
Leakage-Tolerant Computation
with Input-Independent Preprocessing

Nir Bitansky1, Dana Dachman-Soled2, and Huijia Lin3

1 Tel Aviv University
nirbitan@tau.ac.il

2 University of Maryland
danadach@ece.umd.edu

3 University of California, Santa Barbara
rachel.lin@cs.ucsb.edu

Abstract. Following a rich line of research on leakage-resilient cryptog-
raphy, [Garg, Jain, and Sahai, CRYPTO11] and [Bitansky, Canetti, and
Halevi, TCC12] initiated the study of secure interactive protocols in the
presence of arbitrary leakage. They put forth notions of leakage tolerance
for zero-knowledge and general secure multi-party computation that aim
at capturing the best-possible security when the private inputs of honest
parties are exposed to direct leakage. So far, only a handful of specific
two-party functionalities have been successfully realized under the no-
tion. General functionalities were only realized under weaker security
notions [Boyle, Garg, Jain, Kalai, and Sahai, Crypto13], or relying on
leakage-immune input-processing, which needs to be repeated for each
and every execution [Boyle, Goldwasser, Jain, Kalai, STOC12].
We construct leakage-tolerant multi-party computation protocols for gen-
eral functions, relying on input-independent preprocessing that is per-
formed once and for-all. The protocols tolerate continual leakage, through-
out an unbounded number of executions, provided that leakage is bounded
within any particular execution. In the malicious setting, we also require
a common reference string, and a constant fraction of honest parties.
At the core of our construction, is a tight connection between secure
compilers in the Only-Computation-Leaks (OCL) model and leakage-
tolerant protocols. In particular, we show that two-party leakage-tolerant
protocols with input-independent preprocessing are essentially equivalent
to two-component OCL compilers satisfying certain strong properties.
We then show how to construct such strong OCL compilers in the plain
model, with the help of O(1) auxliary components.

1 Introduction

Secure Multiparty Computation (MPC) [Yao82, GMW87, BGW88, CCD88] is
a central facet of modern cryptography. MPC protocols allows m mutually dis-
trustful parties to securely compute any function f(x̄) of their private inputs
x̄ = (x1, . . . , xm). The security of such a protocol π, which guarantees privacy
and correctness to honest parties, is captured through the simulation paradigm

(also known as the real-ideal paradigm). The paradigm stipulates that the ad-
versarial effect and view, in a “real-world” execution of π, can be simulated in
an “ideal-world”, where parties run an idealized protocol If . In the idealized
protocol inputs are simply handed to a trusted party, often referred as an ideal
functionality, that performs the computation for the parties.

Protocols in the traditional MPC model crucially rely on the assumption
that the internal computation state of honest parties is kept completely secret
from the attackers, and the sole way of affecting honest parties and gaining
information regarding their secret state is through the communication interface.
However, in reality, the attackers may design their own interfaces, via a myriads
of side-channels (e.g. timing, radiation, etc., see [Sta09]), and learn information—
termed leakage—about the secret state of honest parties. This growing threat has
spurred a large body of research devoted to the development of leakage-resilient
cryptography (see [ADW09] for a survey).

Following this line of research, the works of [GJS11, BCH12] initiated the
study of secure interactive protocols in the presence of leakage.In this setting,
the adversary can obtain leakage on honest parties’ secret states (in addition to
controlling the corrupted parties), modelled as the outputs of arbitrary leakage
functions, chosen adaptively by the adversary during protocol execution.

A fundamental question concerns the level of security that can be achieved
in this model. The common aim in leakage-resilient cryptography is to achieve
the same security properties as in the traditional attack model, where there is
no leakage. In the context of protocols, such a guarantee means that leakage
on the state of honest parties causes no degradation of security; namely, the
real world protocols retain the same security guarantees that the ideal world
protocols have in a leakage-free environment, where honest parties’ inputs are
totally secret. However, such a strong guarantee is inherently impossible if the
real world adversary can directly leak on parties’ inputs.

The model in focus of this work: leakage-tolerance. Acknowledging that direct
leakage on parties’ inputs is often unavoidable, [GJS11, BCH12] put forth the
model of leakage-tolerance (rather than resilience) that aims to achieve the “best-
possible” security guarantee in this scenario. Intuitively, leakage-tolerance means
that `-bits of leakage on an honest party’s internal state, including inputs, mes-
sages, and randomness, “translate” to at most `-bits of leakage only on its private
input and output. More precisely, under the real-ideal paradigm, it is required
that a real-world executions subject to ` bits of leakage on honest parties’ secret
states, can be simulated by an ideal-world execution, subject to ` bits of leakage
on the honest parties’ ideal states. 4 Here, the ideal state of a party is specified
as a part of the description of the ideal functionality; in the most natural (and
best possible) setting, it contains only the party’s private input and output.

4 [GJS11] proposes a weaker notion of leakage-tolerance for zero-knowledge protocols
that allows a bigger leakage budget, (1 + ε)` bits, in the ideal-world execution. In
this work, we follow the more stringent notion, with ε = 0, proposed in [BCH12].

Prior Work. Boyle, Goldwasser, Jain and Kalai [BGJK12] circumvent the impos-
sibility of leakage-resilient protocols, by relying on leakage-free input-processing.
Informally, in every execution, a leakage-free input processing phase is executed
first to encrypt each party’s input, and only the ciphertexts are delivered to the
parties; thus, the inputs themselves are never exposed to direct leakage. In ad-
dition, they rely on a leakage-free input-independent preprocessing phase that is
performed once for all executions. In this setting, they construct MPC protocols
for general m-party functions, which are resilient under continual leakage, if a
constant fraction of parties is uncorrupted, the number of parties m is polyno-
mial in the security parameter λ, and the leakage on any party within any single
execution is a-priori bounded.

While leakage-free input processing leads to a strong guarantee of leakage-
resilience; however, it significantly deviates from the regime of leakage-tolerance.
Indeed, the main narrative behind leakage-tolerance is that leakage on inputs
may be unavoidable; in particular, leakage-free input processing in each and
every execution may be impossible or expensive to impose.

Boyle, Goldwasser, Jain, Kalai and Sahai [BGJ+13] construct MPC proto-
cols for general deterministic functions that achieve joint-state leakage-tolerance
(they do not rely on any leakage-free phase and do not require an a-priori bound
on the amount of leakage). Specifically, they consider ideal functionalities where
the ideal leaky state of each individual party includes the joint inputs and outputs
of all parties. Roughly, this means that the effect of learning a leakage function
on the isolated state of any single party can be “emulated” by a simulator that
learns a leakage function of the joint inputs and outputs of all parties.

