
Cryptography with Streaming Algorithms

Periklis A. Papakonstantinou and Guang Yang?

Institute for Theoretical Computer Science
Tsinghua University

Beijing 100084, China

Abstract. We put forth the question of whether cryptography is fea-
sible using streaming devices. We give constructions and prove lower
bounds. In streaming cryptography (not to be confused with stream-
ciphers) everything—the keys, the messages, and the seeds—are huge
compared to the internal memory of the device. These streaming algo-
rithms have small internal memory size and make a constant number
of passes over big data maintained in a constant number of read/write
external tapes. Typically, the internal memory size is O(logn) and we
use 2 external tapes; whereas 1 tape is provably insufficient. In this set-
ting we cannot compute instances of popular intractability assumptions.
Nevertheless, we base cryptography on these assumptions by employing
non-black-box techniques, and study its limitations.
We introduce new techniques to obtain unconditional lower bounds show-
ing that no super-linear stretch pseudorandom generator exists, and no
Public Key Encryption (PKE) exists with private-keys of size sub-linear
in the plaintext length.
For possibility results, assuming the existence of one-way functions com-
putable in NC1—e.g. factoring, lattice assumptions—we obtain stream-
ing algorithms computing one-way functions and pseudorandom gener-
ators. Given the Learning With Errors (LWE) assumption we construct
PKE where both the encryption and decryption are streaming algo-
rithms. The starting point of our work is the groundbreaking work of
Applebaum-Ishai-Kushilevitz on Cryptography in NC0. In the end, our
developments are technically orthogonal to their work; e.g. there is a
PKE where the decryption is a streaming algorithm, whereas no PKE
decryption can be in NC0.

Keywords: streaming, lower bound, big data, randomized encoding,
non-black-box, PRG, PKE

1 Introduction

In most cryptosystems the keys can be assumed to reside in a local memory
provided with unlimited access. What if access to the keys is not for free? Suppose

? This work was supported in part by the National Basic Research Program of China
Grant 2011CBA00300, 2011CBA00301, the National Natural Science Foundation of
China Grant 61033001, 61350110536, 61361136003.

2 Periklis A. Papakonstantinou, Guang Yang

that the key is very long and, together with everything else in the input, is stored
as a stream that can be sequentially scanned only a few times. Is it possible to
compute cryptographically secure functions in this way?

More formally, we consider the possibility of cryptography against arbitrary
polynomial time adversaries, who are as powerful as usual, using a (less powerful)
streaming algorithm which has access to a bounded internal memory, and to
external read/write tapes (RW streams) where we quantify on the number of
passes over them. These RW streams are commonly thought (see e.g. [19, 17] and
references within) to correspond to hard disk drives or other sequentially accessed
buffers. The question of cryptography using streaming devices is motivated in
practice in settings where the keys and messages are huge (e.g. authenticating
big data), whereas theoretically it falls in the fundamental study of cryptography
with rudimentary resources.

Below, we give an overview of our results, then we discuss related work and
several subtleties of streaming cryptography, and finally we compare to previous
work in randomized encodings.

Our results. For the rest of this paper and unless mentioned otherwise, a stream-
ing algorithm has 2 RW streams (external tapes), over which it makes O(1) many
passes, and it uses O(log n) internal memory size1 for input length n. These are
optimal parameters, within constants, under which streaming cryptography may
exist (we show that 1 read/write stream is not sufficient). We devise streaming
constructions of private- and public-key primitives by synthesizing various pre-
vious works along with new techniques necessary for streaming. This possibility
is quite unexpected for distinct reasons. We also introduce technically novel ma-
chinery and study the limitations of private- and public-key cryptography in this
setting.

Impossibility results. We show the impossibility of super-linear stretch streaming
pseudorandom generator, and we also obtain a linear (in the security parameter)
lower bound on the key-size of streaming PKE. The proof technique is inspired
by [19, 17]. However, a cryptography lower bound is not for a specific function as
per usual streaming lower bounds. It must hold for all cryptographically secure
functions realizing the same primitive.

Possibility results. Given that one-way functions exist in NC1, e.g. based on fac-
toring or lattice assumptions, we construct one-way functions and pseudorandom
generators by streaming algorithms that use: internal memory of size O(log n),
2 RW streams (one contains the input and the other one is auxiliary), 5 passes
in total for one-way functions and 7 for pseudorandom generators.

Starting from the Learning With Errors (LWE) assumption [8] and based
on the constructions in [8, 7] we construct an Indistinguishable under Chosen-
Plaintext Attack (IND-CPA) secure (or semantically secure [21]) Public-Key

1 Logarithmic memory size precludes uninteresting trivialities that can happen for
size ω(logn), when one assumes the existence of very hard functions. In this case,
in principle the question is not about streaming.

Cryptography with Streaming Algorithms 3

Encryption (PKE), where both the encryption and the decryption are streaming
algorithms. This is mainly a feasibility result. Improved key-lengths, and a CCA-
secure PKE are very interesting open questions.

For the existence of streaming one-way functions and pseudorandom genera-
tors, the assumption can be relaxed to existence of one-way functions in Logspace.
For PKE we rely on LWE, a concrete intractability assumption.

Relation to previous work. The construction of streaming one-way functions from
an arbitrary one-way function in NC1 relies on Barrington’s characterization
[20]. In particular, computing a boolean NC1 function reduces in some very
local sense to computing the product σ1σ2 · · ·σm of permutations from Sym(5),
the symmetric group over 5 letters. Kilian [23] encoded σ = σ1 · · ·σm as σ̂ =
〈σ1r1, r−11 σ2r2, . . . , r

−1
m−1σm〉 for uniformly random chosen ri’s. Then, given σ̂ we

can efficiently “decode” σ, whereas no additional information about σ1, · · · , σm
can be extracted. The seminal work of Applebaum-Ishai-Kushilevitz [10, 9, 11,
3] provides a paradigm for dealing with general forms of similar randomized
encodings.

