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Abstract. We propose a method to convert schemes designed over sym-
metric bilinear groups into schemes over asymmetric bilinear groups. The
conversion assigns variables to one or both of the two source groups in
asymmetric bilinear groups so that all original computations in the sym-
metric bilinear groups go through over asymmetric groups without hav-
ing to compute isomorphisms between the source groups. Our approach
is to represent dependencies among variables using a directed graph, and
split it into two graphs so that variables associated to the nodes in each
graph are assigned to one of the source groups. Though searching for
the best split is cumbersome by hand, our graph-based approach allows
us to automate the task with a simple program. With the help of the
automated search, our conversion method is applied to several existing
schemes including one that has been considered hard to convert.

Keywords. Conversion, Symmetric Bilinear Groups, Asymmetric Bilin-
ear Groups

1 Introduction

It is often believed that once a scheme for a purpose is shown feasible over
symmetric bilinear groupsa scheme for the same purpose should be constructable
over asymmetric bilinear groups. One approach is to use different mechanisms
and stronger assumptions available only in the asymmetric setting. The other,
which we study in this paper, is to convert a scheme in the symmetric setting
into one in the asymmetric setting keeping the original design intact.

We will given a bilinear group setting with a pairing e : G × G̃ → GT

follow [13] in calling the symmetric setting where G = G̃ for Type-I and in the
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asymmetric setting distinguish between Type-II, where there is an efficiently
computable isomorphism ψ : G̃→ G, and Type-III where there are no efficiently
computable isomorphisms between the source groups. In this paper, we focus
on converting schemes over Type-I groups to Type-III groups, i.e., converting to
the fully asymmetric setting, so we will in general be referring to the Type-III
setting when speaking of asymmetric bilinear groups.

We argue that the benefit of conversion is threefold. First, it allows designers
to focus on implementing their ideas using a simpler description in the symmet-
ric setting without being encumbered by the deployment of group elements over
two source groups. Second, it is an effective way to save schemes in the symmet-
ric setting from cryptanalytic advances. Recent progress in solving the discrete
logarithm problems over groups with small characteristics [15, 16, 14, 3] has ne-
cessitated the use of larger parameters for a major class of symmetric bilinear
groups. A conversion method allows one to port these schemes to an asymmetric
setting. Finally, it yields potentially more secure schemes than those dedicated
to asymmetric groups because preserving the symmetric group assumptions they
may remain secure even if cryptanalysis were to discover techniques to efficiently
compute isomorphisms between the source groups.

There are two issues that makes conversion a non-trivial task. The first is
the potential presence of symmetric pairings e(X,X). A symmetric pairing can
occur indirectly like e(X,Z) for Z = X ·Y and it is not necessarily easy to see if
there are indirect symmetric pairings in intricate algorithms. It is in particular
problematic when a function that maps a string into a source group element is
used in the original scheme since it is only possible to either of the source groups
at a time. The second is the security proof and the underlying assumptions. Not
only should the scheme be executable, but the reduction algorithms used in the
security proof must also be executable in the asymmetric setting. Furthermore,
the assumptions need to be cast in the asymmetric setting as well. An instructive
example is given in [18] that demonstrates how conversion without a security
guarantee can yield a scheme that seems to work but is insecure.

Our Result. We propose a conversion method that turns schemes designed
over symmetric bilinear groups into schemes over asymmetric bilinear groups.
As our method converts not only the algorithms in a scheme but also the security
proofs by black-box reduction and the underpinning assumptions, the security is
preserved based on the converted assumptions. We then argue that, if the orig-
inal assumptions are justified in the generic Type-I group model, the converted
counterparts are justified in the generic Type-III group model. Our conversion
includes schemes in the random oracle model that hash a string onto a random
group element and hash group elements to a random string. We present a formal
model for the class of schemes our conversion method can handle.

Our conversion method takes as input a dependency graph that represents
computation among source group elements in the scheme to convert. This is a di-
rected graph whose nodes correspond to group elements in the scheme. Directed
edges in the graph represent dependency in such a way that the destination node
is computed from the source nodes through the group operation. By splitting the
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dependency graph into two graphs in such a way that no dependency is lost and
two nodes that represent group elements input to a pairing appear in different
graphs, we obtain two dependency graphs that represents computation in the
source groups of asymmetric bilinear groups. There may be nodes that appear
in both graphs. Their presence is necessary for consistent computation in each
source group. These nodes correspond to the symmetric group elements that
need to be duplicated in both source groups when converting to an asymmetric
bilinear group. The most cumbersome part of our conversion procedure is to find
a splitting of the dependency graph in a way that conforms to given constraints
and efficiency measures.