While certainly meaningful, the joint-state model does not seem to capture
the best-possible tolerance in the face of leakage. Indeed, in the real world,
parties maybe physically separated; thus allowing the real-world adversary only
separate leakage on the isolated state of each parties. Ideally, we would expect
that such separate leakage on the real state of a given party would translate to
leakage on the inputs and outputs corresponding to this party alone. Joint-state
leakage-tolerance, however, effectively means that, by leakage on any single party,
the adversary may vicariously obtain leakage on the joint inputs and outputs
of all the parties together. In this work, we shall aim at obtaining (separate-
state) leakage-tolerance, and will refer to protocols achieving joint-state leakage
tolerance as weak leakage-tolerant protocols.

Leakage-tolerant protocols with direct leakage on inputs (i.e., without leakage-
free input-processing), in the separate-state model, are only known for specific
two-party tasks, such as secure message transmission, commitment, oblivious
transfer and zero knowledge [BCG+11, GJS11, BCH12, Pan14]. Determining
the feasibility of such leakage-tolerant protocols for general tasks remains open.

1.1 Contributions

Our primary contribution is constructing multi-party leakage-tolerant protocols
for general functions, relying only on an input-independent leakage-free prepro-
cessing phase. The input-independent processing is done once and for all, and

continual leakage-tolerance is maintained throughout any number of executions,
provided that the leakage within each execution is bounded.

In more detail, in the model of input-independent processing, each party
obtains an initial state to be used later in the computation. The initial states are
sampled, without leakage, from a fixed (joint) distribution that is independent of
the inputs (or function), which are determined online. The online phase proceeds
in an arbitrary number of executions, where in each execution a multiparty
function is computed on a new set of inputs. The entire state of each party,
including its current inputs, randomness, and initial state, are subject to leakage
at any point in the protocol’s execution, with the restriction that between every
two executions, the leakage on each party’s private state is a-priori bounded
(in length). The initial state is updated between the executions, under leakage,
and previous states and inputs are erased (which is, in fact, necessary in the
continual setting). The continual leakage-tolerance achieved in this model means
that in every execution, the leakage from each honest party can be emulated by
a simulator obtaining the same amount of leakage from its ideal state, consisting
only of its own input and output in the current execution.

At the heart of our constructions, is a strong connection that we establish be-
tween Leakage-Tolerant Computation (LTC for short) and secure compilers in
the Only Computation Leaks (OCL) model. We next recall the basics of OCL
compilers, and overview the main results.

OCL vs. LTC. The OCL model [MR04] considers a setting where computa-
tion is performed with leaky memory, under the assumption that only the parts
“touched” by the computation can leak information. The memory is initialized
ahead of time and without leakage, typically with secret information associated
with the computation. A (continual) OCL scheme, is meant to take any compu-
tation represented by a circuit C(k, ·) with an associated secret k, and compile it,
offline and without leakage, into a new computation C ′(k, ·) that fully protects
the secret k when executed using leaky memory. The intuitive property that C ′

protects the secret k is formalized by the requirement that the adversary’s view
can be simulated given only the input and output of the computation.

To see the connection with the LTC setting, it is convenient to interpret the
evaluation of an OCL-compiled circuit as a leaky distributed computation per-
formed jointly by t honest parties (or components) [BCG+11, DF12, BGJK12]:
The parties’ memories are initiated with some preprocessed information about
the secret k, and they communicate with each other via secret and authenticated
secure channels; during the compuation, bounded leakage can be obtained from
the different parties separately, but it is not possible to leak on the joint state
of any two parties. Furthermore, in the basic OCL model, leakage is assumed to
be ordered; namely, computations are done by the parties in a certain order, and
at any point it is only possible to leak from the active party.

Thus, the differences between the models of OCL and LTC are the follow-
ing: First, the secure communication assumption. This difference can be bridged
using existing constructions of leakage-tolerant communication [BCG+11] to re-
place the secure channels. Second, the preprocessing of secret inputs: In OCL, a

shared secret input k is preprocessed offline without leakage and split between
the t parties; in contrast, in LTC, the parties receive their private inputs online
under direct leakage. Another difference is that in the LTC model leakage is
unordered; namely, it is possible to leak from any party at any time. Finally, the
OCL model assumes that all parties are honest and only subject to bounded
leakage, whereas in LTC, we must also deal with corruption of parties.

Bridging the gap: LTC with input-independent preprocessing and strong OCL.
As discussed above, the LTC model is meant to model settings where inputs are
unavoidably subject to leakage. Our first contribution is a generic transformation
from a strengthened form of two-party OCL, referred to as strong OCL, to two-
party LTC with input-independent preprocessing. Informally, the main feature of
strong OCL schemes is that they allow simulating the internal states of the two
parties without knowledge of the adversary’s leakage functions, and moreover,
simulation of the party that produces the output depends only on the output
of the computation, obliviously of the input. In addition, strong OCL security is
guaranteed even under unordered leakage.

The transformation yields (continual) LTC protocols for the case of two-party
LTC with no corruptions, and is a crucial step towards achieving stronger forms
of security. Furthermore, we show that strong OCL is necessary for LTC.

Theorem 1 (informal). Any two-party strong continual OCL scheme implies
two-party continual LTC relying on input-independent preprocessing (and secure
channels), and vice versa. The LTC protocol is secure when no party is corrupted
and can tolerate the same amount of leakage on every party as the OCL scheme.

Obtaining Strong continual OCL. There are several known (continual) OCL
schemes in the literature [JV10, GR10, DF12, GR12]; however, none satisfies the
requirements of strong OCL as is.The OCL schemes of [JV10, GR10, DF12] can
be rather directly augmented to satisfy the required strong properties; however,
all of these schemes rely on a leakage-free hardware component. Thus far, the
only scheme in the literature that does not rely on hardware is the Goldwasser
and Rothblum scheme [GR12] (referred to as the GR scheme henthforth), which
requires more than two components. 5

To avoid any reliance on leakage-free hardware in our end result, we relax
the requirement of strong 2-component OCL to strong 2-component OCL with
auxiliary parties. Here the computation is carried out by two main components
with the assistance of several auxiliary parties, where we require that the states of
the auxiliary parties can be simulated obliviously of both the input and output
(the simulation guarantee for the two main parties remains unchanged). We
construct such an OCL scheme, without any reliance on hardware. This, in
particular, yields a multi-component OCL scheme without hardware.