Constructing a pseudorandom generator is more complex. One could have
tried to implement as a streaming algorithm the steps of the celebrated [14]
construction. Indeed, such a streaming pseudorandom generator is non-trivially
achievable given certain entropy parameters of hashed values. But, there is no
obvious way to streaming-compute these values, neither can it be circumvented
by creating many copies as in [14]. We instead adapt [5, 16] that bypass this
obstacle and also buys us efficiency over [14]. Both [5] and [16] can be non-
trivially modified into streaming algorithms. We use [5] because it is simpler
and gives better parameters.

Regarding Public Key Encryption systems, we base our construction on [8,
7], where the original constructions are not streaming computable.

Why streaming cryptography is not immediate from concrete hardness as-
sumptions, such as lattice assumptions? By modifying [17] we see that multiply-
ing a matrix by a vector requires Ω(log n) many passes if the number of streams
is constant and the internal memory logarithmic. This limitation is circumvented
by taking randomized encodings of NC1 computations of such functions (these
are non-black-box constructions since the computation itself is encoded). We
note that [12] ruled out families of black-box streaming cryptography construc-
tions and it conjectured impossibility of streaming cryptography with a constant
number of passes, which we refute in this paper. Thus, the possibility of stream-
ing cryptography is unexpected.

One more reason that makes streaming cryptography counter-intuitive is that
no single-stream algorithm with internal memory size O(log n) and O(1)-many
passes computes a one-way function. However, by adding a second stream we

4 Periklis A. Papakonstantinou, Guang Yang

can bring the number of passes down to a constant, and this strongly contrasts
folk wisdom2 in streaming computation.

The multiple read/write (RW) stream model we consider here is closely re-
lated to the reversals-parameterized Turing Machines [2, 18], except that we only
make forward scans. To the best of our knowledge, before our work for o(log n)
many passes in the literature there were only lower bounds, e.g. [19, 17]. This
multiple stream model generalizes the single-stream model, aka “online model”,
which has been scrutinized for quite a while. In the study of randomness [15]
gives lower bounds in the single-stream model as well as constructions for online
universal hash functions, extractors, and condensers. Also, a restricted form of
the single-stream model with read-only (RO) input was studied in [13, 6].

Table 1. Cryptography with Streaming Algorithms vs Cryptography in NC0.

Streaming Model NC0

one-way function
pseudorandom generator (PRG)

X X

PKE (Enc & Dec) X ×
linear-stretch PRG ? from Alekhnovitch’s assumption [22]

super-linear-stretch PRG × ?

Streaming Cryptography vs NC0 and locality. Streaming cryptography
and [10, 9, 1, 11, 3] rely on randomized encodings, but they are incomparable in
a number of places. There are obvious things streaming algorithms can do (e.g.
sample almost uniformly from Sym(5)) but NC0 cannot, whereas, generally, NC0

functions with underlying dependency graphs of poly(n) treewidth cannot be
computed by streaming algorithms. This holds in particular for circuits associ-
ated with cellular automata (CA) as they appear in [3], where the treewidth is
Ω(
√
n). Furthermore, there are concrete technical separations between stream-

ing and highly parallel cryptography. For example, IND-CPA secure PKE with
streaming encryption and decryption exists whereas no NC0 decryption is possi-
ble (and for AC0 is still open). The CAs constructions are based on the concrete
DRLC assumption (see Section 7), whereas even for [1] (these CAs make a single
step that makes them a special case of constant input/output locality circuits
[1]) it is impossible to start from general encodings. Our streaming private-key
primitives are from generic assumptions.

2 It was believed that for common types of functions, if when adding a second tape
helps then permuting the input in the single-stream model will help as well. But a
permuted one-way function is also one-way.

Cryptography with Streaming Algorithms 5

2 Preliminaries

We use capital bold letters, e.g. A, to denote matrices, and use lower case bold
letters, e.g. x, for column vectors, and correspondingly xT for row vectors. Let
Zq := Z/qZ = {0, 1, 2, · · · , q − 1} be the ring of integers with addition and
multiplication modulo q.

Probability distributions are denoted by calligraphic letters, e.g. D. We use
x ← D to denote that x is sampled from D, and x ∈R S when x is sampled
uniformly from the set S. Un denotes the uniform distribution over {0, 1}n and
US is the uniform distribution over the set S.

In this work all complexity classes are function classes (but we prefer to write
e.g. NC0 instead of FNC0). Logspace denotes the set of all functions computable
by a Turing Machine (transducer) with a read-only input, O(log n) large working
tape, and a write-only output tape.

For i ∈ Z≥0, NCi denotes the set of functions computable by families of poly-
size boolean circuits with constant fan-in gates and O(logi n) depth for input
length n. A family of circuits is (log-space) uniform if there is a (log-space)
Turing machine such that on input 1n, n ∈ Z≥0, it generates the description of
the corresponding circuit in the family.

An (s, p, t) streaming algorithm is a Turing machine that has internal mem-
ory s(n), t-many unbounded external RW streams which we can scan from left
to right for p(n) passes. Unless mentioned otherwise for a streaming algorithm
s(n) = O(log n), t = 2, and p = O(1). A function is streaming computable if it
can be computed by a streaming algorithm. An oblivious streaming algorithm
is one where the head movement and the internal memory depend only on the
time step.

