
Feasibility and Infeasibility of Secure
Computation with Malicious PUFs

Dana Dachman-Soled1, Nils Fleischhacker2, Jonathan Katz1, Anna
Lysyanskaya3, and Dominique Schröder2

1 University of Maryland
danadach@ece.umd.edu,jkatz@cs.umd.edu

2 Saarland University
{fleischhacker,schroeder}@cs.uni-saarland.de

3 Brown University
anna lysyanskaya@brown.edu

Abstract. A recent line of work has explored the use of physically un-
cloneable functions (PUFs) for secure computation, with the goals of
(1) achieving universal composability without (additional) setup, and/or
(2) obtaining unconditional security (i.e., avoiding complexity-theoretic
assumptions). Initial work assumed that all PUFs, even those created by
an attacker, are honestly generated. Subsequently, researchers have inves-
tigated models in which an adversary can create malicious PUFs with
arbitrary behavior. Researchers have considered both malicious PUFs
that might be stateful, as well as malicious PUFs that can have arbi-
trary behavior but are guaranteed to be stateless.

We settle the main open questions regarding secure computation in the
malicious-PUF model:
– We prove that unconditionally secure oblivious transfer is impossi-

ble, even in the stand-alone setting, if the adversary can construct
(malicious) stateful PUFs.

– We show that universally composable two-party computation is pos-
sible if the attacker is limited to creating (malicious) stateless PUFs.
Our protocols are simple and efficient, and do not require any cryp-
tographic assumptions.

1 Introduction

A physically uncloneable function (PUF) [19,20,17,1,15] is a physical object gen-
erated via a process that is intended to create “unique” objects with “random”
(or at least random-looking) behavior. PUFs can be probed and their response
measured, and a PUF thus defines a function. (We ignore here the possibility of
slight variability in the response, which can be corrected using standard tech-
niques.) At an abstract level, this function has two important properties: it is
random, and it cannot be copied even by the entity who created the PUF.

Since their introduction, several cryptographic applications of PUFs have
been suggested, in particular in the area of secure computation. PUFs are es-
pecially interesting in this setting because they can potentially be used (1) to

obtain universally composable (UC) protocols [6] without additional setup, thus
bypassing known impossibility results that hold for universal composition in the
“plain” model [7,8], and (2) to construct protocols with unconditional security,
i.e., without relying on any cryptographic assumptions.

Initial results in this setting [21,22] showed constructions of oblivious trans-
fer with stand-alone security based on PUFs. Brzuska et al. [5] later formalized
PUFs within the UC framework, and showed UC constructions of bit commit-
ment, key agreement, and oblivious transfer (and hence secure computation of
arbitrary functionalities) with unconditional security. The basic feasibility ques-
tions related to PUFs thus seemed to have been resolved.

Ostrovsky et al. [18], however, observe that the previous results implicitly
assume that all PUFs, including those created by the attacker, are honestly gen-
erated. They point out, correctly, that this may not be a reasonable assumption:
nothing forces the attacker to use the recommended process for manufacturing
PUFs and it is not clear, in general, how to “test” whether a PUF sent by some
party was generated correctly or not. (Assuming a trusted entity who creates
the PUFs is not a panacea, as one of the goals of using PUFs is to avoid reliance
on trusted parties.) Addressing this limitation, Ostrovsky et al. define a model
in which an attacker can create malicious PUFs having arbitrary, adversary-
specified behavior. The previous protocols can be easily attacked in this new
adversarial setting, but Ostrovsky et al. show that it is possible to construct
universally composable protocols for secure computation in the malicious-PUF
model under additional, number-theoretic assumptions. They explicitly leave
open the question of whether unconditional security is possible in the malicious-
PUF model. Recently, Damg̊ard and Scafuro [9] have made partial progress on
this question by presenting a commitment scheme with unconditional security
in the malicious-PUF model.

Stateful vs. stateless (malicious) PUFs. Honestly generated PUFs are state-
less; that is, the output of an honestly generated PUF is independent of its com-
putation history. Ostrovsky et al. note that maliciously generated PUFs might
be stateful or stateless. Allowing the adversary to create stateful PUFs is obvi-
ously more general. (The positive results mentioned earlier remain secure even
against an attacker who can create malicious, stateful PUFs.) Nevertheless, the
assumption that the adversary is limited to producing stateless PUFs is meaning-
ful; indeed, depending on the physical technology used to implement the PUFs,
incorporating dynamic state in the PUF may simply be infeasible.

1.1 Our Results

Spurred by the work of Ostrovsky et al. and Damg̊ard and Scafuro, we reconsider
the possibility of unconditionally secure computation based on malicious PUFs
and resolve the main open questions in this setting. Specifically, we show:

1. Unconditionally secure oblivious transfer (and thus unconditionally secure
computation of general functions) is impossible when the attacker can create
malicious stateful PUFs. Our result holds even with regard to stand-alone

security, and even for indistinguishability-based (as opposed to simulation-
based) security notions.

