuits to be evaluated in the online stage
but increases the number of circuits checked in the offline phase.

In the protocol of [Lin13] secure computation is also used for the cheating
recovery mechanism (described below in Section 2.2). This mechanism works as
long as a majority of the circuits in a bucket are good. In the multiple-execution
setting, we use a similar method for bucketizing these circuits, while guaranteeing
that a majority of the circuits in any bucket be good (rather than just ensuring at
least one good circuit). Using this method we significantly reduce the number of
circuits needed for the cheating recovery. E.g., for N = 1024 protocol executions
we need only buckets of size B = 12, and a total number of circuits of 24576 (i.e,,
24 circuits per execution). The protocol of [Lin13] requires about 125 circuits
per execution, and thus we obtain an improvement of a factor of 5 in this part
of the protocol (for these parameters).



More concrete examples. In Section 3 we provide a full analysis of the cheat-
ing probability for different choices of parameters. We describe some concrete
examples here with s = 40, in order to provide more of an understanding of the
efficiency gains obtained; in the full version of this paper, we show the cost for
many different choice of parameters. When considering 210 and 220 executions,
the best choices and the resulting cost is summarized in the following table (the
bucket size is the number of circuits evaluated in the online phase):

Number of p Bucket Overall number of Average # circuits
executions N size(B) circuits (dB ·N/pe) per execution

210 0.1 4 40,960 40.00
210 0.65 5 7,877 7.69
210 0.85 6 7,229 7.06

220 0.65 3 4,839,582 4.62
220 0.98 4 4,279,903 4.08

Table 1. Best parameters for s = 40 (p is the probability that a circuit is not checked)

Observe that in the case of p = 0.1, the average number of circuits is the
same as in a single execution. However, it has the lowest online time. In contrast,
at the price of just a single additional circuit in the online time, the offline time
is reduced by a factor of over 5. In general, the bigger p is, the smaller the total
number of balls is (up to a certain limit). However, the number of balls in each
bucket grows proportionally with p. This means that using p it is possible to
obtain a tradeoff between online and offline time. Specifically, a higher p means
less circuits overall but more circuits in the online stage (where each bucket is
evaluated), thereby reducing the offline time at the expense of increasing the
online time. Conversely, a lower p means more circuits in the offline stage and
smaller bucket and so less computation in the online stage.

We remark that improvements are not only obtained for large values of N . In
the case of N = 32, with p = 0.75 we obtain buckets of size 10 (so 10 evaluations
in the online phase) and an average of 13.34 circuits overall per execution. This is
a considerable improvement over 40 circuits as required in [Lin13]. Of course, as
N becomes smaller, the improvement is less significant. Nevertheless, for N = 10,
with p = 0.55 we obtain an average of 20 circuits per execution, which is half the
cost of [Lin13]. Going to the other extreme, with a huge number of executions
the amortized cost becomes very small. Taking N = 230 (which isn’t practical
today but may be in the future), we can take p = 0.99 and obtain buckets of size
3 and an overall overage of just 3.03 circuits per execution. In the full version of
the paper we also present graphs of the dependence of B and the total number
of circuits in p, and how the average number of balls per bucket decreases as the
number of buckets grows.

Regarding the number of circuits required for the cheating-recovery mecha-
nism, for N = 210 we get that B = 12, and that the total number of circuits is
12× 1024× 2 = 24576 (i.e,, 24 circuits per execution). For N = 220 we get that
B = 6, and that the total number of circuits is 6 × 1048576 × 2 = 12, 582, 912
(i.e,, 12 circuits per execution). This is in contrast to 125 circuits, as required
in [Lin13].



2.2 Batch Two-Party Computation

The protocol of [Lin13] requires s garbled circuits per 2PC execution for achiev-
ing soundness of 2−s. Here we would like to reduce this overhead when multiple
executions of 2PC are executed in a batch setting; i.e., run in parallel. In this
section, we assume that the reader is familiar with the protocol of [Lin13].

If we try to use the protocol of [Lin13] as-is in the batch setting, and take
advantage of the ideas presented in Section 2.1, two problematic issues arise. We
now describe these issues and how we solve them.