5 In most part of [GR12], the scheme is described with polynomially many components.
This same scheme can be reduced, however, to O(1) > 2 components at the cost of
a worst leakage rate.

Theorem 2 (informal). There exists a continual strong 2-component OCL
scheme with O(1) auxiliary parties that does not rely on any hardware. Moreover,
the scheme is unconditionally secure.

Given a strong two-component OCL scheme with O(1) auxiliary parties,
Theorem 1 is then generalized to yield two-party LTC, with O(1) auxiliary par-
ties, whose ideal state is empty. These LTC protocol (assisted by the auxiliary
parties) eventually lead to standard multi-party LTC, with no auxiliary parties.

Multiparty LTC and security against corruptions. We then leverage the two-
party protocols, with O(1) auxiliary parties, to obtain m-party (continual) LTC
protocols that withstand up to (1 − ε)m corrupted parties, for any number of
parties m that is polynomial in the security parameter.

We provide two transformations: The first is a generic transformation for the
case of no party corruptions: it takes any m-party LTC protocol with (leakage-
free) input-dependent preprocessing and obtains a new protocol relying only on
input-independent preprocessing and two-party LTC (with auxiliary parties).
The second achieves the same in the case of (1 − ε)m corruptions and is based
on the specific protocol of Boyle et al. [BGJK12] in the common reference string.
(The first transformation applies assuming that m is a large enough constant.
The second requires that m is polynomial in the security paramter λ, which is
inherited from [BGJK12].)

Theorem 3 (informal). Any m-party LTC protocol with input-dependent
preprocessing and two-party LTC with O(1) auxiliary parties, both secure when
no party is corrupted, imply an m-party LTC protocol with input-independent
preprocessing when no party is corrupted (without additional auxiliary parties
or hardware). Moreover, the [BGJK12] protocol, in the common reference string
model, and any two-party LTC with O(1) auxiliary parties as above, imply secu-
rity under (1 − ε)m corruptions, for any constant ε, m = λΩ(1). The resulting
protocols can tolerate the same amount of leakage as the original protocols.

Universal composability and oblivious simulation. All of our construc-
tions are presented within the framework of universal composability (UC) with
leakage [Can01, BCH12]. In particular, our protocols admit the strong form of
emulation known as leakage-oblivious simulation. An oblivious simulator works
obliviously of the actual leakage function that the adversary produces, and pro-
vides a way (more precisely, a state-translation function) that simulates the real
world states of honest parties using their ideal state; namely, inputs and out-
puts. An essential feature of protocols with oblivious simulation (and thus of
the protocols constructed in this work) is that they respect the (leaky) universal
composition theorem [Can01, BCH12].

We note that [NVZ13] show how leakage-tolerant protocols with oblivious
simulation imply protocols with a relaxed form adaptive security. Their result,
however, does not address the input-independent processing model. Applying the
same ideas to our leakage-tolerant protocols would naturally result in (relaxed)
adaptively-secure protocols in the preprocessing model.

Randomized functionalities. We can further extend the constructions of m-
party LTC protocols from Theorem 3 to also support randomized functionalities.
For this purpose we design a new leakage-tolerant m-party coin-tossing protocol
(in the input-independent processing model). The protocol requires that the
number of honest parties is as large as the number of parties in the two-party
LTC protocol with auxiliary parties, for the no-corruption setting.

1.2 Techniques

We now present the main ideas and techniques behind out results. We begin by
giving some intuition regarding the difficulty of constructing LTC protocols.

Why classical protocols are not leakage-tolerant. A common paradigm for 2PC
and MPC protocols is for parties to first secret share their inputs, and then
homomorphically compute a given boolean circuit over their shares. For example,
in two-party GMW [GMW87], the invariant is that throughout the computation
each one of the parties holds one random additive share for each wire in the
circuit, where the two shares together encode the actual value of the wire; then,
addition is done locally over shares, and multiplication is done with the help of
oblivious transfer.

The additive secret sharing commonly used, however has very poor leakage-
resilience properties. Indeed, it is possible to learn the value of any intermediate
value in the circuit, by simply leaking a single bit from every party. In contrast,
in the ideal world, where it is only possible to separately leak a single bit on the
input and output of each party, learning the value of some intermediate wires
might be impossible. This renders classical protocols entirely insecure. 6

A plausible route towards circumventing this problem would be to use a
leakage-resilient secret sharing scheme [BGK11, DLWW11, DF11], such as the
inner product two-source extractor. The challenge is, however, to be able to
compute the circuit gates over such shares in a leakage-resilient way. While this
is not known in the plain model, this approach is successfully executed in existing
OCL protocols (e.g. in [GR12, DF12] with the inner-product extractor), with the
help of a leakage-free preprocessing phase. In the OCL setting, however, all secret
inputs are preprocessed offline, while online inputs are public. Thus, a natural
question is whether we can import the OCL techniques to the setting of LTC.

Before discussing how to bridge the gap between LTC an OCL, we first quickly
cover some of the technical basics of the OCL compiler, which will be instru-
mental for our technical exposition.

6 For example, the value of an intermediate wire might be the inner product of two
uniformly random inputs, and thus statistically close to uniform, even under inde-
pendent leakage as above. A rather similar problem also appears in other classical
protocols (e.g., Yao [Yao82]), even if not as explicitly.

Strong OCL. It is convenient to consider two-party OCL schemes for universal
circuits U(k, ·) with a fixed secret input k. A continual strong OCL scheme Λ con-
sists of a compiler algorithm Comp that preprocesses a secret k, and splits it into
two shares, and a two party protocol between a left component PL and a right
component PR whose memories are initiated with the two shares respectively; to
evaluate a function f on k, the two components PL and PR interact with each
other, where PL receives the input f and PR produces the output y = f(k). The
scheme may be assisted by additional auxiliary parties PA1

, . . . , PAa , who obtain
an initial state from Comp and participate together with PL, PR in the protocol
for computing f(k).

The protocol proceeds in iterations: In each iteration i, the adversary may
specify f = fi and obtain leakage from any one of the parties PL, PR, PA1

, . . . , PAa .
Any leakage functions is evaluated only on the individual state of the leaking
party; the number of bits leaked from any given party during a single iteration
is bounded by some prefixed length function `.