2. If the attacker is limited to creating malicious, but stateless, PUFs, then
universally composable oblivious transfer (OT) and two-party computation
of general functionalities are possible. Our oblivious-transfer protocol is ef-
ficient and requires each party to create only a single PUF for polynomially
many OT executions. The protocol is also conceptually simple, which we
view as positive in light of the heavy machinery used in [18].

1.2 Other Related Work

Hardware tokens have also been proposed as a physical assumption on which
to base secure computation [14]. PUFs are incomparable to hardware tokens
since they are more powerful in one respect and less powerful in another. PUFs
have the property that a party cannot query an honestly generated PUF when
it is out of that party’s possession, whereas in the token model parties place
known functionality in the token and can simulate the behavior of the token at
any point. On the other hand, tokens can implement arbitrary code, whereas
honestly generated PUFs just provide a random function. In any case, known
results (such as the fact that UC oblivious transfer is impossible with stateless
tokens [11]) do not directly translate from one model to the other.

Impossibility results for (malicious) PUFs are also not implied by impossibil-
ity results in the random-oracle model (e.g., [3]). A random oracle can be queried
by any party at any time, whereas (as noted above) an honestly generated PUF
can only be queried by the party who currently holds it. Indeed, we show that
oblivious transfer is possible when malicious PUFs are assumed to be stateless;
in contrast, oblivious transfer is impossible in the random-oracle model [12].

Ostrovsky et al. [18] consider a second malicious model where the attacker
can query honestly generated PUFs in a non-prescribed manner. They show that
secure computation is impossible if both this and maliciously generated PUFs
are allowed. We do not consider the possibility of malicious queries in this work.

In other work, van Dijk and Rührmair [23] show impossibility results in a
malicious-PUF model very different from the one considered in [18,9] and here.
It is not clear to us how their model corresponds to attacks that could feasibly
be carried out in the real world.

2 Physically Uncloneable Functions

A physically uncloneable function (PUF) is a physical device with “random” be-
havior introduced through uncontrollable manufacturing variations during their
fabrication. When a PUF is queried with a stimulus (i.e., a challenge), it pro-
duces a physical output (the response). The output of a PUF can be noisy; i.e.,
querying the PUF twice with the same challenge may yield distinct, but close,
responses. Moreover, the response need not be uniform; it may instead only have
high min-entropy. Prior work has shown that, by using fuzzy extractors, one can

eliminate the noisiness of a PUF and make its output effectively uniform. For
simplicity, we assume this in the definition that follows.

Formally, a PUF family is defined by two algorithms S and E. The index-
sampling algorithm S, which corresponds to the PUF-fabrication process, takes
as input the security parameter 1λ and returns as output an index id. The eval-
uation algorithm E takes as input an index id and a challenge1 c, and generates
as output the corresponding response r.

We do not require that S or E can be evaluated efficiently. In fact, these
are meant to represent physical processes that generate a physical object and
measure this object’s behavior under various conditions. The index id is simply
a formal placeholder that refers to a well-defined physical object; it does not in
itself represent any meaningful information about how this object works.

Following [5], we define the two main security properties of PUFs: unpre-
dictability and uncloneability. As noted earlier, for simplicity we consider only a
strong form of unpredictability where the output of the PUF is uniform. Intu-
itively, uncloneability means that only one party can evaluate a PUF at a time.
This is formally modeled using an ideal functionality, FPUF, that enforces this.
Details of this ideal functionality are given in the full version of this work.

Finally, we also allow for the possibility of a maliciously generated PUF
whose behavior does not necessarily correspond to (S,E) as described above. We
consider two possibilities here: The first possibility is a malicious-but-stateless
PUF that may use an Emal procedure of the adversary’s choice in place of the
honest algorithm E. Whenever a party in possession of this PUF evaluates it, it
receives Emal(c) instead of Eid(c). (As noted in prior work, care must be taken to
ensure that the adversary cannot use Emal to perform arbitrary exponential-time
computation; formally, we restrict Emal to be a polynomial-time algorithm with
oracle access to E.) The second possibility is a malicious-and-stateful PUF that
may use a stateful Emal procedure of the adversary’s choice in place of E. Again,
Emal is limited to polynomial-time computation with oracle access to E.

To simplify notation throughout the rest of the paper, we write PUF← S(1λ)
to denote the fabrication of a PUF, and then write r := PUF(c).

3 Impossibility Result for Malicious, Stateful PUFs

We prove that any PUF-based oblivious-transfer (OT) protocol is insecure when
the attacker has the ability to generate malicious, stateful PUFs. Formally:

Theorem 1. Let Π be a PUF-based OT-protocol where the sender S and re-
ceiver R each make at most m = poly(λ) PUF queries. Then at least one of the
following holds:

1. There is an unbounded adversary S∗ that uses malicious, stateful PUFs and
makes only poly(λ) queries to honestly generated PUFs, and computes the
choice bit of R (when R’s input is uniform) with probability 1/2+1/poly(λ).

1 We assume the challenge space is just a set strings of a certain length. For some
classes of PUFs, this is naturally satisfied (see [17]). For others, this can be achieved
using appropriate encoding.

2. There is an unbounded adversary R∗ that uses malicious, stateful PUFs and
makes only poly(λ) queries to honestly generated PUFs, and correctly guess
both secrets of S (when S’s inputs are uniform) with probability at least 2/3.