First, in the cut-and-choose oblivious transfer of [Lin13], the receiver uses
only one input to all OTs, whereas in the batch setting, P2 should be able to
input many different inputs, and they have to be consistent in each bucket. This
consistency of P2’s input is enforced by having P2 prove in zero knowledge that
its OT queries are for the same input in all circuits. In order to enable P2 to
use separate inputs in each bucket, we modify the protocol as follows. First, P2

privately selects which circuits to use and how to bucket them before the OTs
are executed. Then, the parties run the cut-and-choose OT, where P2 inputs its
j-th input in the circuits that it chose to be in the j-th bucket. However, P2 does
not prove consistency of its input at this point (since the buckets are not yet
known to P1), but rather postpones this proof until after it sends the cut and
random mapping to buckets to P1. After the mapping to buckets has been given
to P1, it is possible for P2 to separately prove in zero knowledge for every bucket
that its OT queries in the j-th bucket are for the same input. Observe also that
since this proof is given before P2 can evaluate any circuit, no information can
be gained if P2 tries to cheat.

A second issue that arises when trying to use the protocol of [Lin13] in the
batch setting is what P2 does in the case that it gets different outputs in some of
the evaluated circuits. We call this mechanism of [Lin13] cheating recovery since
it enables P2 to obtain correct output when P1 has tried to cheat. In order for
this mechanism to work, [Lin13] uses the same output labels in all circuits, and
in case P2 gets different labels for the same wire (meaning different outputs), the
two labels allow it to recover P1’s input. Unfortunately, this technique cannot
work in the batch setting, since there, naturally, P2 would get different outputs
from different buckets, and thus will always learn two labels of some output wire.
This would enable a cheating P2 to learn P1’s input.

Our solution to this problem is as follows. For simplicity, assume that there
is only one output wire, and assume that D is a special constant that is revealed
to P2 in the case that it receives different output values on the wire in different
circuits (we later describe how this “magic” happens). Recall that in [Lin13],
a second, lighter, two-party computation is executed with a boolean circuit C ′,
where P1 inputs (x,D) (with x being the value used in computing the actual
circuit), P2 inputs d, and C ′(x,D, d) = x if d = D, and 0 otherwise. Thus, if P2

obtained D due to receiving different outputs in different circuits, then in the
second two-party computation it inputs d = D and learns x, thereby enabling it
to locally compute the correct output f(x, y). Otherwise, if learns nothing about
x; in addition, P1 does not know if P2 learned x or not.



Instead of using the same output labels in all garbled circuits, P1 uses random
ones (as in the standard Yao’s circuit). After P2 announces the “cut” in the
offline stage and the mapping to the buckets, P1 opens the checked circuits
and P2 verifies them as described before. Then in the online stage the parties
follow the next steps. For every bucket (separately), P1 chooses a random D.
Concretely, consider the j-th bucket; then P1 chooses random values Dj and Rj .
Denote the garbled circuits in the j-th bucket by gc1, gc2, . . . gcB . Furthermore,
denote the output-wire labels of circuit gci by W 0

i ,W
1
i . P1 sends the encryptions

{ EncW 0
i
(Rj), EncW 1

i
(Rj ⊕ Dj) }i=1,...,B . P1 also sends P2 the hash Hash(Dj).

The purpose of these encryptions and hash is that in case P2 learns two output
labels that correspond to different outputs, P2 can learn both Rj and Rj⊕Dj and
can use it to recover Dj . It then verifies that it has the right Dj using Hash(Dj).
(In the case of many output wires, each output wire in a bucket encrypts in
the above way using a different Rj . Thus, Dj can be obtained from any pair of
output wire labels in the j-th bucket.)