Private and public key primitives. f : {0, 1}∗ → {0, 1}∗ is a (T, ε)-secure one-
way function for T = T (n), ε = ε(n) if f is polynomial time computable and
for all sufficiently large n, for every time T randomized algorithm A, we have
Pry←f(Un)[f

(
A(y)

)
= y] < ε.

A polynomial time computable function G : {0, 1}∗ → {0, 1}∗ is a (T, ε)-
pseudorandom generator if ∀x, |G(x)| > |x| and G(Un) is (T, ε)-pseudorandom,
i.e. for sufficiently large n and for every time T randomized algorithm D, there
is
∣∣Pr[D(G(Un)) = 1]− Pr[D(U|G(1n)|) = 1]

∣∣ < ε . For simplicity, we omit (T, ε)

for computational security, i.e. when T = nω(1), ε = n−ω(1).

A public-key encryption (PKE) system consists of three polynomial time al-
gorithms KeyGen, Enc, Dec, for key-generation, encryption and decryption
respectively, where the key-generation and the encryption are probabilistic. (i)
KeyGen takes the security parameter 1n as input and it generates a public en-
cryption key PK and a private decryption key SK; (ii) Enc outputs a ciphertext
c on input (PK,m), for every m drawn from the message space; (iii) Dec takes
(SK, c) as input to decrypt m from c with overwhelming probability over the
random choices of Enc. We say that a PKE system is streaming computable if
both Enc and Dec are streaming algorithms.

6 Periklis A. Papakonstantinou, Guang Yang

In a PKE system, IND-CPA security is defined in the following security
experiment as a game between a Challenger and an Adversary:

– The challenger runs KeyGen and uses its random choices to generate a
public PK and a private SK key, and reveals the PK to the adversary.

– The adversary chooses two equal-length messages x0 and x1, and sends them
to the challenger.

– The challenger flips an unbiased coin b ∈R {0, 1}, computes c = Enc(PK,xb)
and gives the ciphertext c to the adversary.

– The adversary outputs b′ ∈ {0, 1} based on PK and c, and it wins if and
only if b′ = b.

Here the adversary is a probabilistic polynomial time algorithm. The PKE is
IND-CPA secure if for every k ∈ R, we have Pr[b′ = b] < 1

2 + 1
Nk , when N = |xi|

is sufficiently large.

Randomized Encoding. For a function f : {0, 1}n → {0, 1}m, the function

f̂ : {0, 1}n × {0, 1}ρ → {0, 1}m′
is a randomized encoding of f if the follow-

ing conditions hold

1. For every x ∈ {0, 1}n, the output distribution f̂(x,Uρ) uniquely determines

a f(x), i.e. f̂(x, r) 6= f̂(x′, r′) for any r, r′, as long as f(x) 6= f(x′).
2. The output distribution is fully determined by the encoded value f(x), i.e.

if f(x) = f(x′) then f̂(x,Uρ) and f̂(x′,Uρ) are identically.
3. |ρ| = poly(n) and there are poly(n)-time algorithms to decode f(x) from any

sample in f̂(x,Uρ), and to sample from f̂(x,Uρ) when given f(x).

Intuitively, (1) means that f̂(x, r) contains all information about f(x), and

(2) asserts that f̂(x,Uρ) reveals no extra information about x other than the
value of f(x). Putting these two together we have that if f is a one-way function

then f̂ is also one-way [10].

3 Warm-up: how to construct streaming one-way
functions?

We present a generic compiler (Section 3.2) that maps every f ∈ NC1 to its

streaming randomized encoding f̂ . Due to a very useful coincidence regarding
the specific encoding we use, and after a little “massaging” we get f̂ computable
with 2 streams (the reader is encouraged to think ahead to see where the issue
is). Corollary 1 immediately follows by [10].

Theorem 1. Every function f ∈ NC1 has a randomized encoding function f̂
which is oblivious streaming computable with 5 passes.

Corollary 1. A streaming one-way function exists if a one-way function exists
in Logspace.

Cryptography with Streaming Algorithms 7

Here is an advanced remark. The construction in the proof of Theorem 1
relies on a specific randomized encoding that also causes a polynomial blow-up
compared to the regular output of Barrington (see below). unavoidable (for this
technique) and why the AIK encoding [10] cannot be used.

3.1 Background: NC1 to width-5 Branching Programs

Let us now recall the definition of a bounded-width permutation branching pro-
gram.

Definition 1. A width-w permutation branching program is a sequence of m =
m(n) instructions Bn = (s1, 〈j1, σ1, τ1〉) · · · (sm, 〈jm, σm, τm〉), where for every
1 ≤ i ≤ m, ji ∈ {1, · · · , n}, σi, τi ∈ Sym(w). Here Sym(w) refers to the group of
permutations over [w] = {1, 2, · · · , w}. On input x = (x1, · · · , xn) ∈ {0, 1}n, Bn
is evaluated as Bn(x) = s1 · s2 · · · · · sm, where si = σi if xji = 1 and si = τi if
xji = 0.

A function f : {0, 1}n → {0, 1} is recognized by Bn if there exists a cycle
θ ∈ Sym(w), such that ∀x ∈ {0, 1}n, Bn(x) = θ when f(x) = 1, and Bn(x) = e
is the identity permutation when f(x) = 0.

Everything in the following theorem holds as well for log-space uniform
branching programs.

Theorem 2 (Barrington’s Theorem [20]). Any boolean function f com-
putable by a family of depth d and fan-in 2 circuits can be recognized by a
family of width-5 permutation branching programs for m ≤ 4d. In particular,
m = poly(n) for f ∈ NC1 and input length n.