3.1 Overview

The starting point for our impossibility result is the impossibility of constructing
oblivious transfer in the random-oracle model. The fact that OT is impossible in
the random-oracle model follows from the fact that key agreement is impossible
in the random-oracle model [12,3,2], and the observation that OT implies key
agreement. However, a direct proof ruling out OT in the random-oracle model
is also possible, and we sketch such a proof here.

Consider an OT protocol in the random-oracle model between a sender S
and receiver R, where S’s two input bits are uniform and R’s selection bit is
uniform. We show that either S or R can attack the protocol. Consider the
case where both parties run the protocol honestly, and then at the end of the
protocol they each run a variant of the Eve algorithm from [3,2] to obtain a
set Q of queries/answers to/from the random oracle. This set Q contains all
“intersection queries” between S and R, which are queries made by both parties
to the random oracle. However, note that the setting here is different from the
key-agreement setting in which a third party (the eavesdropper) runs the Eve
algorithm. In fact, in our setting, finding intersection queries is trivial for S and
R: all intersection queries are, by definition, already contained in the view of
either of the parties. Thus, the point of running the Eve algorithm is for both
parties to reconstruct the same set of queries Q that contains all intersection
queries. As in [3,2], conditioned on the transcript of the protocol and this set Q,
the views of S and R are independent. The property of the Eve algorithm we use
is that with high probability over random coins of the protocol and the choice
of random oracle, the distribution over R’s view conditioned on S’s view and Q
is statistically close to the distribution over R’s view conditioned on only the
transcript and Q.

To use the above to obtain an attack, we first consider the distribution over
R’s view conditioned on S’s view and Q. We argue that with roughly 1/2 proba-
bility over this distribution, R’s view must be consistent with selection bit 0, and
with 1/2 probability is must be consistent with selection bit 1. (If not, then S
can compromise R’s security by guessing that R’s selection bit is the one which
is more lilkely.) Next, we consider the distribution over R’s view conditioned on
only the transcript and Q. Note that R can sample from this distribution, since
R knows the transcript and can compute the same set Q. Since this distribution
is statistically close to the distribution over R’s view conditioned on S’s view
and Eve queries, we have that R can with high probability sample a view consis-
tent with selection bit 0 and S’s view and a view consistent with selection bit 1
and S’s view. But correctness of the protocol then implies that R can with high
probability discover both of S’s input bits.
From random oracles to PUFs. The problem with extending the above to
the PUF model is that, unlike a random oracle, a PUF can only be queried by

the party who currently holds the PUF. This mean that the above attack, as
described, will not work. In fact, this property is what allows us to construct an
OT protocol in the case where malicious PUFs are assumed to be stateless! To
overcome this difficulty, we will need to use the fact that malicious parties can
create stateful PUFs.

To illustrate the main ideas, consider a protocol in which four PUFs are
used. PUFS and PUF′S are created by S, with PUFS held by S at the end of the
protocol and PUF′S held by R at the end of the protocol. Similarly, PUFR,PUF

′
R

are created by R, with PUFR held by R at the end of the protocol and PUF′R
held by S at the end of the protocol. We now want to provide a way for both
parties to be able to obtain a set of queries/answers Q for all the PUFs that
contains the following “intersection queries”:

1. Any query that both parties made to PUF′S or PUF′R (as in [3,2]).
2. All queries that R made to PUFS .
3. All queries that S made to PUFR.

The first of these can be achieved by having S (resp., R) construct PUF′S (resp.,
PUF ′R) with known code, such that S (resp., R) can effectively query PUF′S
(resp., PUF ′R) at any time. Formally, we have each party embed a randomly
chosen t-wise independent function in the PUF they create, where t is large
enough so that the behavior of the PUF is indistinguishable from a random
function as far as execution of the protocol (and the attack) is concerned. At the
end of the protocol, both parties can then run the Eve algorithm with access to
PUF′S : R has access because it holds PUF′S , and S has access because it knows
the code in PUF′S . An analogous statement holds for PUF′R.

To handle the second set of queries, above, we rely on the ability of S to
create stateful PUFs. Specifically, we have S create PUFS in such a way that
it records (in an undetectable fashion) all the queries that R makes to PUFS ,
in such a way that S can later recover these queries once PUFS is back in its
possession. (This is easy to do by hardcoding in the PUF a secret challenge,
chosen in advance by S, to which the PUF responds with the set of all queries
made to the PUF.) So, at the end of the protocol, it is trivial for S to learn all
the queries that R made to PUFS . Of course, R knows exactly the set of queries
it made to PUFS throughout the course of the protocol. Queries that S makes
to PUFR are handled in a similar fashion.

To complete the proof, we then show that the set of intersection queries as
defined above is enough for the analysis from [3,2] to go through.2

2 In order for our proof to go through, it is crucial to find intersection queries im-
mediately after each message is sent, as opposed to waiting until the end of the
protocol. This is necessary in order to ensure the independence of the views of S and
R. Therefore, we define a variant of the Eve algorithm which, after each protocol
message is sent, makes queries to a particular set of PUFs, determined by the sets
of PUFs currently held by each party. For example, if immediately after message i is
sent S holds {PUFS ,PUF

′
R} and R holds {PUFR,PUF′

S}, then our Eve variant will
make queries only to PUF′

R and PUF′
S .