We present an algorithm to search for the best valid split. It is implemented
with Java and applied to dependency graphs for several known cryptographic
schemes originally built over symmetric bilinear groups:

– Waters’ Identity-based Encryption scheme [24]. We have chosen this scheme
since it has a small number of parameters so that one can manually verify the
result. An interesting observation is that conversion is not possible without
duplicating some group elements in the assumption.

– Boneh and Shacham’s verifier-local revocation group signature scheme [7].
This scheme involves hash-onto-point functions. In [23], Smart and Ver-
cauteren observed that converting to Type-III is not possible, and [10] in-
troduced the scheme as an typical example that cannot be converted due
to their use of hash-to-point functions and homomorphisms. We present a
conversion based on assumptions that duplicates elements in the original as-
sumptions. It does not contradict [23] as they limit themselves to the case
where no element duplicates in the assumption.

– Waters’ dual-system encryption scheme [25]. The purpose of converting this
scheme is to compare the converted result using our conversion technique
with existing manually built schemes[11, 20]. Our conversion yields a slightly
less efficient scheme. An assumption that fully duplicates elements of the
decision linear assumption is inevitable for this conversion.

– Tagged one-time signature scheme from [1]. By converting the scheme, we
obtain the first tagged one-time signature scheme over asymmetric bilinear
groups with minimal tag size. It answers the open question positively in [1].

The search algorithm runs in exponential time in the number of pairings and
the number of bottom nodes that do not have outgoing edges as we will explain
later. It takes a standard PC (Windows 7, Intel(R) Core(TM) i7-3720QM CPU
@ 2.60GHz, 8.0GB RAM) 9 msec to convert the easiest case, Waters’ IBE,
and about 80 min to convert the most intricate case, Waters’ Dual Encryption
scheme. We summarize the result of our experimental conversions in Table 1.

It should be noted that our conversion is not tight, i.e., when our conversion
algorithm fails to find a scheme in Type-III, it does not mean anything more than
the fact that our conversion algorithm does not find a conversion for the scheme.
In particular, it does not imply general impossibility. It is an open problem to
show impossibility of conversion.



4 Masayuki Abe, Jens Groth, Miyako Ohkubo, and Takuya Tango

Due to space limitation, most of proofs for theorems and lemmas and all
details of experiments are dropped from this version of the paper.

Scheme Construction
Size and Delta

Assumptions
pp+ pk ct or σ

Waters’
IBE

original [24] 4 + λ 2 DBDH

conv’d(opt=pk) +2 +0 coDBDH+3

conv’d(opt=assm) +3 + λ +0 coDBDH+2

VLR
Group Sig

original [7] 2 2 DLIN, q-SDH

conv’d +1 +0 coDLIN+5, q-coSDH+q

Dual
System
Enc

original [25] 12 9 DLIN, DBDH

conv’d(opt=pk) +0 +0 coDLIN+5,+4, coDBDH+2

conv’d(opt=assm) +4 +0 coDLIN+3,+3, coDBDH+2

manually
conv’d [19]

−3 −2 DDH1, DLIN, DBDH

−6 −5 DDH1, DDH2v, DBDH

new design [11] −2 −5 SXDH

TOS
original [1] 2k + 6 4 SDP

conv’d +5 +0 coSDP+5

Table 1. Size of public parameters (pp + pk) and ciphertext (ct) or signature (σ) in
the number of source group elements including a default generator. “conv’d(opt=xxx)“
denotes that the scheme is obtained by our conversion in terms of minimizing the size
of assumption or public-keys. Assumption coXXX+α denotes co-XXX assumption(s)
that involve α duplicated elements. For TOS, σ includes a tag.