Thus, evaluating f : {0, 1}n → {0, 1} on input x reduces to deciding whether

Bn(x) = s1s2 · · · sm is the identity. Define f̂ : {0, 1}n × Sym(5)m−1 → Sym(5)m

as f̂(x; r) = 〈π1, · · · , πm〉 = 〈s1r1, r−11 s2r2, · · · , r−1m−2sm−1rm−1, r
−1
m−1sm〉, where

ri ∈R Sym(5), si follows the i-th instruction in Bn and m is the length of Bn.

Then, f̂ is a randomized encoding of f , since 〈π1, · · · , πm〉 uniformly distributes
over Sym(5)m conditioned on π1π2 · · ·πm = s1s2 · · · sm.

We define Sample : {0, 1}q → Sym(5) to be the algorithm that samples ri ∈R
Sym(5) within statistical distance 2−Ω(q) using q = q(n) (read-once) random
bits. Then, every permutation in Sym(5) is identified by its unique binary ID

from {0, 1}7. Thus, f̂ is represented in binary as f̂ : {0, 1}n × ({0, 1}q)m−1 →(
{0, 1}7

)m
that induces a loss of at most 2−Ω(q(n)) in the output distribution. It

remains to make f̂ streaming computable. The issue is that non-consecutive si’s
may be arbitrarily associated with the same input bit, so we must do something
about this.

3.2 Streaming Computable Randomized Encoding

Our streaming algorithm is based on the following observations:

8 Periklis A. Papakonstantinou, Guang Yang

– fixing any poly-time invertible permutation ψ over {1, . . . ,m}, g(x; r) =

〈πψ(1), · · · , πψ(m)〉 is a one-way function as long as f̂ is a one-way function,

recalling that f̂(x; r) = 〈π1, · · · , πm〉;
– a permutation branching program (e.g. Bn) recognizes exactly the same

function after inserting dummy instructions like (s,< j, e, e >); that is,
(s1, 〈j1, σ1, τ1〉) · · · (sm, 〈jm, σm, τm〉) recognizes exactly the same function
as (s1, 〈j1, σ1, τ1〉) · · · (s,< j, e, e >) · · · (sm, 〈jm, σm, τm〉).

Due to space limitations we omit the (not hard) full proof of Theorem 1.
Here is a sufficiently detailed outline. By the second observation,we may replace
in Bn, the length m branching program that recognizes f , the first instruction(
s1, 〈j1, σ1, τ1〉

)
with

(
s′1, 〈1, e, e〉

)
· · ·
(
s′j1 , 〈j1, σ1, τ1〉

)
· · ·
(
s′n, 〈n, e, e〉

)
, i.e. s′j1 =

s1, whereas s′i = e for i 6= j1, so that s′1 · · · s′n = s1 for every input. The advantage
of the new instructions is that ∀i ∈ {1, 2, . . . , n}, s′i depends on exactly xi.
With similar tricks for s2, · · · , sm, we get a length mn = poly(n) new branching
program B′n and s′1, · · · , s′mn with oblivious input dependency. In what follows,
we use Bn and si instead of B′n and s′i for simplicity.

In a single pass, we compute the si’s in the order: s1, sn+1, · · · , smn−n+1,
s2, sn+2, · · · , smn−n+2, · · · · · · , sn, s2n, · · · , smn (sorted by their dependency on
x, which coincide the subscripts modular n). Then, for f : {0, 1}n → {0, 1},
we apply the first observation to construct the oblivious streaming computable
randomized encoding f̂ : {0, 1}n × ({0, 1}q)mn−1 →

(
{0, 1}7

)mn
as follows

f̂(x; y1, . . . , ymn−1) =〈
s1r1, r

−1
n sn+1rn+1, · · · , r−1mn−nsmn−n+1rmn−n+1 · · · , · · · , r−1mn−1smn

〉
where ri = Sample(yi), r

−1
i is the inverse of ri, and si is a function of x(i mod n)

for i = 1, 2, · · · ,mn.
When f(x) = 〈f1(x), f2(x), · · · , f`(n)(x)〉 has `(n) output bits, we design

f̂ = 〈f̂1, · · · , f̂`(n)〉, which consists of an individual randomized encoding f̂i one
for each fi. It is not too hard to globally rearrange the output bits and obtain
the final streaming computable function f̂ .

4 Streaming Pseudorandom Generators

The encoding in Section 3.2 does not preserve pseudorandomness, simply be-
cause 27 - |Sym(5)|. In fact, Barrington’s theorem holds also for the non-solvable
Sym(w), w ≥ 5 but there is no k ∈ Z such that 2k|(w!). Yet, we provide a rather
technical adaptation of [5] to build streaming pseudorandom generators from
any streaming one-way function f .

Theorem 3. Let f : {0, 1}n → {0, 1}m be a streaming one-way function. Then,
there is a streaming computable pseudorandom generator G requiring 2 additional
passes to the streaming algorithm for 〈f (1), · · · , f (`t)〉, for `, t defined as below

Moreover, if m = O(n), then ` = n
logn , t = O(n2 log2 n), and the seed length

of G is O(n6 log3 n).

Cryptography with Streaming Algorithms 9

In fact, the construction in Section 3.2 gives an oblivious streaming one-way
function, which implies that evaluating polynomial many copies of f does not
need more passes than f .

There are four steps in the [5] construction: 1) next-block pseudoentropy gen-
eration; 2) entropy equalization; 3) converting Shannon entropy to min-entropy
and amplifying the gap; 4) randomness extraction. The first three steps remain
intact for our streaming algorithm, whereas the fourth has to be modified.