3.2 Proof Details

Oblivious transfer. Oblivious transfer (OT) is a protocol between a sender S
with input bits (s0, s1) and a receiver R with input bit b. Informally, the receiver
wishes to retrieve sb from S in such a way that (1) S does not “learn” anything
about R’s choice and (2) R learns nothing about s1−b.

We note that our impossibility holds even for protocols that do not enjoy
perfect correctness, i.e., it holds for protocols where correctness holds (over choice
of inputs, randomness, and PUFs) with probability 1− 1/ poly(λ).

Protocols based on PUFs. We consider a candidate PUF-based OT proto-
col Π with ℓ rounds that has 2ℓ passes and where in each pass a party sends
a message. We assume w.l.o.g. that S sends the first message of the protocol
and R sends the final message. Let z = z(λ) be the total number of PUFs
used in protocol Π with security parameter λ. We model the set of all PUFs
{PUF1, . . . ,PUFz} utilized by Π as a single random oracle. W.l.o.g. we assume
that each query q to a PUF has the form q = (j, q′), where j denotes the identity
of the PUF being queried, and q′ denotes the actual query to this PUF. Note
that responses to unique queries q = (j, q′) are independent and uniform. We
further assume w.l.o.g. that a party can only send a PUF back and forth along
with some message mi of the protocol Π. In particular, we denote by Siback the
set of indices j ∈ [z] such that PUFj is sent by S (resp. R) to R (resp. S) im-
mediately after message mi of Π is sent, and PUFj was created by R (resp. S).
We define SiPUF to be the set of indices j such that either:

– PUFj is held by S immediately after messagemi is sent and PUFj was created
by R.

– PUFj is held by R immediately after message mi is sent and PUFj was
created by S.

Augmented transcripts.A full (augmented) transcript of protocolΠ = ⟨S,R⟩
is denoted by M̃. The “augmented transcript” consists of the transcript M =
m1, . . . ,m2ℓ of protocol Π with a set ψi appended after each message mi. If
message mi is sent by S (resp. R), then ψi contains all queries made by S (resp.
R) up to this point in the protocol to all PUFj , j ∈ Siback. Specifically, M =

{m1, . . . ,m2ℓ} and M̃ = {m1||ψ1, . . . ,m2ℓ||ψ2ℓ}. Note that M̃ can be computed
by both a malicious S and a malicious R participating in Π. Intuitively, this
is because both malicious S and R can program each of their PUFs to record
all queries made to it. The following claim formalizes the fact that malicious,
stateful PUFs can be used to extract sets of queries made by the opposite party:

Claim 2 Consider a PUF-based ℓ-round OT protocol, Π. By participating in an
execution of Π while using maliciously constructed PUFs, we have that, for all
odd i ∈ [2ℓ], both a malicious S and a malicious R can find the set of queries
ψi made by S up to this point in the protocol to all PUFj, j ∈ Siback. The same
claim holds for even i ∈ [2ℓ], with the roles of S,R reversed.

Proof. The malicious R will create stateful PUFs which record all queries made
to them and such that this record can later be retrieved by the creator of the
PUF. Since at the end of the i-th pass, for odd i ∈ [2ℓ], R holds PUFj , j ∈ Siback,
we have that the malicious R can recover the ordered set of queries made to that
PUF, and can therefore deduce the set of queries made by S to that PUF thus
far. On the other hand, S knows the queries it made itself to PUFj , j ∈ Siback.
An analogous argument holds for even i ∈ [2ℓ].

We also define the set Ψ i which is the union of the ψj sets for j ≤ i. Specifi-
cally, Ψ i = ψ1 ∪ · · · ∪ ψi.

Queries and views. By ViS (resp. ViR) we denote the view of S (resp. R)
until the end of round i. This includes S’s (resp. R’s) randomness rS (resp. rR),
exchanged messages Mi as well as oracle query-answer pairs known to S (resp.
R) so far. We use Q(·) as an operator that extracts the set of queries from a set
of query-answer pairs or views.

Executions and distributions. A (full) execution of S, R, Eve in protocol
Π can be described by a tuple (rS , rR, H) where H is a random function. We
denote by E the distribution over (full) executions that is obtained by running
the algorithms for S,R,Eve with uniformly chosen random tapes and a sampled
oracle H. For a sequence of i (augmented) messages M̃i = [m̃1, . . . , m̃i] and a

set of query-answer pairs P, by V(M̃i,P) we denote the joint distribution over
the views (ViS ,V

i
R) of S and R in their (partial) execution of Π up to the point

in the system in which the i-th message is sent (by S or R) conditioned on:

The transcript of messages in the first i passes equals M̃i and H(j, q′) = a for
all ((j, q′), a) ∈ P made to H (recall that a query (j, q′) to H corresponds to a

query q′ made to PUFj). For (M̃
i,P) such that PrE(M̃

i,P) > 0, the distribution

V(M̃i,P) can be sampled by first sampling (rS , rR,H) uniformly at random

conditioned on being consistent with (M̃i,P) and then deriving S and R views
ViS ,V

i
R from the sampled (rS , rR,H).