We require an oblivious simulator S that simulates the states of all parties
PL, PR, PA1

, . . . , PAa without knowledge of the leakage functions specified by
the adversary; the leakage to the adversary is computed by evaluating these
functions on the simulated states. We further require that S admits a special
structure: The state of PL in every iteration i can be simulated given the current
input fi and output yi = fi(k). The state of PR can be simulated given only
the output yi, and obliviously of fi. The state of any auxiliary party PAi can be
simulated obliviously of either fi, yi.

From strong OCL to LTC without corruption: To illustrate the idea behind
our construction of LTC protocols secure without corruption, we focus in this
technical overview, on the case where (P0, P1), assisted by (PA1 , . . . , PAa), jointly
compute a single-output function f of their private inputs (x0, x1), and only
one of them receives the output. Furthermore, we focus on the non-continual
setting, where only a single execution is performed, and later on generalize to
the continual setting.

Given a strong OCL scheme, obtaining a one-time leakage-tolerant protocol
ρ is straightforward. An easy way to compute a function is to ask P0 to send
its input x0 to P1, who then computes y = f(x0, x1) directly; however, this is
obviously non-private. Instead, we may have P0 encrypt its input x0 using a one-
time pad r and send the ciphertext c = x0⊕ r to P1. Now privacy is re-installed,
but it becomes unclear how to perform the computation.

To remedy this, the OCL scheme provides a way for the two parties to jointly
decrypt x0 and compute f(x0, x1). More precisely, the preprocessing phase sam-
ples the initial states of the OCL scheme with respect to a random string r,
which will set as the OCL secret (referred to before as k, and distributes the
left-component initial state to P1 and the right-component initial state together
with r to P0. During the protocol execution, P0 sends c = r ⊕ x0 to P1; then,
jointly with the auxiliary parties PA1

, . . . , PAa , they perform an OCL evalua-
tion, where P0 acts as the right component and P1 acts the left component with

input function g((c, x1), ·) = f(c ⊕ (·), x1) = y. The OCL evaluation computes
the function g on the secret r, producing the desired output y at P0.

Showing that the above protocol ρ is indeed leakage tolerant reduces to show-
ing that the states of P0 and P1 can be simulated using their own input and out-
put. By construction, P0’s state consists of x0, r and the right-component state
of OCL, while P1’s state contains x1, c and the left-component state of OCL. A
key observation is that since r is truly random, so is c. Therefore, the ciphertext
c can be simulated directly using a random string c̃← U , and later, the secret r
can be simulated as c̃⊕ x0; and the pair (c̃, r̃) is distributed identically to their
counterparts (c, r) in the real execution. Next, it follows from the strong leakage
resilience of the OCL scheme that the left-component state stateL in P1 can be
simulated using the input function g(c̃, x1), ·) and the output y, while the right-
component state stateR in P0 can be simulated using only y. Therefore, overall
the simulated state (x0, r̃, stateR) of P0 and the simulated state of (x1, c̃, stateL)
of P1 depend, respectively, on their own input and output. The state of the aux-
iliary parties is guaranteed, by strong OCL, to be simulatable independently of
the input and output, as required. Thus, leakage-tolerance follows as required.

To generalize the above to the continual setting, requires a modification of the
above protocol. We design a slightly more complicated protocol ρ′, in which even
the ciphertext c is computed using the OCL scheme by evaluating the function
g′(x0, ·) = x0⊕(·) on the secret r; To do this, the preprocessing stage is modified
to sample an additional set of OCL initial states with respect to the secure r,
and to distribute the left-component initial state to P0 who later acts as the left
component when evaluating g′. The protocol ρ′ is still a one-time protocol, but
in which r is not fully revealed.

Moving to the continual case, instead of directly using r as the one-time pad,
in the ith iteration, we use the pseudo-random string produced by PRF(r, i) as
the one-time pad, where r is used as the seed. It follows from the continual strong
leakage-resilience of the OCL scheme that the seed r is always kept secret, and
thus all the one-time pads generated are pseudo-random.

From LTC with input-independent processing back to strong OCL. We briefly
sketch how LTC with input-independent processing can be used to obtain strong
OCL, thus implying that OCL is necessary for our goal. For simplicity, we de-
scribe the transformation with two parties, and with no auxiliary parties. It is
not hard to see that by starting from an LTC with a auxiliary parties, we get
strong OCL with a auxiliary parties.

The idea relies on the properties of inner product as a two-source extrac-
tor [CG88]. For an OCL secret k ∈ {0, 1}n we consider a two-party func-
tion g(f,Li,L

′), (R,R
′)) that takes as input a description of f : {0, 1}n →

{0, 1}∗, matrices Li,Ri ∈ Fκ×n2 , which will be inner product shares of the
key k (that is, Li[j],Ri[j] ∈ Fκ2 and 〈Li[j],Ri[j]〉 = kj), and two random

matrices L,R ∈ Fκ
′×κ′

2 , where κ′ = poly(κ). The function computes f(k) =
f(〈Li[1],Ri[1]〉, . . . , 〈Li[n],Ri[n]〉), and in addition new random shares
Li+1[j],Ri+1[j] ∈ Fκ2 of the key k, which will be computed using randomness
〈L′[1],R′[1]〉, . . . , 〈L′[κ′],R′[κ′]〉, derived by inner-product extraction.

At compilation, initial shares L1,R1 of the key k are sampled and distributed
to the parties, and input-independent processing is done with respect to the
function g. Then at each iteration i the parties compute the function where P0

inputs f,Li,L
′, where Li was produced in the previous iteration and L′ was

sampled uniformly at random by P0 itself. P1 accordingly inputs Ri,R
′. The

properties of the LTC ensure that throughout all the different shares L,L′,R,R′

are only leaked on separately, within some small bound. Strong OCL simulation
then follows directly by the LTC simulation guarantee.

Obtaining strong OCL. Intuitively, our construction combines the two-component
OCL scheme of Dziembowski and Faust [DF12] (referred to as the DF scheme
henceforth), which relies on a leakage-free hardware that samples random orthog-
onal vectors, with the key ciphertext bank module in the Goldwasser-Rothblum
OCL scheme [GR12] (henceforth, the GR scheme). The ciphertext bank allows
continual sampling of random orthogonal vectors at the presence of leakage using
multiple components.