In a nutshell, the first step constructs the generator Gnb(s) = 〈f(s), s〉 for a
random seed s ← Un. For notation convenience, let f : {0, 1}n → {0, 1}m−n, so
that Gnb : {0, 1}n → {0, 1}m. The second step concatenates the outputs of Gnb
on ` independent seeds to get z(1), . . . , z(`), and randomly shifts (by discarding
from the head and the tail) blocks to convert total entropy into the entropy in

individual blocks, via EQ : {0, 1}logm× ({0, 1}m)
` → {0, 1}m` for m` = m(`−1)

and
EQ

(
j, z(1), · · · , z(`)

)
:=
〈
z
(1)
j , · · · , z(1)m , · · · , z(`)1 , · · · , z(`)j−1

〉
Let X := EQ

(
J,Gnb(U (1)

n), · · · , Gnb(U (`)
n)
)

for J = Ulogm, the third step con-

catenates t independent copies of X within each block (we do this step virtually

by allowing non-consecutive cells in one block), i.e. Y =
〈(
X (1)

1 , · · · ,X (t)
1

)
, · · · ,(

X (1)
m` , · · · ,X

(t)
m`

)〉
, thus every block has high pseudo-min-entropy conditioned

on previous blocks. The details for these steps can be found in [5, 16].
Now, let us give an informal but accurate description of the part that has to

be non-trivially modified for the streaming construction. The fourth step requires
evaluating a single random universal hash function H : {0, 1}t → {0, 1}αt−log2 n

on every block of Y to extract randomness, where αt is the next-block pseudo-
min-entropy of each block. This step is difficult since streaming algorithms can-
not re-read the code of H. To that end, we prove that each block can be associ-
ated with a different linear hash function H(i) ∈ {0, 1}t×(αt−log2 n). Then, in the

streaming algorithm we use Ĥ(i), the randomized encoding of H(i), to extract

randomness. Let H
(i)
j be the j-th row of H(i), and R

(i)
j the j-th row of the ran-

dom input R(i) ∈ {0, 1}(t−1)×(αt−log2 n), then Ĥ(i)
((
X (1)
i , · · · ,X (t)

i

)
,R(i)

)
=〈

X (1)
i H

(i)
1 + R

(i)
1 , . . . ,X (j)

i H
(i)
j + R

(i)
j−1 + R

(i)
j , . . . ,X (t)

i H
(i)
t + R

(i)
t−1

〉
where all the

additions are modular 2. Combining the four steps, G appears as follows

G
(
J(1), · · · ,J(t),U (1)

n , · · · ,U (t`)
n ; H; R

)
=
〈
H, X (1)

1 H
(1)
1 + R

(1)
1 , · · · ,X (1)

m`
H

(m`)
1 + R

(m`)
1 ,

· · · ,X (j)
1 H

(1)
j + R

(1)
j−1 + R

(1)
j , · · · ,X (j)

m`
H

(m`)
j + R

(m`)
j−1 + R

(m`)
j ,

· · · ,X (t)
1 H

(1)
t + R

(1)
t−1, · · · ,X (t)

m`
H

(m`)
t + R

(m`)
t−1

〉
Note that we use a family of linear hash functions because it is not clear how

to implement with streaming algorithms the description-succinct hash family in

10 Periklis A. Papakonstantinou, Guang Yang

[5, 16]. This causes loss in efficiency (which contrasts the purpose of [5, 16]), but
here we strive for a streaming feasibility result which is not at all obvious how
to get. Theorems 1 and 3, and [10] yield:

Corollary 2. If there is a one-way function in Logspace, then there exists a
pseudorandom generator which is streaming computable with 7 passes.

5 Limitations for Super-Linear Stretch Pseudorandom
Generators

We devise a new lower bounding methodology, which a central technical contri-
bution of this work. We first use this to show that streaming computable super-
linear stretch pseudorandom generators do not exist. Note that n1−ε stretch is
easy to achieve by running in parallel n1−ε copies of a single-bit stretch pseudo-
random generator on independent seeds.

Theorem 4. Suppose `(n) = ω(n) and G : {0, 1}n → {0, 1}`(n) is a pseudoran-
dom generator. Then, no streaming algorithm can compute G.

We prove Theorem 4 by analyzing the information flow in the computation,
and by partitioning appropriately the output into blocks, we upper bound the
entropy transferred to each output block from the input. Intuitively, a single
block cannot collect much entropy and therefore it cannot induce large stretch.

Our proof makes use of the following observation and the concept of a de-
pendency graph originally introduced in [19, 17] (in fact, [24]). We tailor them
for cryptographic applications to partition the computation into p + 1 phases
corresponding to p passes.

Observation 5 ([24]) When a tape cell is written, its content only depends on
the internal memory and the t cells currently being scanned by the heads of the
external streams. Moreover, those t cells are written before this pass, since no
cell can be visited twice before making a new pass.

5.1 Dependency graphs and dependency trees

First, we provide the definition of dependency graph. Due to space limitations
we omit concrete examples and diagrams of dependency graphs and trees.

Definition 2. Fix a streaming algorithm G which on input x it makes ≤ p
passes over t external tapes. The dependency graph, denoted by Γ (x), is a di-
rected graph with p + 1 levels. Each beginning of a new pass (at any tape) is
associated with a distinct level. The i-th level in Γ (x) contains all nodes labeled
(v, i) if the tape cell v has ever been visited before the i-th pass begins. We assume
that all input cells are written at the beginning. (e.g. {(v, 1)| v is an input cell}
contains exactly all the nodes in level 1, and {(v, p+ 1)| v is written in the com-
putation of G on input x } for level p+ 1.) Γ (x) has edges (u, i)→ (v, i+ 1) iff
there is a head reading (u, i) when (v, i+ 1) is being written. Furthermore, there
is always an edge (u, i)→ (u, i+ 1) as long as (u, i) is in Γ (x).