For (M̃i,P) such that PrE(M̃
i,P) > 0, the event Good(M̃i,P) is defined over

the distribution V(M̃i,P) and holds if and only if Q(ViS) ∩Q(V
i
R) ⊆ P+, where

P+ = P∪ Ψ i. For PrE(M̃i,P) > 0 we define the distribution GV(M̃i,P) to be the

distribution V(M̃i,P) conditioned on Good(M̃i,P).

For complete transcripts M̃, the distributions V(M̃,P) and Good(M̃,P) are
defined similarly.

Transforming the protocol. We begin by transforming the OT protocol Π
into one that has the following properties:

Semi-normal form: We define a semi-normal form for OT protocols, follow-
ing [3,2]. A protocol is in semi-normal form if it fulfills the following two
properties: (1) S and R ask at most one query in each protocol round, and
(2) the receiver of the last message uses this message to compute its output
and it does not query the oracle. We start by converting our OT protocol Π

into its semi-normal version. Note that any attack on the semi-normal ver-
sion of Π can be translated into an attack on the original Π that makes the
same number of queries [3,2]. Thus, in the following we present our attacks
and analysis w.r.t. the semi-normal version of Π.

Using t-wise independent functions: Instead of creating honestly generated
PUFs, a malicious R (resp. S) will create stateful PUFs which behave as

t-wise independent hash functions. We define the distribution Vt(M̃,P) ex-

actly like V(M̃,P) except some subset of PUFs are instantiated with t-wise
independent hash functions for some t = poly(m/ε), instead of with ran-
dom oracles. Since we choose t such that the malicious sender and honest
receiver (resp., malicious receiver and honest sender) make a total of at most

t queries to all PUFs then: For every setting of random variables (M̃i,Pi),

the distributions V(M̃i,Pi) and Vt(M̃i,Pi) are identical. Thus, from now on,
even when R or S are malicious (and create t-wise independent PUFs), we

consider only the distribution V(M̃,P).
Random inputs: In the last step we change the protocol such that both sender

and receiver choose their input(s) uniformly at random. Thus, in the follow-
ing, we consider execution of Π = ⟨S(1λ),R(1λ)⟩ where the parties use their
random tapes to choose their inputs.

The Eve algorithm. Recall that we have converted the protocol Π into semi-
normal form. We now present the attacking algorithm, Eve, which will be run
by both the malicious sender (S ′) and malicious receiver (R′) defined later:

Construction 1 Let ε < 1/100 be an input parameter. After each message mi

is sent, Eve generates the augmented transcript M̃i (note that by Claim 2, M̃i

can always be reconstructed by Eve, since Eve is launched by either the malicious
S or R). Given M̃i, Eve attacks the ℓ-round two-party protocol Π = ⟨S,R⟩ as
follows. During the attack Eve updates a set P of oracle query-answer pairs as
follows: Suppose S (alternatively R) sends the i-th message in M̃i which is equal
to m̃i = mi||ψi. For i ∈ [2ℓ], Eve does the following: As long as the total number
of queries made by Eve is less than t− 2m and there is a query q = (j, q′) /∈ P+,
where P+ := Ψ i ∪ P, such that one of the following holds:

Pr
(Vi

S ,V
i
R)←GV(M̃i,P)

[q′ ∈ Q(ViS) ∧ j ∈ Siback] ≥
ε2

100m

or Pr
(Vi

S ,V
i
R)←GV(M̃i,P)

[q′ ∈ Q(ViR) ∧ j ∈ Siback] ≥
ε2

100m
.

Eve queries the lexicographically first such q = (j, q′) to H, adds (q,H(q)) to P.

Properties of the Eve algorithm. We summarize some properties of the Eve
algorithm that can be verified by inspection:

Symmetry of Eve: Both S and R can run the Eve algorithm, making the same
set of queries P to the PUFs. In particular, at the point where message mi

is sent, a party requires only the augmented transcript M̃i and oracle access
to PUFj for j ∈ SiPUF. Note that for each j ∈ SiPUF a party either holds PUFj
(and so can query it directly) or created PUFj dishonestly and thus knows
the code of PUFj (and so can simulate responses to queries to PUFj).

Determinism of Eve: The Eve algorithm is deterministic and so for a fixed
transcript M̃ and a fixed set of PUFs, both parties will recover the same set
of queries when running Eve.

Number of queries: The number of queries made by Eve is at most t − 2m.
Thus, since S and R each make at most m number of PUF queries, the total
number of queries made by S, R and Eve is at most (t− 2m) + 2m = t.

Breaking oblivious transfer. Recall that we assume that the honest S chooses
its inputs (s0, s1) at random and that the honest R chooses its input bit at
random. Thus, we may consider an execution of OT protocolΠ = ⟨S(1λ),R(1λ)⟩
where the parties use their random tapes to choose their inputs.