After P2 evaluates the circuits of C, it learns a set of labelsW ′ = {W ′1, . . . ,W ′B}.
P2 uses the values of W ′ to decrypt the corresponding c0i = EncW 0

i
(Rj) or

c1i = EncW 1
i
(Rj ⊕ Dj). In case P2 learns both W 0

i and W 1
i , it can recover

dj = DecW 0
i
(c0i ) ⊕ DecW 1

i
(c1i ) (which should equal Dj = Rj ⊕ (Rj ⊕ Dj)). In

case P2 gets many “potential” D’s (which can happen if P1 does not construct
the values honestly), it can identify the correct one using the value Hash(Dj).
Next, the parties execute the 2PC protocol with the circuit C ′(x,D, d), and P2

learns x in case it learned the correct Dj earlier. Finally, P2 verifies that P1 con-
structed all of the values for the cheating recovery correctly. This check is carried
out after the 2PC protocol for C ′ has concluded, since at this point revealing Dj

to P2 can cause no damage. For this check, P1 reveals all of the pairs W 0
i ,W

1
i ,

allowing P2 to check that the encryptions {EncW 0
i
(Rj),EncW 1

i
(Rj⊕Dj)}i=1,...,B

and Hash(Dj) are consistent. Since P1 can cheat regarding the output labels
W 0
i ,W

1
i , we require that when it sends a garbled circuit (before the cut is re-

vealed), it also sends commitments on all the output wire labels of that circuit.
These commitments are checked if the circuit is chosen to be checked in the
cut-and-choose. Thus, any good circuit has the property that the output labels
encrypt Rj and Rj ⊕Dj .

Unfortunately, the above does not suffice to ensure that P2 learns Dj in
the case that there are two different outputs. This is due to the fact that it is
only guaranteed that one circuit in the bucket is good. Now, if P2 receives two
different outputs in two different circuits, then the second circuit may not be
good and so P2 may obtain the correct Rj from the good circuit but some value
Sj 6= Rj ⊕Dj from the other.

Nevertheless, in the case that P2 received different outputs, but did not obtain
Dj that is consistent with the hashed value Hash(Dj) sent by P1, party P2

simply outputs the output of the garbled circuit for which the output labels it
received from the evaluation are all consistent with the output labels that were
decommitted. To see why this suffices, observe that P2 receives two different
outputs, and one of them is from a good circuit. Denote the two circuits from



which P2 receives different outputs by gc1, gc2, and denote by gc1 the circuit
that was correctly garbled. Then, there are two possibilities: (1) P2 obtained the
correct Dj , and thus recovers x using the second 2PC (and can output the correct
f(x, y) by just computing the function f with P1’s input x); (2) P2 did not
recover the correct Dj , meaning that the output labels it received do not decrypt
Rj and Rj ⊕ Dj . However, since gc1 is correct, including the commitments on
its output labels, and since EncW 0

i
(Rj) and EncW 1

i
(Rj ⊕ Dj) are checked, gc1

gives P2 the correct value (either Rj or Rj ⊕Dj , depending on the output bit in
question). Now, if the output label that P2 received from gc2 also decrypts its
corresponding Rj or Rj ⊕Dj , then P2 should have learnt the correct Dj . This
means that the label that P2 received in gc2 does not match the label that P1

revealed from the decommitment on gc2’s output labels. Thus, P2 knows that gc1
is the correct circuit and not gc2, and can take the output of the computation to
be the output of gc1. (Note that by what we have explained, if P2 does not obtain
Dj and the checks on the commitments and encryptions passed, then there is
only one circuit in which the output labels obtained by P2 are consistent with
the commitments. Thus, there is no ambiguity regarding the output.)

Although the above issues are the main parts of the cheating-recovery process
of our protocols, there are other small steps that are needed in order to make
sure that the protocol is secure. For example, P2 should verify that P1 inputs
the correct D to C ′. Also, efficiency-wise, recall that 3s garbled circuits of C ′

are used in the protocol of [Lin13]; here, we amortize their cut-and-choose as
well, as described above. These issues are dealt with in the detailed description
of the protocol in the full version.