A natural idea is to use auxiliary parties to emulate the GR ciphertext bank in
order to implement the hardware needed for the DF-scheme. However, combining
the two schemes and showing that the joint scheme admits strong simulation
turns out to be quite challenging: First, the GR-scheme is proven secure in a
weaker model of OCL, where the leakage adversary can only obtain leakage from
the component that is currently activated, implying that leakage occurs in the
same order as the sequence of sub-computations. As a first step towards our
construction, we argue that the GR-scheme is also secure against “unordered
leakage”. Second, we provide new simulation procedures for the DF-scheme and
the GR ciphertext banks as required by strong OCL. We defer a more detailed
description of the joint scheme to the full version.

From two-party LTC to multiparty LTC. We now briefly explain our trans-
formations from m-party LTC protocols with input-dependent preprocessing to
protocols, relying only on input-independent preprocessing and two-party LTC.

The high-level idea behind our transformations is as follows: The input pro-
cessing of the multi-party LTC can be performed online, and under leakage,
jointly by two parties. To process an input xi of a given party Pi0 , it will use the
help of another party Pi1 , and possibly of other auxiliary parties Pi′1 , . . . , Pi′a .
The two parties would each sample independently a long enough random string
ri0 and ri1 , respectively, and will use the LTC to compute the two-party function
g((xi, ri0), ri1) that computes the processing function x̄i = Π(xi;Ext(ri0 , ri1)),
where the randomness r = Ext(ri0 , ri1) is derived from the two random strings
using a two-source extractor (e.g., inner product).

Once each party obtains this processed input, the parties then run the origi-
nal protocol, no longer requiring leakage-free preprocessing. Intuitively, the two-
source extraction guarantees—provided that there is only bounded separate leak-
age on each of the random strings—that the randomness r = Ext(ri0 , ri1) is sta-
tistically independent of the leakage, achieving the same effect as leakage-free
input preprocessing.

The above intuition holds assuming that the party Pi1 assisting Pi0 , as well as
the other assisting parties Pi′1 , . . . , Pi′a , are all honest. In particular, we achieve a
protocol in the no corruption model. Indeed, assuming Pi0 is (even semi-honestly)
corrupted, the adversary, who now knows ri0 can learn any `-bounded function
of r, by leaking on ri0 . Furthermore, a malicious party may even bias the result
and hurt the correctness of the protocol.

An appealing approach towards overcoming this problem is to have each
party Pi jointly process its input with all other parties Pj , and aggregate the
processed inputs into a single input that is safe to use. We observe that the
input-processing in the [BGJK12] protocol possesses additional properties, which
give rise to such an approach. Specifically, in the [BGJK12] protocol the input
processing function Π(xi, pk, crs) := (Encpk(xi), π) samples an encryption of the
input xi under a public key pk for a fully-homomorphic encryption scheme, and
a NIZK of knowledge π of the input xi. Here the public key pk and the common
reference string crs are determined as part of the input-independent processing
(in particular, in [BGJK12], there is no leakage on the encryption’s randomness).

We implement the above idea as follows: Let a = O(1) be the number of
auxiliary parties required for the two-party LTC. We let each Pi jointly compute
with each coalition C of parties of size a + 1 an encryption cC of zero, and a
NIZK for it being an encryption of zero with respect to pk. The randomness
for this computation is computed by a two-source extractor, as above. Then, Pi
aggregates all these ciphers by adding them together to a new zero encryption
c =

∑
C∈([m]

a+1)
cC , and uses them to get a rerandomnized encryption cxi of his

input xi, by encrypting xi under leakage (and thus non-securely) and then adding
to it the aggregated zero encryption c. Also, Pi computes a NIZK of knowledge
that it knows xi and that cxi was generated by adding an encryption of xi to
ciphers c, and that NIZKs for the fact that they’re zero ciphers were verified.

It can be shown that, in known fully homomorphic encryption schemes, the
final encryption of xi is semantically-secure provided that any one of the zero
encryptions cC , which is the case as long as there exists some non-corrupted
coalition C of parties. Moreover, the NIZKs guarantee that malicious parties
cannot bias the result of the computation.

The above transformation withstands the same number of corruptions as the
[BGJK12] protocol: it allows (1− ε)m corruptions, for m > λ−Ω(1).

A note on universal composability and randomized functionalities. In the stand-
alone setting, the security of our LTC protocols follows directly from the leak-
age resilience of [BGJK12] protocols in the stand-alone setting, which is shown
in [BGJK12]. To show the full leakage tolerance defined in the UC setting [BCH12],
we need to rely on protocols that are leakage-resilient in the UC setting, which
is outside the scope of [BGJK12]. To bridge this gap, we modify the origi-
nal [BGJK12] protocols to a UC variant, by replacing all building blocks in [BGJK12]
with their corresponding UC counterparts. While most building blocks have stan-
dard UC version, there is no known leakage-tolerant m-party coin-tossing pro-
tocol in the UC setting. We construct such a protocol, in the input-independent

pre-processing model, relying on our two-party LTC protocols with auxliary
parties. This yields a coin-tossing protocol that us secure as long as sufficiently
many parties are honest (the same as the number of parties in the LTC proto-
col). This coin-tossing protocol not only facilitates a UC variant of [BGJK12],
but also allows implementing randomized functionalities.

1.3 Organization

In Section 2, we provide the formal definition of strong OCL compilers, and in
Section 3 we construct two party LTC protocols secure with no corruption and
only leakage from two component strong OCL compilers. Due to the lack of
space, we leave the security proof of the two party LTC protocols, as well as the
construction of strong OCL compilers and the final multiparty LTC protocols
secure with corruptions to the full version.

2 Strong Only-Computation-Leaks Compilation

N -component OCL. A N -component OCL scheme for a circuit C(k, ·), asso-
ciated with a secret k, consists of an efficient compiler Comp and a N -party
protocol Π = (POCL

1 , POCL
2 , · · · , POCL

N). To compute C(k, ·) in a leakage-resilient
way, the circuit is compiled ahead of time by Comp(C(k, ·)) that produces an

initial state (init
(k)
1 , · · · , init(k)N) for each one of the N parties, and this compi-

lation is done “in the dark” without any leakage. Then, at computation time,
the parties can compute together y = C(k, x) for any input x by running the
protocol Π.

Below we provide the formal definition of OCL schemes for universal circuits
Since our end goal is constructing composable leakage tolerant protocols, where
the simulator is oblivious of the leakage queries from the adversary, we consider
strengthened OCL schemes which have obvious simulators.