Related Works. Chatterjee and Menezes [9, 10] considered conversion from
schemes over Type-II groups to Type-III groups and discuss the role of the iso-
morphism in Type-II groups. Their conversion shares the basic idea with ours
– represent a group element by a pair of source group elements and drop one
of them if unnecessary. They proposed a heuristic guideline for when a scheme
allows or resists conversion. Chatterjee et al. [8] discussed relations among as-
sumptions over Type-II and Type-III groups that include ones with or without
duplicated elements in a problem instance. Smart and Vercauteren [23] explored
variations of Boneh and Franklin’s identity-based encryption scheme [5] and
Boneh, Lynn and Shacham’s signature scheme [6] based on a family of BDH
assumptions over Type-II groups. They investigated which variations suffice for
the security proofs and how efficient the corresponding schemes are. Chen et
al. [11] presented modifications of Waters’ dual-system encryption scheme over
Type-III groups. They obtained a more efficient scheme than the original by a
careful manual conversion.
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A more general work by Akinyele, Green and Hohenberger [2] introduced a
powerful software system called AutoGroup whose purpose is the same as ours.
It takes a specification of the target scheme written in a scheme description
language and uses a satisfiability modulo theory solver [12] to find a valid de-
ployment of elements over two source groups. AutoGroup is a powerful tool to
find optimized computation in the resulting scheme conforming to one’s design
demands. On the other hand, and contrary to our tool, it does not say anything
about the security of the resulting scheme; it is left as a subsequent task to
check whether the resulting scheme is secure, to identify sufficient assumptions,
and to provide convincing arguments that the assumptions are plausible. Our
procedure requires manual work as well but only to examine if the original proof
works over generic symmetric bilinear groups and to verify that the assumptions
are plausible in the generic Type-I group model. Once this has been confirmed,
the converted scheme retains its security under converted assumptions that also
retain plausibility arguments in the generic group model.

2 Preliminaries

We follow standard definition and notations of symmetric and asymmetric bi-
linear groups. Let G be a group generator that takes security parameter 1λ and
outputs (q,G, G̃,GT , e, G, G̃) where G, G̃, and GT are groups of prime order q,
e : G × G̃ → GT is an efficiently computable non-degenerate bilinear map, and
G, G̃ and Gt = e(G, G̃) are generators of G, G̃ and GT respectively. G and G̃
are called source groups and GT is called the target group. When G ̸= G̃ and
there are no efficiently computable isomorphisms between G and G̃ we call it
the Type-III bilinear group setting. When G = G̃ we let G = G̃ and call it a
symmetric bilinear group or Type-I group. For simplicity, we will often use the
shortened notation Gsym and (q,G,GT , e, G) for the symmetric case, and on the
other hand write Gasym when emphasizing a group generator outputs a Type-III
bilinear group. Hashing to G is doable in Type-I groups over supersingular ellip-
tic curves. In Type-III groups over elliptic curves, it is possible to hash to G and
G̃ independently with different costs. We focus on source group elements in the
paper and other data are mostly ignored as they are handled equally in Type-I
and III settings. Notes will be given otherwise.

Throughout the paper we will work with directed graphs using the notation
(X,Y ) for an edge from node X to Y . For two directed graphs Γ = (V,E) and
Γ ′ = (V ′, E′) the merger operation Γ ⊕Γ ′ is defined by a graph (V ∪V ′, E∪E′).
For a graph Γ and a subgraph Γ ′, we define Γ ⊖ Γ ′ as a graph obtained by
removing nodes in Γ ′ and edges that involves nodes in Γ ′ from Γ . If a graph Γ ′

is a subgraph of Γ , we write Γ ′ ⊆ Γ . For a node X in Γ , we define Anc(Γ,X)
by the subgraph of Γ that consists of paths reaching X. Nodes in Anc(Γ,X)
are called ancestors of X, where we use the convention that X is an ancestor to
itself.
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By (x, y) ← (A(a), B(b)), we denote a process where two interactive algo-
rithms A and B take inputs a and b and output x and y, respectively, as a result
of their interaction.

3 Overview with Example

This section illustrates our conversion procedure for Waters’ IBE [24]. We mostly
use the original notation and description although the reader may want to refer
to the original paper for details.

The procedure starts by looking at the original description of Water’s IBE
scheme over symmetric bilinear groups. It builds a dependency graph, that de-
scribes how each group element appearing in the scheme depends on other group
elements. Later the dependency graph is used to decide which group element is
computed in which source group of the asymmetric bilinear groups. The type
assignment yields an instantiation of Waters IBE scheme over asymmetric bilin-
ear groups. As we convert the reduction algorithm in the security proof and the
underlying assumptions as well, the underlying security argument also translates
to the asymmetric setting.