2.3 Two-Party Computation with Online/Offline Stages

Protocols for secure computation in the presence of malicious adversaries via cut-
and-choose on garbled circuits employ a number of methods to prevent cheating.
First, many circuits are sent and a fraction checked, in order to ensure that some
of the garbled circuits are correct (this is the basic cut-and-choose). Second,
since many circuits are evaluated in the evaluation phase, it is necessary to force
P1 and P2 to use the same input in every circuit in an evaluation. Third, so-
called selective OT attacks must be thwarted (where a cheating P1 provides
correct circuits but partially incorrect values in the oblivious transfer phase
where P2 receives keys to decrypt the circuits, based on its input). Finally, the
cheating recovery technique described in Section 2.2 is used to enable P2 to
complete the computation correctly in case some of the evaluation circuits are
correct and some are incorrect. In all existing protocols, some (if not all) of
the aforementioned checks utilize the fact that the parties’ inputs are given and
fixed before the checks are carried out (in fact, in [Lin13] even the basic cut-and-
choose on circuits is intertwined with the selective OT attack prevention and so
requires the inputs to already be fixed). Thus, these protocols do not work in
the online/offline setting.

In this section, we describe how to deploy these methods in an online/offline
setting where the checks are carried out in the offline setting, and the online



setting should be very fast.4 Ideally, the online setting should have no exponen-
tiations, and should involve some minimal communication (that is independent
of the circuit size) and the evaluation of the circuits in the bucket only. Our
protocol achieves this goal, with some small additional work in the online stage.
We note that in the standard model we do require some exponentiations in the
online phase, but just two per circuit which in practice is insignificant. In addi-
tion, P1 needs to transmit B garbled circuits to P2 for evaluation in the online
phase, where B is the bucket size (in practice, a small constant of between 4 and
6). We also present a variant of our protocol in the random oracle model that
requires no exponentiations whatsoever in the online phase, and has very little
communication; in particular, the communication is independent of the circuit
size. The use of a random oracle is due to problems that arise when adaptively-
secure garbled circuits [BHR12a] are needed. This issue is discussed separately
in Section 2.4.

Ensuring correctness of the garbled circuit. Intuitively, the aim of the
cut-and-choose process is to verify that the garbled circuits are correct. Thus,
it is possible to run this process (send all circuits and then open and check a
fraction of them) in an offline stage even before the parties have inputs. Then,
in the online stage, when the parties have inputs and would like to compute the
output of the computation as fast as possible, they only need to evaluate the
remaining “evaluation” circuits, which results in a much lower latency.

Enforcing P1’s input consistency. We start with the approach taken in
[MF06, LP11, SS11]. Let wire j be an input-wire of P1. In a standard garbling
process, two random strings are chosen as the labels of wire j. However, here,
the two labels are chosen to be commitments to the actual value they represent,
e.g., the label that corresponds to the bit 0 is actually a commitment to 0 (more
exactly, the label is the output of a hash function, which is also a randomness
extractor, on the appropriate commitment). In addition, the commitments used
have the property that one can prove equality of multiple committed messages
with high efficiency, without revealing the actual messages.

This solution can be used in the online/offline setting in a straightforward
way. Namely, when a circuit is checked, these commitments are checked as well. In
contrast, when a set of circuits is used for evaluation, P1 sends the commitments
that correspond to its input, along with a proof that they are all commitments
to the same bit 0 or 1. However, the disadvantage of this method is that it
requires a few exponentiations per bit of P1’s input, and we would like to move
all exponentiations possible to the offline stage. In order to achieve this, instead
of directly computing f(x, y), we modify the garbled circuit to compute the
function f ′

(
x(1), x(2), y

)
= f

(
x(1) ⊕ x(2), y

)
, where x(1) and x(2) are P1’s inputs

and are chosen randomly by P1 under the constraint that x(1) ⊕ x(2) = x. In
the garbling process, the garbled labels of the wires of x(1) are constructed using

4 Our aim here is to reduce the work of the online stage as much as possible, in order
to achieve very fast computation in the online stage. Tradeoffs between the offline
and online stages are of course possible, and we leave this for future work.



the commitment method of [MF06, LP11, SS11], while the labels of the wires
of x(2) are standard (i.e., random strings). In addition, for each wire of x(2), P2

sends commitments on the two input-wire labels (i.e., if the labels are W 0,W 1,
P1 sends Com(0‖W 0),Com(1‖W 1)). Now, in the offline stage, when a circuit is
checked, P2 verifies that all of the above was followed correctly. Furthermore, in
the circuits that are to be evaluated, P1 chooses a random x(1) and sends the
commitments that correspond to x(1) along with the proof of message equality.
This proves to P2 that P1’s input x(1) is the same in all evaluated circuits (of
course, at least in the properly constructed circuits). All this is carried out
in the offline phase.