We now state an alternative version of Theorem 1:

Theorem 3. Let Π = ⟨S(1λ),R(1λ)⟩ be a PUF-based OT-protocol in which the
sender and receiver each ask at most m queries total to the set of z = poly(λ)
PUFs, {PUF1, . . . ,PUFz}. Then, at least one of the following must hold:

1. There exists an adversarial S that uses malicious, stateful PUFs to compute
the choice bit of R with advantage 1/ poly(λ) and makes poly(λ) queries to
the PUFs.

2. For ε < 1/100, there exists an adversarial R that uses malicious, stateful
PUFs to correctly guess both secrets of S with probability 1 − O(

√
ε) and

makes poly(λ) queries to the PUFs.

By choosing constant ε sufficiently small, we may obtain the parameters of
Theorem 1.

Proof. We begin with some notation. For a view VR (resp. VS), we denote by
In(VR) (resp. In(VS)) the input of the corresponding party implicitly contained
in its view. We denote by Out(VR) the output of R implicitly contained in
its view. For a distribution D and random variables X1, . . . , Xn, we denote by
D(X1, . . . , Xn) the distribution D conditioned on X1, . . . , Xn.

Let p(·) be some sufficiently large polynomial. We consider two cases.

Case 1: With probability 1/p(λ) over (M̃,P,VS) generated by a run of Π̃ we
have that either

Pr
VVR (M̃,P,VS)

[In(VR) = 0 ∧Out(VR) = s0] ≤ 1/2− ε

or Pr
VVR (M̃,P,VS)

[In(VR) = 1 ∧Out(VR) = s1] ≤ 1/2− ε

holds, where (s0, s1) = In(VS).

Case 2: With probability 1 − 1/p(λ) over (M̃,P,VS) generated by a run of Π̃
we have that both

Pr
VVR (M̃,P,VS)

[In(VR) = 0 ∧Out(VR) = s0] ≥ 1/2− ε

and Pr
VVR (M̃,P,VS)

[In(VR) = 1 ∧Out(VR) = s1] ≥ 1/2− ε

hold, where (s0, s1) = In(VS).

Clearly, for any PUF-based OT protocol, either Case 1 or Case 2 must hold.
We show that if Case 1 holds then a malicious sender may attack receiver privacy
making poly(m/ε) queries and succeeding with advantage ε/4p(λ), and if Case 2
holds then a malicious receiver may attack sender privacy making poly(m/ε)
queries and succeeding with probability 1 − O(

√
ε). This is sufficient to prove

the theorem.
We next present the attacks on Receiver and Sender privacy. We defer the

analysis of the attacks to the full version.

Sender’s attack (denoted S ′) on receiver privacy:

1. Participate in protocol Π where the PUFs constructed by S are instantiated
with t-wise independent hash functions and maliciously constructed to record
R queries.

2. Convert the resulting transcript M to the augmented transcript M̃.
3. Run the Eve algorithm on augmented transcript M̃ to generate the set P.
4. Compute the probabilities

P0 = Pr
VVR (M̃,P,VS)

[In(VR) = 0 ∧Out(VR) = s0]

and P1 = Pr
VVR (M̃,P,VS)

[In(VR) = 1 ∧Out(VR) = s1].

5. If P0 ≥ 1/2 + ε/2, output 0, if P1 ≥ 1/2 + ε/2, output 1. Otherwise, output
0 or 1 with probability 1/2.

Receiver’s attack (denoted R′) on sender privacy:

1. Participate in protocol Π where the PUFs constructed by R are instantiated
with t-wise independent hash functions and are maliciously constructed to
record S queries.

2. Convert the resulting transcript M to the augmented transcript M̃.
3. Run the Eve algorithm on augmented transcript M̃ to generate the set P.
4. Compute the probabilities

P0 = Pr
VVR (M̃,P)

[In(VR) = 0] and P1 = Pr
VVR (M̃,P)

[In(VR) = 1].

5. If P0 = 0 or P1 = 0 then abort.
6. Otherwise, draw two views VR(0) and VR(1) from VVR(M̃,P, In(VR) = 0)

and VVR(M̃,P, In(VR) = 1), respectively.
7. Output s′0 = Out(VR(0)), s

′
1 = Out(VR(1)).

4 Feasibility Result for Malicious, Stateless PUFs

We show that universally composable two-party computation is possible if the
adversary is limited to creating stateless malicious PUFs. The core of our result
is a construction of an unconditionally secure, universally composable, oblivious-
transfer protocol in this model; we describe the protocol here, and defer its proof
of security to the full version. In Section 4.2 we briefly discuss how the oblivious-
transfer protocol can be used to obtain the claimed result.

Sender S session sid Receiver R
PUFS ← S PUFR ← S

PUFS−−−−−−−−−→
i = 1, ..., N :

ci←{0, 1}λ

ri := PUF(i∥ci)
store (c1, r1), . . . , (cN , rN)

PUFS ,PUFR←−−−−−−−−−
For i = 1, . . . , N do:

Input: s0, s1 ∈ {0, 1}λ Input: b ∈ {0, 1}
x0, x1 ← {0, 1}λ

x0, x1−−−−−−−−−−−→
v := ci ⊕ xb

v←−−−−−−−−−−−
r̂0 := PUF (i∥(v ⊕ x0))

r̂1 := PUF (i∥(v ⊕ x1))

S0 := s0 ⊕ r̂0

S1 := s1 ⊕ r̂1
S0,S1−−−−−−−−−−−→

Output: sb := Sb ⊕ ri

Fig. 1. Oblivious transfer protocol. We define PUF(c)
def
= PUFS(c)⊕ PUFR(c).