Cryptography with Streaming Algorithms 11

In the dependency graph, each level represents a single phase in the compu-
tation. Therefore the nodes (except for those at level 1) have in-degree at most
t, while all edges are heading to the next level. Intuitively, those directed edges
depict the information flow excluding the internal memory.

We also remark it possible that old passes are not yet finished when a new
pass begins. In this case, old passes will be processed in the new level.

5.2 Overview of the lower-bound

We first introduce the definition of blocks. Intuitively, blocks are used to pack-
age the entropy from the input, and the dependency of blocks describes the
information flow during the computation, except for the information carried in
the bounded internal memory. By analyzing the dependency of blocks we have
devised an elegant information-theoretic way of upper bounding the amount of
entropy in part of the output.

Definition 3. A block is an equivalence class consisting of all nodes correspond-
ing to tape cells at the same level on the same tape such that they depend on
exactly the same set of blocks at the previous level. Specifically, an input block
refers to a set of nodes at the first level corresponding to consecutive tape cells
on the input tape.

Note that if two cells, from the same tape and the same level, have the same
dependency on blocks at the previous level, then any cell in between would have
exactly the same dependency, because the dependency changes “monotonically”.
Therefore, our partition of blocks is well-defined such that every block consists
of only consecutive tape cells.

Then, we partition the input x into b input blocks as x = (x1, x2, · · · , xb),
and use a corollary of Proposition 3.1 in [19] to bound the number of blocks.

Proposition 1. Partition x into b input blocks and let Γ (x) be the dependency
graph. Then, the number of blocks at level i in Γ (x) is bounded ≤ (b + 1)ti−1,
where t denotes the number of tapes.

Due to space limitation, here we give only a proof sketch of Theorem 4.

Proof (Proof Sketch of Theorem 4). By Proposition 1, there are at most (b +
1)tp = O(b) blocks at level p+ 1 because both t, p are constants.

We consider G : {0, 1}n → {0, 1}`(n) where `(n) = ω(n). Partition the input
equally into b = dn/ log ne blocks, so that each input block has length ≤ log n.
Recalling that there are O(b) output blocks, there is an output block v with
`(n)/O(b) = ω(log n) many bits in expectation.

However, every output block depends on O(1) input blocks when t, p are both
constants. That is, the block v has expected length ω(log n), while it only receives
O(log n) bits of entropy from O(1) input blocks plus another O(log n) bits from
the internal memory. This immediately suggests an advised distinguisher DA:

12 Periklis A. Papakonstantinou, Guang Yang

DA : Distinguishing G(Un) from U`(n) (with advice A):

1 For all z ∈ A, check whether z is a sub-string of the input;
2 If find any z ∈ A in the input, output 1;
3 Otherwise output 0.

The advice A is a poly(n) long list containing all strings that are sufficiently long
(i.e. Ω(`(n)/b) = ω(log n)) and could appear in the block v. DA

(
G(Un)

)
= 1

if the block v is sufficiently long to be captured by A, which happens with
probability Ω(1/b) by Markov’s inequality. On the other hand, Pr[DA(U`(n)) =

1] < poly(n) · `(n) · 2−Ω(`(n)/b) = 2−ω(n). Therefore

Pr
[
DA
(
G(Un)

)
= 1
]
− Pr

[
DA(U`(n)) = 1

]
≥ Ω(

1

b
)− 2−ω(n) = Ω(log n/n)

For a uniform distinguisher, the advice A is efficiently generated as follows:
enumerate every input block and internal memory on every possible dependency
tree of v, then simulate the computation of v, and add only sufficiently long
output substrings to the list. Although suffering from a polynomial blow-up
than optimal, such advice A suffices for the above argument of DA.

6 Public-Key Encryption in the Streaming Model

We construct an IND-CPA secure PKE system based on Regev’s LWE assump-
tion together with the PKE construction in [8], where the encryption and the de-
cryption algorithms are streaming algorithms, henceforth called streaming PKE.
The private keys contain a good deal of redundancy. We also show that large
private-keys are necessary. A lower bound on the length of the private key is
given in Theorem 7 (using the technique introduced in Section 5), though there
is still a gap with our construction.

Theorem 6. Given the decision-LWE assumption (Assumption 1), the con-
struction in Section 6.1 is an IND-CPA secure PKE. Moreover, both the en-
cryption and the decryption algorithms are streaming computable.

Theorem 7. For every IND-CPA secure PKE whose decryption scheme is a
streaming algorithm, the private-key has length Ω(N), where N is the length of
the plaintext.

The main challenge of a streaming PKE is the decryption algorithm. The
techniques we developed so far do not apply, because the decryption algorithm
should output exactly the plaintext rather than any code.

We construct our streaming PKE based on the decision-LWE assumption.
The intuition of such assumption is exposited in [8], which also gives reduc-
tions from worst-case lattice problems (by now these lattice assumptions and
reductions are common place).

Cryptography with Streaming Algorithms 13

Definition 4 (LWE problem). Let q = q(n) ≤ poly(n), consider a list of
equations bi = 〈s,ai〉+ei (mod q) for i = 1, 2, · · · , poly(n), where s ∈ Znq , ai ∈R
Znq and bi ∈ Zq. If furthermore ei ∈ Zq follows a discrete Gaussian distribution3

with parameter α, we denote by search-LWEq,α the problem of recovering s from
such equations. In decision-LWEq,α the goal is to distinguish (a, 〈s,a〉+e mod q)
from UZn+1

q
with non-negligible advantage, when both s,a ∈R Znq .

Assumption 1 (cf. [8, 7]) When α ≥ 2
√
n, search-LWEq,α cannot be solved in

probabilistic polynomial time with non-negligible probability. If α ≥ ω(
√
n log n)

then decision-LWEq,α cannot be solved in probabilistic polynomial time with non-
negligible advantage.