Step 1. Building a dependency graph for each algorithm. Waters’ IBE
scheme consists of four algorithms: Setup, Key Generation, Encryption and
Decryption. The security proof consists of a reduction algorithm that uses
a purported adversary in a black-box manner to break an instance of the
decisional bilinear Diffie-Hellman (DBDH) problem. The first step is to build
a dependency graph for each algorithm as illustrated in Fig. 2.
– The setup algorithm takes a security parameter, and outputs default

generator g and random source group elements g1, g2, u
′, and u1, . . . , un

where g1 = gα for a random α ∈ Zq. The dependency graph includes
nodes g, g1, g2, u′ that correspond to g, g1, g2, and u

′, respectively. Ele-
ments u1, . . . , un are represented by a single node ui in the graph. We
assume that the random source group elements are generated from the
default generator by using group operations. Thus the dependency graph
has edges from g to every other node. The algorithm also computes a
master secret key msk = g2

α. We thus add a node labeled by msk and
have an edge from g2 to msk. This results in graph (1) in Fig. 2.

– The key generation algorithm takes the master secret key and the public
key, and computes decryption key (d1, d2) for an identity v ∈ {0, 1}n.
Let V be the set of indices for which the bit-string v is set to 1.

d1 := msk · (u′
∏
i∈V

ui)
r and d2 := gr. (1)

A corresponding dependency graph thus involves nodes d1, msk, u′, ui,
d2, g, and edges from msk, u′, ui to d1, and g to d2 as illustrated in graph
(2) in Fig. 2. Note that g1 is in the public key given to the algorithm
but not involved in computation. Such unused elements can be ignored
and do not appear in the graphs.
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– The encryption algorithm involves both group operations and pairings. It
takes the public key and messageM from the target group, and computes
a ciphertext (C1, C2, C3) as follows:

C1 := e(g1, g2)
t ·M, C2 := gt and C3 := u′

∏
i∈V

uti. (2)

The pairing operation e(g1, g2) is represented in the graph by connecting
nodes g1, g2 to a pair of special nodes called pairing nodes, whose label
looks like p1[0] and p1[1]. The trunk name p1 is unique throughout the
system. A paring node indicates that its parent node corresponds to
an input to the pairing operation identified by the name. C2 and C3

are source group elements computed from g and u′, ui, respectively, and
represented in the graph in (3) in Fig. 2 accordingly. SinceM and C1 are
in the target group, no corresponding nodes are included in the graph.

– The decryption algorithm computes

M := C1 e(d2, C3) e(d1, C2)
−1. (3)

The pairing e(d2, C3) yields nodes d2,C3 connected to pairing nodes
p2[0] and p2[1], respectively. Similarly, the pairing e(d1, C2) yields nodes
d1,C2 connected to p3[0] and p3[1], respectively. The resulting graph is
(4) in Fig. 2.

– Next we consider the instance generator of DBDH that generates default
generator g and random group elements A,B, and C. (Target group
element Z is irrelevant and ignored here.) The graph contains nodes g,
A, B, and C, and edges from g to every other node as illustrated in
(5) in Fig. 2. Graphs for associated verification and random guessing
algorithms are empty as they do not involve any group operations.

– Finally we consider a graph for the reduction algorithm. The whole al-
gorithm and its analysis is intricate but group operations are only used
in a few places. The reduction first takes group elements A and B from
the given instance of DBDH problem and sets them to public key g1
and g2, respectively. The remaining parts of the public key u′ and ui are
generated normally. It then simulates an individual key by

d1 := g1
−J(v)
F (v) (u′

∏
i∈V

ui)
r and d2 := g1

−1
F (v) gr (4)

where we refer to [24] for J(v) and F (v). It is repeated for each key
query and there are many d1 and d2 computed in the same manner. In
the graph, these keys are represented by a single pair of nodes d1 and d2
directed from g1, u′, ui and g1, g, respectively. The reduction algorithm
also creates a challenge ciphertext that includes

C2 := C and C3 := CJ(v∗). (5)

They are represented by nodes C2,C3,C and edges directed from C to
C2 and C3. The resulting graph is (6) in Fig. 2.
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Step 2. Merge. Merge the graphs from Step 1 into a single graph, Γ , as il-
lustrated in Fig. 3.

Step 3. Split. Split Γ into two graphs Γ0 and Γ1 such that
– No nodes or edges are lost, i.e., merging Γ0 and Γ1 recovers Γ .
– For every pair of paring nodes, if one node is in Γ0, the other node is

exclusively in Γ1.
– For every node X in each split graph, the ancestor subgraph of X in Γ

is included in the same graph.
Given 3 pairs of pairing nodes in Γ , there exist 23 valid splits that satisfy
the above conditions. Select a valid split (Γ0, Γ1) according to a criterion
for ones purpose of conversion. In Fig. 4, we give a valid split that yields a
minimal public key size. As shown in Table 1, another valid split is possible
to minimize the assumptions. We give an algorithm that searches for the
best split according to an arbitrary criteria in Section 5.4.