OCL schemes with oblivious simulation: Let {UT (k, f)}T∈N denote the family of
universal circuits where UT takes two inputs k and f of length at most T , where
f represents a T -step deterministic computation, and computes f(k). (If the
computation does not complete in T steps, we assume w.l.o.g. that the output
of UT (k, f) is ⊥).

Definition 1 (Continual N-component OCL schemes). We say that Λ =
(Comp, Π = 〈P OCL

1 , · · · , P OCL

N 〉) is a continual, N -component OCL scheme for the
universal circuit family {UT (k, f)}T∈N if it satisfies the following properties.

Initialization: For every security parameter λ and T ∈ N, k ∈ {0, 1}T , the
compiler Comp(1λ, UT , k) runs in time poly(λ, T) and outputs N initial
states init1, init2, · · · , initN .

Unbounded-time evaluation: The evaluation procedure invokes the protocol
Π between the components P OCL

1 (init1), P OCL
2 (init2) to P OCL

N (initN), which in-
teract in an arbitrary polynomial number of iterations: In the ith iteration,

P OCL
1 receives an input fi ∈ {0, 1}T and P OCL

2 produces an output yi. At the
end of the evaluation, an update procedure is carried out, producing the new
initial states for the next iteration; then all information other than the new
initial states are erased.

For every component j ∈ [N], denote by initi,j the initial states of component
j at the onset of the ith iteration (in the first iteration, init1,j = initj), and
evli,j the random coins tossed and messages exchanged by each P OCL

j during

the ith iteration, including its state during the update phase.

Correctness with adaptive input selection: For every λ ∈ N, T ∈ N poly-
nomially related to λ, k ∈ {0, 1}T , auxiliary input z ∈ {0, 1}poly(λ), and PPT
adversary A, in the following real experiment RealExp∞A (1λ, T, k, z) where A
initiates an arbitrary number of evaluations with adaptively chosen inputs,
it holds that with all but negligible probability, the outputs of all evaluations
are correct.

We say that Λ has perfect correctness, if the above holds with probability 1.

We next describe the security experiments of OCL schemes. Λ is said to be
`-leakage-resilient with oblivious simulation if there is a simulator S, such that,
for every λ ∈ N, T ∈ N polynomially related to λ, every k ∈ {0, 1}T , and auxil-
iary input z ∈ {0, 1}poly(λ), the views of the adversary in the following real and
ideal experiments are indistinguishable. In the real world, the adversary obtains
leakage independently from each component during OCL evaluations (with in-
puts chosen adaptively by the adversary), whereas in the ideal world, it obtains
leakage from states of the components simulated by an oblivious simulator. More
formally,

RealExp∞A (1λ, T, k, z) (Real experiment): The adversary A(1λ, T, k, z) proceeds
as follows:

1. The initial states (init1, · · · , initN)← Comp(1λ, UT , k) are sampled.

2. A launches `-bounded leakage attacks on an unbounded number of evalua-
tions of its choice: In the ith iteration,

(a) A submits an input function fi ∈ {0, 1}T , which is evaluated on k by re-
suming the protocol execution ofΠ between the components POCL

1 (initi,1), · · · , POCL

N (initi,N)
with input fi to the first component POCL

1 .

(b) A launches an `-bounded leakage attack on the ith evaluation: It issues
an arbitrary number of leakage queries (POCL

j , L) for j ∈ [N] adaptively,
and obtains leakage answers L(initi,j , evli,j), as long as the total amount
of leakage on each POCL

j in this iteration is smaller than `(λ) bits.

(c) A obtains the output of the evaluation, which is the output of POCL
2 .

Denote by view`,∞A (1λ, T, k, z) the view of A in the above experiment.

IdealExp∞S,A(1λ, T, k, z) (Ideal experiment): The adversary A(1λ, T, k, z) partici-
pates in the same experiment as above, except that during its `-bounded leakage
attacks, it is given simulated answers: In the ith iteration,

(a) A submits an input function fi ∈ {0, 1}T . S(1λ, T, i, fi, fi(k); wi) is invoked,

producing simulated states (ĩntli,1, · · · , ĩntli,N , ẽvli,1, · · · , ẽvli,N), where wi is
the fresh random coins tossed for the simulation in iteration i and wi =
w1, · · · , wi is all the random coins that have been tossed for simulation in
the first i iterations.

(b) Whenever A issues a leakage query (POCL
j , L) for j ∈ [N], it is given the

simulated answer L(ĩntli,j , ẽvli,j), as long as the total amount of leakage on
each POCL

j in this iteration is smaller than `(λ) bits.

(c) A obtains the simulated output of the evaluation in ẽvli,2.

Denote by ṽiew
`,∞
S,A(1λ, T, k, z) the view of A in the above experiment.

Definition 2 (Continual `-Leakage-resilience with oblivious simulation).
We say that a continual OCL scheme Λ is continually `-leakage-resilient with
oblivious simulation if there is a PPT simulator S, such that, for every PPT
adversary A, the following two ensembles are indistinguishable.

– {view`,∞A (1λ, T, k, z)}λ∈N,T∈N,k,z∈{0,1}poly(n)

– {ṽiew
`,∞
S,A(1λ, T, k, z)}λ∈N,T∈N,k,z∈{0,1}poly(n)

Strong OCL schemes: In the above definition, the oblivious simulator simulates
the states of all N components in each evaluation i depending on both the input
fi and output fi(k). We consider the following strengthening: Only the simula-
tion of the first component depends on both the input and output, whereas the
simulation of the second component depends solely on the output, and simulation
of the rest components depends on neither the input nor the output.

Definition 3 (Continual strong OCL Schemes). We say that Λ = (Comp, Π =
(P OCL

1 , P OCL
2 , · · · , P OCL

N)) is a continually `-leakage-resilient strong OCL scheme
if it satisfies the following property.

Strong `-leakage resilience: Λ admits an oblivious simulator S satisfying Def-
inition 2 with the following structure: S consists of three sub-algorithms
(S1,S2,S3) and on input (1λ, T, i, fi, fi(k) ; wi), S invokes these sub-algorithms
as follows:

– S1(1λ, T, i, fi, fi(k); wi) = (ĩntli,1, ẽvli,1)

– S2(1λ, T, i, fi(k); wi) = (ĩntli,2, ẽvli,2)

– S3(1λ, T, i; wi) = (ĩntli,3, · · · , ĩntli,N , ẽvli,3, · · · , ĩntli,N)

and outputs (ĩntli,1, · · · , ĩntli,N , ẽvli,1, · · · , ẽvli,N).