6.1 The Construction

In our construction the public and private keys are “streaming useable” forms of
the following two matrices: A and a random matrix D. Matrix A is statistically

close to uniform, and at the same time orthogonal to

[
I
D

]
. The latter consists

of short vectors which cannot be retrieved from a uniformly random matrix (this
is the lattice hardness assumption).

KeyGen: Pick a matrix D ∈ Z(m−w)×w
p uniformly at random from {0,±1}(m−w)×w.

Uniformly at random pick A ∈ Zn×(m−w)
q , and compute A ∈ Zn×mq as A =

[−AD | A] mod q. Let

[
I
D

]
= [d1, · · · ,dw]. Here k = d2 log ne, q = 2k,m =

3nk,w = nk, for the security parameter n.
Output N copies of A as the public key, and nN copies of d1, · · · ,dw as the

private key. Each copy of A is written in row-first order, i.e. (a11, a12, · · · , a1m,
a21, · · · , a2m, · · · , an1, · · · , anm).

Enc: On input x = (x(1), · · · , x(N)) ∈ {0, 1}N , for i = 1, 2, · · · , N , uniformly
choose si ∈R Znq and xi ∈R {qx(i)/2} × Zw−1q .

Sample ei ∈ Zmq for i = 1, 2, · · · , N , where each entry eij ∼ Dα follows
the discrete Gauss distribution with mean 0 and standard deviation α, for j =
1, 2, · · · ,m.

For every i = 1, 2, · · · , N , sequentially output yi, where yi is a randomized

encoding of sTi A + eTi + (xTi ,0) mod q. That is, for R ∈R Z(n−1)×m
q , realizing

eTi , (x
T
i ,0) as 1 ×m row vectors, and recalling that A is an n ×m matrix, we

define yi is the row-first order of Yi as follows

Yi =

si1 . . .

sin

 ·A +

[
R

(xT ,0)

]
+

[
eTi
−R

]
3 A discrete Gaussian distribution over Zq is defined by DZq,α(x) = ρα(x/q)/ρα(Zq),

where ρα(x) =
∑∞
k=−∞ α

−1 exp(−π(x+k
α

)2) follows a continuous Gaussian distribu-
tion, and ρα(Zq) =

∑
x∈Zq

ρα(x/q).

14 Periklis A. Papakonstantinou, Guang Yang

Dec: Given the ciphertext {yi}i=1,2,··· ,N and the decryption key nN copies of
d1. We compute b = [1 1 · · · 1]1×nYid1 mod q and output x(i) = b2b/q+ 1/2c
mod 2 for every i = 1, · · · , N .

Comparison with [8]. The above construction is similar to the PKE construction
in [8]. We borrow from [7] the key generation and encryption algorithms which
enable us to turn them into streaming computable encryption/decryption. Note
that [7], unlike us, achieves a CCA-secure PKE. Currently, we do not know how
to perform ciphertext validity checks (as in e.g. [7]) in a streaming fashion.

This Public-Key Encryption scheme is statistically correct and IND-CPA
secure, and it has both encryption and decryption in a streaming fashion.

7 Conclusions and some remarks on practical
constructions

Our work leaves open the possibility of streaming cryptography for a number of
popular private and public-key primitives. As a next step we propose to study
the streaming possibility for the following cryptographic primitives: (i) linear-
stretch pseudorandom generators, (ii) CCA-secure PKE, (iii) signature schemes,
and (iv) message authentication.

It is also open whether the number of passes we achieve (see Table 2 below)
are optimal, and also simultaneously improve the seed-efficiency of streaming
pseudorandom generators from NC1 one-way functions. For example, our generic
streaming one-way function is done with 5 passes, whereas when starting from
a concrete assumption (see below) we can do it with 4, which is optimal.

Some remarks on practicality. Randomized encodings generally use huge amounts
of randomness (typically Ω(n4)) for input length n, and thus our generic com-
pilers can be understood as feasibility results. In practice, starting from concrete
intractability assumptions we can do much better. Here is a practical example
which in fact resembles a lot the one in [3] (but a few model-specific differences
– our model is not two dimensional but things are arranged similarly).

Assumption 2 (Decoding Random Linear Codes (DRLC)) A random lin-
ear code fcode is defined as fcode : (A,x, e) 7→ (A,Ax+e), where A ∈ GF(2)m×n,
x ∈ GF(2)n, e ∈ GF(2)m. Choose positive constants κ, ε, δ such that κ = n

m <
1−H2

(
(1 + ε)δ

)
, where H2(p) = −p log2 p− (1− p) log2(1− p) for p < 1/2 and

H2(p) = 1 otherwise. If A,x are chosen uniformly at random, while e has at
most δm

2 one-entries, then fcode is a one-way function.

Theorem 8. Suppose that the DRLC assumption holds true. Then, there exists
a one-way function F computable by a streaming algorithm with 2 streams, 4
passes and O(log n) internal memory. Furthermore, if the DRLC input is of size
N the corresponding input size for F is n ≤ 2N .

Cryptography with Streaming Algorithms 15

Proof (Construction outline). Suppose the random bits (r11, r21, · · · , rmn) are
given on the extra stream (this is without loss of generality/not necessary), and
parse the input stream as (x1, a11, a21, · · · , am1, · · · , xn, a1n, · · · , amn, e1, · · · , em).

In the first pass (over two streams) we compute (a11x1 + r11, · · · , am1x1 +
rm1, a12x2+r12, · · · , am2x2+rm2, · · · , a1nxn+r1n, · · · , amnxn+rmn, e1, · · · , em).