4.1 Universally Composable Oblivious Transfer

Our OT protocol adapts the protocol of Brzuska et al. [5], which is secure against
attackers limited to honestly generated PUFs. Roughly, we replace the single
PUF—generated by one of the parties—in their protocol with a “combined PUF”
generated by both parties. Specifically, this “combined PUF” PUF is constructed
by having each party generate their own PUFs PUFS , PUFR, and then defining

PUF(c)
def
= PUFS(c)⊕PUFR(c). Intuitively, as long as one of the parties generates

their PUF honestly, the combined PUF is still unpredictable (the output is
random) and uncloneable (without physical access to both PUFS and PUFR, it
is impossible to evaluate PUF).

In our description of the protocol in Figure 1, we have the parties exchange
PUFs once, after which they can subsequently execute any pre-determined num-
ber N of oblivious-transfer executions. We remark that it is necessary to prevent
a malicious R from substituting a PUF of its own for PUFS ; this can be done
by having S probe a random point before sending PUFS and then checking it
again later. We omit this check from the figure.

Theorem 4. The protocol in Figure 1 securely realizes FOT in the (FPUF,Fauth)-
hybrid model, where malicious parties are limited to generated stateless PUFs
(with arbitrary behavior).

Security holds against an unbounded cheating S, and an unbounded cheating R
limited to making polynomially-many queries to PUFS . We provide a proof of
Theorem 4 in the full version.

4.2 From UC Oblivious Transfer to UC Two-Party Computation

We observe that our UC oblivious-transfer protocol can be used to obtain UC
two-party computation of any functionality. The main idea is to first construct a
semi-honest secure two-party computation protocol using Yao’s garbled-circuit
protocol, and to then apply the compiler of Ishai, Prabhakaran, and Sahai [13].

Semi-honest secure two-party computation. Lindell and Pinkas presented
a proof for Yao’s two-party secure-computation protocol [16]. They show how
to instantiate the garbling part of the protocol with a private-key encryption
scheme having certain properties. In addition, the authors show that any pseudo-
random function is sufficient to instantiate such a private-key encryption scheme.
Our main observation is that we can replace the pseudorandom function with a
PUF.3 This has already been observed before by Brzuska et al. [5] in a different
context. With this observation, we can apply the result of [16] to obtain a pro-
tocol for semi-honest secure two-party computation based on PUFs only (and
no computational assumptions).

Theorem 5. Let f be any functionality. Then there is a (constant-round) pro-
tocol that securely computes f for semi-honest adversaries in the (FPUF,FOT)-
hybrid model.

We omit the proof since it follows easily from prior work.

Universally composable two-party computation. In the next step we apply
the IPS compiler [13], a black-box compiler that takes

– An “outer” MPC protocol Π with security against a constant fraction of
malicious parties.

3 Note also that if the circuit generator is malicious, then he cannot violate the circuit
evaluator’s privacy by generating a malicious PUF.

– An “inner” two-party protocol ρ, in the FOT-hybrid model, where the secu-
rity of ρ only needs to hold against semi-honest parties.

and transforms them into a two-party protocol ΦΠ,ρ which is secure in the FOT-
hybrid model against malicious corruptions.

In our setting, we must be careful to give information-theoretic instantiations
of the “outer” and “inner” protocols so that our final protocol ΦΠ,ρ will be un-
conditionally secure in the FOT-hybrid model. Fortunately, we may instantiate
the “outer” protocol, Π, with the seminal BGW protocol [4] and may instantiate
the “inner” protocol, ρ, with the protocol from the previous section. Alterna-
tively, the “inner” protocol can be instantiated with the semi-honest version of
the two-party GMW protocol [10] in the FOT-hybrid model.

Let ψ denote the OT-protocol described in Figure 1 and let ΦψΠ,ρ(f) denote
the IPS-compiled protocol which makes subroutine calls to ψ instead of FOT

and computes the functionality f . Using Theorems 4 and 5, along with the UC
composition theorem, we obtain the following result:

Theorem 6. For any functionality f , protocol ΦψΠ,ρ(f) securely computes f in
the (FPUF,Fauth)-hybrid model.

Acknowledgments

Work of Nils Fleischhacker and Dominique Schröder done in part while visiting
the University of Maryland. Their work was supported by the German Federal
Ministry of Education and Research (BMBF) through funding for the Center for
IT-Security, Privacy, and Accountability (CISPA; see www.cispa-security.org).
The visit of Nils Fleischhacker was supported by the Saarbrücken Graduate
School of Computer Science funded by the German National Excellence Ini-
tiative. Dominique Schröder is also supported by an Intel Early Career Fac-
ulty Honor Program Award. The work of Jonathan Katz, as well the visit of
Dominique Schröder, was supported in part by NSF award #1223623. Anna
Lysyanskaya is supported by NSF awards #0964379 and #1012060.