Strong two-component OCL with auxiliary components In this work, we often
consider the special case of a strong two-component OCL scheme, and refer to
the two components as the left and right components, denoted by POCL

L and
POCL

R . The strong oblivious simulation property ensures that the state of the
left component in each evaluation can be simulated using both the input and

output, whereas the state of the right component can be simulated using only
the output. We sometimes view a strong (N + 2)-component OCL scheme as
a strong 2-component OCL scheme using N auxiliary parties POCL

A1
, · · · , POCL

AN
,

whose states can be simulated independently of the input and output; in this
case, we denote the strong oblivious simulator as S = (SL, SR, SA). Viewing
strong N -component OCL as strong two-component OCL with auxiliary com-
ponents is instrumental for our construction of leakage tolerant protocols.

3 Two-Party Leakage-Tolerant Protocols without
Corruption

In this section, we show how to construct a two-party, a auxiliary-party, continual
leakage-tolerant protocol ρ in the input-independent pre-processing model based
on any strong, continual 2-component OCL scheme with a auxiliary parties. Our
tranformation works for any number a of auxiliary parties, and, in particular
works for the special case of a = 0. The protocol is secure against adversaries
that leak a bounded amount of ` bits of information on the state of each honest
party (separately) in each time period, but do not corrupt any of the parties.

Notation. By Ff2LTC-AUX we denote the 2-party ideal leaky functionality com-
puting function f with auxiliary parties. By FLSC we denote the secure commu-
nication functionality and by FLFS we denote the input-idependent leakage-free
preprocessing functionality which provides the initial states for all parties.

We now state the main theorem of this section:

Theorem 4. Assume the existence of a `-continual-leakage-resilient strong OCL
Λ scheme with some number, a, of auxiliary components for the universal cir-
cuit family and the existence of one-way functions. Then for every efficiently
computable deterministic two-input two-output function f : {0, 1}∗ × {0, 1}∗ →
{0, 1}∗×{0, 1}∗, there is a protocol ρ that strongly UC-emulates the functionality

Ff2LTC-AUX under `-bounded continual leakage, with a auxiliary parties, when no
party is corrupted, in the (FLSC,FLFS)-hybrid model (i.e. with secure communi-
cation and input-independent leakage-free preprocessing). Furthermore, if Λ has
perfect correctness, ρ also has perfect correctness.

Towards proving the theorem, we first observe that it suffices to consider
only functions with a single output and design leakage-tolerant protocols where
both parties obtain this output.

Proposition 1. Assume the existence of a `-continual-leakage-resilient strong
OCL Λ scheme with a auxiliary components for the universal circuit family.
Then, for every efficiently computable deterministic two-input function f : {0, 1}∗×
{0, 1}∗ → {0, 1}∗, there is a protocol ρ that strongly UC-emulates the functional-

ity Ff,∞2LTC-AUX under `-bounded continual leakage, when no party is corrupted,
in the (FLSC,FLFS)-hybrid model (i.e. with secure communication and input-
independent leakage-free preprocessing). Furthermore, if Λ has perfect correct-
ness, ρ also has perfect correctness.

Theorem 4 directly follows from Proposition 1 using standard techniques.

3.1 The Protocol ρ

Let λ be security parameter, and let f be an efficiently computable determin-
istic two-input function. Below we present a two-party leakage-tolerant proto-
col ρ that strongly emulates the functionality Ff,∞2LTC-AUX in the (FLSC,FLFS)-
hybrid model, where FLSC is the secure communication functionality and FLFS

captures the leakage-free preprocessing functionality. The protocol assumes a
`-continual leakage-resilient strong 2-component OCL scheme with a auxiliary
parties. Λ = (Comp, Π = (PL, PR, PA1 , . . . , PAa)) with an oblivious simulator
S = (SL,SR,SA).

Let n be the length of the inputs xj0, x
j
1 ∈ {0, 1}n to be evaluated in the

j-th iteration, which is polynomially related with the security parameter 7. Our
leakage-tolerant protocol below utilizes the OCL scheme to perform the evalua-
tion of f(xj0, x

j
1). To ensure input privacy, a party must avoid sharing its input in

the clear with another party. Instead, in the j-th iteration, the parties first use the
OCL scheme to allow P1 to obtain an encrypted version xj0⊕PRF(r, j) of P0’s in-
put, where PRF is a pseudorandom function and the PRF key r is encoded as the
OCL secret. Then, instead of directly evaluating f , the OCL scheme is used again
to evaluate the following function g((cj = (xj0 ⊕ PRF(r, j)), x1),PRF(r, j)) =

f(cj ⊕ PRF(r, j), xj1).

In the following, we simplify notation by denoting by initj,bA = initj,bA,1, . . . , init
j,b
A,a,

for j ∈ [a] and b ∈ {1, 2}, the initial states of all auxiliary components of

the b-th OCL in the j-th iteration. We similarly define evlj,bA . Moreover, by

xj0 = x10, . . . , x
j
0 we denote the sequence of inputs of P0 in the first j itera-

tions, by xj1 = x11, . . . , x
j
1 we denote the sequence of inputs of P1 in the first j

iterations and by yj = y11 , . . . , y
j
1 the sequence of outputs in the first j iterations.

We present the leakage-tolerant protocol ρ in detail in Figure 1:

Acknowledgement We thank Elette Boyle and Abhishek Jain for valuable
discussions and the anonymous reviewers for helpful comments and suggestions.

References

ADW09. Joël Alwen, Yevgeniy Dodis, and Daniel Wichs, Survey: Leakage Resilience
and the Bounded Retrieval Model, Information Theoretic Security - ICITS
2009 (Kaoru Kurosawa, ed.), 2009, pp. 1–18.

BCG+11. Nir Bitansky, Ran Canetti, Shafi Goldwasser, Shai Halevi, Yael Tauman
Kalai, and Guy N. Rothblum, Program obfuscation with leaky hardware,
ASIACRYPT, 2011, pp. 722–739.

7 The reason that we separate the security parameter from the length of the input
is that the leakage-bound of the protocol only depends on the security parameter,
but not the input length. Thus, by scaling up the security parameter, the absolute
number of leakage bits that the protocol tolerates grows.

BCH12. Nir Bitansky, Ran Canetti, and Shai Halevi, Leakage-tolerant interactive
protocols, TCC, 2012, pp. 266–284.