In the online stage, when P1 knows x, it sends P2 the actual value of x(2) =
x(1) ⊕ x, along with the decommitments of the labels that correspond to x(2)

(the decommitments prove that the same x(2) is sent in all circuits). We stress
that x(2) is sent in the clear, and is the same for all evaluated circuits (this
reveals nothing about x since x(1) is random and not revealed). As a result, the
same x(1) and x(2) is used in all circuits (the consistency of x(1) is enforced in the
offline phase, and the consistency of x(2) is immediate since it is sent in the clear)
and so the same x is used in all evaluated circuits. Note that no exponentiations
are needed in the online stage, and only a small number of decommitments and
decryptions are computed.

In summary, online/offline consistency of P1’s input is obtained by randomly
splitting P1’s input into a secret part x(1) (which is dealt with in the offline
stage), and a public part x(2) which can be revealed in the online stage. Since
x(2) can be chosen to equal x ⊕ x(1) in the online phase, after x is known, the
correct result is obtained and consistency is preserved at very little online cost.

Protecting against selective-OT attacks. We use a variant of the cut-and-
choose oblivious transfer protocols of [LP11, Lin13], and modify it to work in the
online/offline setting. The modification is similar to the method used for P1’s in-
put; i.e., instead of computing the function f ′

(
x(1), x(2), y

)
= f

(
x(1) ⊕ x(2), y

)
as

above, the parties compute f ′′
(
x(1), x(2), y(1), y(2)

)
= f

(
x(1) ⊕ x(2), y(1) ⊕ y(2)

)
,

where P2 uses a random value for y(1) in the offline stage, and later uses y(2) =
y(1)⊕y once it knows its input y in the online stage. The cut-and-choose oblivious
transfer protocol is used for protecting against selective OT attacks on the OTs
that are used for P2 to learn the garbled labels of y(1). In contrast, the labels of
y(2) are obtained by having P2 send y(2) in the clear and having P1 send the as-
sociated garbled labels (these labels are committed in the offline phase and thus
the labels are sent to P2 as decommitments, which prevents P1 from changing
them). As before, all exponentiations are carried out in the offline stage alone.

Cheating recovery. The protocol of [Lin13] uses a cheating recovery process
for allowing P2 to learn x in case P2 obtains different outputs from the evaluated
circuits. This method allows for only s circuits to be used in order to obtain 2−s

cheating probability, since an adversary can only cheat if all checked circuits are
correct and all evaluated circuits are incorrect. However, the protocol of [Lin13]
requires the parties to run the cheating recovery process before the checked



circuits are opened, which obviously is unsatisfactory in the online/offline setting
since now P2 does all the expensive checking in the online stage again.

Our solution for this problem is the same solution as described above for
the batch setting; see Section 2.2. Namely, assume that D is a special constant
that is revealed to P2 in the case that it receives different output values on the
wire in different circuits, and for simplicity assume that there is only one output
wire. We would like to securely compute the boolean circuit C ′

(
x(1), D, d

)
, where

(x(1), D) are P1’s input, d is P2’s input, and C ′
(
x(1), D, d

)
= x(1) if d = D, and

0 otherwise. We note that only P2 receives output (since the method requires
that P1 not know if P2 learned D or not). Recall that x(1) is the secret part of
P1’s input, and so if x(1) is obtained by P2 then it can compute x = x(1) ⊕ x(2)

and obtain P1’s real input. Everything else in this solution is identical to the
solution described in Section 2.2; the use of x(1) instead of x enables us to check
the circuits used in the cheating-recovery mechanism in the offline phase.