In the next pass we compute (a11x1 +r11, · · · , am1x1 +rm1, a12x2 +r12−r11,
· · · , am2x2+rm2−rm1, · · · , a1nxn+r1n−r1(n−1), · · · , amnxn+rmn−rm(n−1), e1−
r1n, · · · , em − rmn). Thus, a randomized encoding of Ax + e is computed with
4 passes over 2 streams.

Table 2. OWF & PRG from any OWF in Logspace; PKE from LWE

of passes external tapes

one-way function 5 1 RO & 1 RW

pseudorandom generator
7
15

2 RW
1 RO & 1 RW

PKE Enc 5 1 RO & 1 RW

PKE Dec 2
key & cipher in
different tapes

We conclude with a note on the practicality of the multi-stream model. One
physical analog of a stream is a hard-disk or a disk-array. Although it makes
sense to think of physical disks to be of size 2n or 3n, for an input of length
n, under no stretch of imagination n3 is reasonable size. For more than one
stream we believe that this stream-size parameter should be added to the other
parameters: number of streams, number of passes, internal memory size. In this
paper all constructions make ≤ 9 passes and the stream size never exceeds
2× input length. In practice, though the stream size is even more important and
in the sense that perhaps we might be able to tolerate slightly super-constant
many passes given that the stream size stays linear throughout the computation.

References

1. Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography with constant input local-
ity. Journal of Cryptology(also CRYPTO’07). 429–469

2. Chen, J., Yap, C.-K.:Reversal complexity. SIAM Journal on Computing. 20(4) 622–
638 (1991)

3. Applebaum, B., Ishai, Y. and Kushilevitz, E.: Cryptography by Cellular Automata
or How Fast Can Complexity Emerge in Nature? ICS. 1–19 (2010)

4. Impagliazzo, R., Levin, L. A., Luby, M. In: Symposium on Theory Of Computing
(STOC), pp. 12–24 (1989)

5. Vadhan, S. P., Zheng, C. J. Characterizing pseudoentropy and simplifying pseudo-
random generator constructions In: Symposium on Theory Of Computing (STOC),
pp. 817–836 (2012).

16 Periklis A. Papakonstantinou, Guang Yang

6. Yu, X., Yung, M.: Space Lower-Bounds for Pseudorandom-Generators. In: Structure
in Complexity Theory Conference, 186–197 (1994)

7. Micciancio, D., Peikert, C.: Trapdoors for lattices: Simpler, tighter, faster, smaller.
In: EUROCRYPT, pp. 700–718 (2012)

8. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography.
In: Symposium on Theory Of Computing (STOC), pp. 84–93 (2005)

9. Applebaum, B., Ishai, Y., Kushilevitz, E.: Computationally Private Randomizing
Polynomials and Their Applications. Computational Complexity. 15(2): 115–162
(2006)

10. Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in NC0. SIAM Journal of
Computing (SICOMP). 36(4): 845–888 (2006)

11. Applebaum, B., Ishai, Y., Kushilevitz, E.: On pseudorandom generators with linear
stretch in NC0. Computational Complexity. 17(1): 38–69 (2008)

12. Bronson, J., Juma, A., Papakonstantinou, P. A.: Limits on the stretch of non-
adaptive constructions of pseudo-random generators. In: Theory of Cryptography
Conference (TCC), pp. 504–521 (2011)

13. Kharitonov, M., Goldberg, A.V., Yung, M.: Lower Bounds for Pseudorandom Num-
ber Generators. In: Foundations of Computer Science (FOCS), pp. 242–247 (1989(

14. H̊astad, J., Impagliazzo, R., Levin, L. A., Luby, M.: A Pseudorandom Generator
from any One-way Function. SIAM Journal of Computing (SICOMP). 28(4): 1364–
1396 (1999)

15. Bar-Yossef, Z., Reingold, O, Shaltiel, R., Trevisan, L.: Streaming Computation of
Combinatorial Objects. In: Annual IEEE Conference on Computational Complexity
(CCC), volume 17 (2002)

16. Haitner, I., Reingold, O, Vadhan, S.: Efficiency improvements in constructing pseu-
dorandom generators from one-way functions. In: Symposium on Theory Of Com-
puting (STOC), pp. 437–446, (2010)

17. Grohe, M., Hernich, A., Schweikardt, N.: Lower bounds for processing data with
few random accesses to external memory. Journal of the ACM. 56(3): Art. 12, 58
(2009)

18. Hernich, A., Schweikardt, N.: Reversal complexity revisited. Theoretical Computer
Science. 401(1-3):: 191-205 (2008)

19. Beame, P., Huynh, T.: The Value of Multiple Read/Write Streams for Approx-
imating Frequency Moments. ACM Transactions on Computation Theory. 3(2):6
(2012)

20. Barrington, D. A.: Bounded-width polynomial-size branching programs recognize
exactly those languages in NC1. Journal of Computer and System Sciences. 38(1):
150–164 (1989)

21. Goldwasser, S., Micali, S.: Probabilistic Encryption and How to Play Mental Poker
Keeping Secret All Partial Information. In: Symposium on Theory Of Computing
(STOC), pp. 365–377 (1982)

22. Alekhnovich, M.: More on average case vs approximation complexity. In: Founda-
tions of Computer Science (FOCS), pp. 298–307 (2003)

23. Kilian, J.: Founding cryptography on oblivious transfer. In: Symposium on Theory
Of Computing (STOC), pp. 20–31 (1988)

24. Grohe, M., Schweikardt, N.: Lower bounds for sorting with few random accesses to
external memory. In: Symposium on Principles of Database Systems (PODS), pp.
238-249 (2005)