BGJ+13. Elette Boyle, Sanjam Garg, Abhishek Jain, Yael Tauman Kalai, and
Amit Sahai, Secure computation against adaptive auxiliary information,
CRYPTO, 2013.

BGJK12. Elette Boyle, Shafi Goldwasser, Abhishek Jain, and Yael Tauman Kalai,
Multiparty computation secure against continual memory leakage, STOC,
2012, pp. 1235–1254.

BGK11. Elette Boyle, Shafi Goldwasser, and Yael Tauman Kalai, Leakage-resilient
coin tossing, DISC, 2011, available at http://eprint.iacr.org/2011/291,
pp. 181–196.

BGW88. Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson, Completeness theo-
rems for non-cryptographic fault-tolerant distributed computation (extended
abstract), STOC, 1988, pp. 1–10.

Can01. Ran Canetti, Universally composable security: A new paradigm for crypto-
graphic protocols, FOCS, 2001, pp. 136–145.

CCD88. David Chaum, Claude Crépeau, and Ivan Damg̊ard, Multiparty uncondi-
tionally secure protocols (extended abstract), STOC, 1988, pp. 11–19.

CG88. Benny Chor and Oded Goldreich, Unbiased bits from sources of weak ran-
domness and probabilistic communication complexity, SIAM J. Comput. 17
(1988), no. 2, 230–261.

DF11. Stefan Dziembowski and Sebastian Faust, Leakage-resilient cryptography
from the inner-product extractor, ASIACRYPT, 2011, pp. 702–721.

DF12. , Leakage-resilient circuits without computational assumptions,
TCC, 2012, pp. 230–247.

DLWW11. Yevgeniy Dodis, Allison B. Lewko, Brent Waters, and Daniel Wichs, Stor-
ing secrets on continually leaky devices, FOCS, 2011, pp. 688–697.

GJS11. Sanjam Garg, Abhishek Jain, and Amit Sahai, Leakage-resilient zero knowl-
edge, CRYPTO, 2011, pp. 297–315.

GMW87. Oded Goldreich, Silvio Micali, and Avi Wigderson, How to play any mental
game or a completeness theorem for protocols with honest majority, STOC,
1987, pp. 218–229.

GR10. Shafi Goldwasser and Guy N. Rothblum, Securing computation against
continuous leakage, CRYPTO, 2010, pp. 59–79.

GR12. , How to compute in the presence of leakage, FOCS, 2012, pp. 31–40.
JV10. Ali Juma and Yevgeniy Vahlis, Protecting Cryptographic Keys against Con-

tinual Leakage, CRYPTO, 2010, pp. 41–58.
MR04. Silvio Micali and Leonid Reyzin, Physically observable cryptography, TCC,

2004, pp. 278–296.
NVZ13. Jesper Buus Nielsen, Daniele Venturi, and Angela Zottarel, On the connec-

tion between leakage tolerance and adaptive security, Public Key Cryptog-
raphy, 2013, pp. 497–515.

Pan14. Omkant Pandey, Achieving constant round leakage-resilient zero-knowledge,
TCC, 2014, pp. 146–166.

Sta09. Francois-Xavier Standaert, Introduction to side-channel attacks, Secure In-
tegrated Circuits and Systems (Ingrid M.R. Verbauwhede, ed.), Springer,
2009, pp. 27–44.

Yao82. Andrew Chi-Chih Yao, Protocols for secure computations (extended ab-
stract), FOCS, 1982, pp. 160–164.

http://eprint.iacr.org/2011/291

The leakage tolerant protocol ρ

The input-independent preprocessing stage: The leakage-free sampling (LFS)

functionality FCompρ
LFS , on input (1λ, T), where T will be specified later, invokes a

compilation algorithm Compρ on (1λ, T), proceeding as follows 8:
1. Sample r ← Uλ uniformly at random.
2. Sample two pairs of initial states of the OCL scheme Λ w.r.t. secret

r independently and randomly: (init1L, init
1
R, init

1
A) ← Comp(1λ, UT , r) and

(init2L, init
2
R, init

2
A)← Comp(1λ, UT , r).

3. Distribute Φ0 = (init1L, init
2
R) to P0, Φ1 = (init1R, init

2
L) to P1 and ΦA =

(init1A, init
2
A) to the auxiliary parties.

The online stage: For each iteration j, given the initial states Φ0, Φ1 and ΦA sampled
in the preprocessing stage, P0, P1 and P aux

1 , . . . , P aux
a on common input (1λ, f, T),

and private inputs xj0 ∈ {0, 1}n and xj1 ∈ {0, 1}n, proceed in the following steps,
where all messages are sent via the secure channel functionality FLSC:
1. The first OCL evaluation—Compute an encryption cj = xj0 ⊕ PRF(r, j) of xj0:

P0, P1 and the auxiliary parties P aux
1 , . . . , P aux

a compute xj0 ⊕ PRF(r, j) using
the OCL protocol Π: P0 acts as the left component using initial state initj,1L ,
P1 acts as the right component using initial state initj,1R and P aux

1 , . . . , P aux
a act

as the auxiliary components using initial states initj,1A,i, . . . , init
j,1
A,a. P0 feeds the

following function gj1(r) = g
(j,x

j
0)

1 (r) = xj0⊕PRF(r, j) to the left component as
input. At the end of the evaluation P1 obtains c̃j .

2. The second OCL evaluation—Compute the output f(xj0, x
j
1):

P0, P1 and P aux
1 , . . . , P aux

a compute yj = f(xj0, x
j
1) by evaluating the function

g((c̃j , xj1),PRF(r, j)) using Π again: P0 acts as the right component using
initial state initj,2R , P0 acts as the left component using initial state initj,2L
and parties P aux

1 , . . . , P aux
a act as the auxiliary components using initial states

initj,2A,1, . . . , init
j,2
A,a, respectively. P1 feeds the function gj2(r) = g

(j,c̃j ,x
j
1)

2 (r) =

f(c̃j⊕PRF(r, j), xj1) to the left component as input. At the end of the evaluation
P0 obtains ỹj .

3. P0 sends ỹj to P1. They both output ỹj .
T = T (n) is thus set to bound on the time for computing the functions (gj1, g

j
2) on

two n-bit inputs.

Fig. 1. The Leakage Tolerant Protocol ρ

	Leakage-Tolerant Computation with Input-Independent Preprocessing