References

1. Armknecht, F., Maes, R., Sadeghi, A.R., Standaert, F.X., Wachsmann, C.: A
formalization of the security features of physical functions. In: IEEE Symposium
on Security and Privacy, IEEE Computer Society Press (2011) 397–412

2. Barak, B., Mahmoody, M.: Merkle’s key agreement protocol is optimal: An
o(n2) attack on any key agreement from a random oracle. Manuscript (2013)
http://www.cs.virginia.edu/~mohammad/files/papers/MerkleFull.pdf.

3. Barak, B., Mahmoody-Ghidary, M.: Merkle puzzles are optimal—An o(n2)-query
attack on any key exchange from a random oracle. In: Advances in Cryptology—
Crypto 2009. Lecture Notes in Computer Science, Springer-Verlag (2009) 374–390

4. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for noncrypto-
graphic fault-tolerant distributed computations. In: 20th Annual ACM Symposium
on Theory of Computing, ACM Press (1988) 1–10

5. Brzuska, C., Fischlin, M., Schröder, H., Katzenbeisser, S.: Physically uncloneable
functions in the universal composition framework. In: Advances in Cryptology—
Crypto 2011. Volume 6841 of Lecture Notes in Computer Science, Springer-Verlag
(2011) 51–70

6. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd Annual Symposium on Foundations of Computer Science, IEEE
Computer Society Press (2001) 136–145

7. Canetti, R., Fischlin, M.: Universally composable commitments. In Kilian, J., ed.:
Advances in Cryptology—Crypto 2001. Volume 2139 of Lecture Notes in Computer
Science, Springer-Verlag (2001) 19–40

8. Canetti, R., Kushilevitz, E., Lindell, Y.: On the limitations of universally compos-
able two-party computation without set-up assumptions. Journal of Cryptology
19(2) (2006) 135–167

9. Damg̊ard, I., Scafuro, A.: Unconditionally secure and universally compos-
able commitments from physical assumptions. Asiacrypt 2013. Available at
http://eprint.iacr.org/2013/108

10. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game, or a
completeness theorem for protocols with honest majority. In Aho, A., ed.: 19th
Annual ACM Symposium on Theory of Computing, ACM Press (1987) 218–229

11. Goyal, V., Ishai, Y., Mahmoody, M., Sahai, A.: Interactive locking, zero-knowledge
PCPs, and unconditional cryptography. In: Advances in Cryptology—Crypto 2010.
Lecture Notes in Computer Science, Springer-Verlag (2010) 173–190

12. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: 21st Annual ACM Symposium on Theory of Computing, ACM
Press (1989) 44–61

13. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious
transfer—efficiently. In Wagner, D., ed.: Advances in Cryptology—Crypto 2008.
Lecture Notes in Computer Science, Springer-Verlag (2008) 572–591

14. Katz, J.: Universally composable multi-party computation using tamper-proof
hardware. In: Advances in Cryptology—Eurocrypt 2007. Volume 4515 of Lecture
Notes in Computer Science, Springer-Verlag (2007) 115–128

15. Katzenbeisser, S., Koccabas, Ü., Rozic, V., Sadeghi, A.R., Verbauwhede, I., Wachs-
mann, C.: PUFs: Myth, fact, or busted? a security evaluation of physically un-
cloneable functions (PUFs) cast in silicon. In: Cryptographic Hardware and Em-
bedded Systems—CHES 2012. Volume 7428 of Lecture Notes in Computer Science,
Springer-Verlag (2012) 283–301

16. Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party compu-
tation. Journal of Cryptology 22(2) (2009) 161–188

17. Maes, R., Verbauwhede, I.: Physically unclonable functions: A study on the state
of the art and future research directions. In: Towards Hardware-Intrinsic Security.
Springer-Verlag (2010) 3–37

18. Ostrovsky, R., Scafuro, A., Visconti, I., Wadia, A.: Universally composable secure
computation with (malicious) physically uncloneable functions. In Johansson, T.,
Nguyen, P.Q., eds.: Advances in Cryptology—Eurocrypt 2013. Volume 7881 of
Lecture Notes in Computer Science, Springer-Verlag (2013) 702–718

19. Pappu, R.S.: Physical One-Way Functions. Phd thesis, Massachusetts Institute of
Technology (2001)

20. Pappu, R.S., Recht, B., Taylor, J., Gershenfeld, N.: Physical one-way functions.
Science 297 (2002) 2026–2030

21. Rührmair, U.: Oblivious transfer based on physical uncloneable functions. In:
TRUST. Volume 6101 of Lecture Notes in Computer Science, Springer-Verlag
(2010) 430–440

22. Rührmair, U., Katzenbeisser, S., Busch, H.: Strong PUFs: Models, constructions,
and security proofs. In: Towards Hardware-Intrinsic Security. Springer-Verlag
(2010) 79–96

23. van Dijk, M., Rührmair, U.: PUFs in security protocols: attack models and secu-
rity evaluations. In: IEEE Symposium on Security and Privacy, IEEE Computer
Society Press (2013) 286–300