There are several other subtle issues to take care of regarding the secure
computation of C ′. First, we require P1 to use the same x(1) in C and C ′. This
is solved by using commitments for the input-wire labels for x(1) as described
above. Second, we need to protect the OTs for P2 to learn the labels of d from
selective-OT attacks. This is solved using the variant of cut-and-choose OT we
use for the OTs for C. Third, in order to push all the expensive exponentiations
to the offline stage, we split the parties inputs in the cheating-recovery circuit
C ′ into random inputs in the offline stage and public inputs in the online stage
as we did with the inputs of C. Note that the above issues are only part of the
cheating-recovery process of our protocols, and additional steps are needed in
order to make sure that the protocol secure.

2.4 On Adaptively Secure Garbled Circuits in the Online/Offline
Setting

The standard security notion of garbled circuits considers a static adversary who
chooses its input before seeing the garbled circuit. While this notion suffices for
standard 2PC protocols (e.g., [LP07, LP11, SS11] where the oblivious transfers
that determine P2’s input can be run before the garbled circuits are sent), it
causes a problem in the online/offline setting. This is due to the fact that we
would like to send all the garbled circuits in the offline stage in order to reduce
the online stage communication. However, this means that the circuits are sent
before the parties (and in particular the adversary) have chosen their inputs.

Recently, [BHR12a, AIKW13] introduced an adaptive variant of garbled cir-
cuits, in which the adversary is allowed to choose its input after seeing the
garbled circuit. Indeed, adaptively secure garbling scheme would allow us to
send all the garbled circuits in the offline stage before the parties have chosen
their inputs. However, the only known efficient constructions of adaptively secure
garbled circuit are in the random-oracle model [BHR12a, AIKW13].5

5 [BHR12a] also present a construction in the standard model which requires the
online stage communication to be the same size as the garbled circuit, but this does



We do not try to present new solutions to the adaptively-secure garbled-
circuit problem in this work. Rather, we present two options based on current
constructions. Our first solution is in the standard model and works by having
P1 send only the checked garbled circuits in the offline stage. In contrast, the
evaluation garbled circuits are sent in the online stage. These latter circuits
are committed (using a trapdoor commitment) in the offline stage, and this
enables the simulator to actually construct the garbled circuit after the input
is given, solving the adaptive problem. The drawback of this solution is that
significant communication is needed in the online stage, incurring considerable
cost. Our second solution is to use the random-oracle construction of [PSSW09,
BHR12a]. In this case, all of the garbled circuits are sent in the offline stage, and
the communication of the online stage depends only on the number of inputs
and outputs of the circuits (and the security parameters). Thus, we obtain a
clear tradeoff between the security model and efficiency. We believe that any
future construction of efficient adaptively secure garbled circuits in the standard
model may be plugged into the second construction in order to maintain its low
communication and remove the random-oracle.

3 Combinatorics of Multiple Cut-and-Choose: Balls and
Buckets

In this section we deal with balls and buckets. A ball can be either normal or
cracked. Similarly to cut-and-choose, we describe a game in which party P1

prepares a bunch of balls, P2 checks a subset of them and aborts if some of them
are cracked, and otherwise randomly places the remaining ones in buckets. Our
goal is to bound the probabilities that (a) one of the buckets consists of only
cracked balls (i.e., a fully-cracked bucket), and (b) there is a bucket in which
the majority of the balls are cracked (i.e., a majority-cracked bucket). We follow
the analysis of [Nor13, Theorem 4.4] and [Nor13, Theorem 6.2], while handling
different and slightly more general parameters.

3.1 The Fully-Cracked Bucket Game

Let Game 1 be the following game. P2 chooses three parameters p,N and B,

and sets M =
⌈
NB
p

⌉
and m = NB. A potentially adversarial P1 (who we will

denote by A) prepares M balls and sends them to P2. Then, party P2 chooses
at random a subset of the balls of size M −m; these balls are checked by P2 and
if one of them is cracked then P2 aborts. Index the balls that are not checked
by 1, . . . ,m. P2 chooses a random mapping function π : [m] → [N ] that places
the unchecked balls in buckets of size B. We define that Game1(A, N,B, p) = 1
if and only if P2 does not abort and there is a fully cracked bucket (note that

not help us to reduce the online communication. In addition, [BHK13] presents a
construction in the standard model based on UCE-hash functions. However, the only
known proven construction of UCE-hash is in the ROM.



M =
⌈
NB
p

⌉
and m = NB and so are not separate parameters in the game). The

proof of the following theorem can be found in the full version of this paper:

Theorem 1. Let s be a statistical security parameter, and let B, N ∈ N and
p ∈ (0, 1) be as above. If

B ≥ s+ logN − log p

log(N −Np)− log p
1−p

, (1)

then for every adversary A it holds that Pr [Game1(A, N,B, p) = 1 ] < 2−s.

We remark that in the proof of Theorem 1 we show that the probability that
the adversary wins in the game is at most(

M−t
m−t

)(
M
m

) ·N · ( t
B

)(
m

B

)−1

(2)

and then proceed to show that this is less than 2−s as long as Eq. (1) holds, for
general parameters. However, for concrete sets of parameters we can compute
slightly tighter bounds or more optimized parameters. For example, Theorem 1
states that for s = 40, N = 1024 and p = 0.7, B should be 6. However, by
analytic calculation, for this set of parameters we actually have that the maximal
cheating probability is at most 2−51.07. If we take B = 5 we have that the
maximal cheating probability is at most 2−40.85. This means that instead of
using 1024×6

0.7 = 8778 balls, we can use only 1024×5
0.7 = 7315 balls for the same p

and N ! This “gap” is significant even for smaller values of N . For parameters
s = 40, N = 32 and p = 0.75, Theorem 1 requires B to be 10. The maximum
of Eq. (2) for these parameters is at most 2−44, which, again, is much smaller
than the 2−40 bound given by Theorem 1. In fact, if we take N = 32, p = 0.8
and B = 10, we get that the maximum of Eq. (2) is at most 2−40.1, without
increasing B as required if we had used Theorem 1 with p = 0.8. This reduces
the expected number of balls per bucket from 13.34 (for p = 0.75) to only 12.5
(for p = 0.8).

We leave further optimizations and analysis of the above bounds for future
work, and recommend computing analytically the exact bounds based on the
above analysis whenever performance is critical. More examples of the parame-
ters obtained and discussion on recommended values appears in the full version
of the paper.

3.2 The Majority-Cracked Bucket Game

Let Game 2 be the same game as Game 1, but where A wins if P2 is left with a
bucket that consists of at least B

2 cracked balls. Define that Game2(A, N,B, p) =
1 if and only if P2 does not abort the game and there is a majority-cracked bucket.
(Recall that Game1(A, N,B, p) = 1 only if all of the balls in some bucket are
cracked.)

In the full version of this paper, we prove the following theorem:



Theorem 2. Let s be a security parameter, and let B, N ∈ N p ∈ (0, 1) be as
above. If

B ≥ 2s+ 2 logN − log(−1.25 log p)− 1

logN + log(−1.25 log p)− 2
,

then for every adversary A it holds that Pr [Game2(A, N,B, p) = 1 ] < 2−s.

In the full version, we discuss in depth what parameters this yields with
s = 40. Briefly, we can see that the effect of p on B and the total number of
balls is similar to those dependences in Game 1, although the concrete numbers
are different. For N = 1024 and p = 0.7, only 20 garbled circuits are needed
on average per execution (as opposed to 125 in the cut-and-choose of [Lin13])
and only 14 circuits are used in the online stage. For larger values of N , these
numbers decrease significantly, e.g. for N = 1048576 and p = 0.9 only 8.89
circuits are needed on average per execution, where only 8 are used in the online
stage. In addition, we obtain a significant improvement over the cut-and-choose
of [Lin13] also for small values of N , e.g., for N = 32 and p = 0.6, only 51.69
circuits are needed on average per execution (which is less than half than needed
in [Lin13]).
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