Step 4. Derive the converted scheme. Nodes in Γ0 and Γ1 correspond to
elements in G and G̃, respectively. Based on the assignment, one can derive
the resulting Waters’ IBE scheme over Type-III groups and its underlying
assumption as illustrated in Fig. 1.

Remark 1. To preserve the security, it is required that the security of the cryp-
tosystem is proven by a black-box reduction [21] and that the reduction algo-
rithms are abstract as defined in Section 4.2.

Remark 2. In the formal model, we consider correctness as part of scheme and
hence a dependency graph for correctness should be included. As nodes are given
consistent names in this example, the dependency graph for correctness becomes
trivial and is therefore omitted. In general, consistent names are given by object
identifiers as explained in Section 4.2.

Remark 3. It is important to check group membership for every input. For in-
stance, if an input X in the original scheme is converted into X and X̃, then the
group membership testing on X in the original scheme is translated to checking
the Diffie-Hellman relation e(X, G̃) = e(G, X̃) in the converted scheme. In the
above example, the relation between g1 and g̃1 in the common parameter should
be verified. Since the common parameters will be verified once for all in practice,
it is not explicitly shown in Fig. 1.

4 Formal Model

4.1 Cryptographic System

We consider secure cryptographic schemes whose correctness and security are de-
fined by game-like interactive algorithms, and the security is proven by black-box
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[Waters’ IBE Scheme in Type-III]

Setup((q,G, G̃,GT , e, g, g̃)): Select g2 ← G, α ← Zq. Compute g1 := gα,
g̃1 := g̃α. u′ ← G and a random n-length vector U = (ui) ∈ Gn, those el-
ements are chosen at random from G. Publish the public parameters prm =
(g, g̃, g1, g̃1, g2, u

′, U) ∈ G4+n × G̃2. The master secret is msk = gα ∈ G.
KeyGeneration(prm): r ← Zq and a private key for identity v is

dv := (d1, d̃2) =

(
gα2

(
u′
∏
i∈V

ui

)r

, g̃r
)
∈ G× G̃ (6)

Encryption(prm,M): Let a message M ∈ GT . t← Zq. The ciphertext is

C = (C1, C̃2, C3) =

(
e(g2, g̃1)

tM, g̃t,

(
u′
∏
i∈V

ui

)t)
∈ GT × G̃×G (7)

Decryption(prm, dv, C): Parse C = (C1, C̃2, C3) ∈ GT × G̃×G. Calculate

C1
e(C3, d̃2)

e(d1, C̃2)
=
(
e(g2, g̃1)

tM
) e((u′∏

i∈V ui)
t, g̃r)

e(gα2 (u
′
∏

i∈V ui)r, g̃t)
= M

[Decisional Co-BDH problem]

Given (g, g̃, A = ga, Ã = g̃a, B = gb, C = gc, C̃ = g̃c, Z) ∈ G4 × G̃3 × GT , where
Z = e(g, g̃)abc+βr, r ← Zq and β ← {0, 1}, guess β.

Fig. 1. Converted Waters’ IBE and underlying hard problem.

reductions to hardness of computational or decisional problems. Formally, we for-
mulate a secure cryptosystem Π by sets of efficient algorithms Π = {F , C, I,R}
that represent the functionality, correctness, underlying problems and security
reductions. Properties of these algorithms are defined in the following.

The functionality F is a set of algorithms F = (F1, . . . ,Ft) where each
Fi implements some function for the cryptosystem such as “key generation”,
“encryption”, and so on. Correctness of F is defined by C that has black-box
access to the functionalities in F and outputs 1 if everything works as intended.

Definition 4 (Correctness). Π is correct if Pr[1← CF (1λ)] = 1 for all λ.

A problem I is a triple of algorithms I = (Igen , Iver , Iguess), where Igen is
an instance generator that generates a problem instance, Iver is a verification
algorithm that verifies a given answer, and Iguess is a guessing algorithm that
returns an answer by random guessing.

Definition 5 (Hardness of I). Problem I is hard if the advantage function

AdvIB(λ) := Pr
[
1← Iver (x, y) | (x, y)← (Igen(1λ),B(1λ))

]
− Iguess(1λ)

is negligible in λ for any probabilistic polynomial-time adversary B.
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In this work, we consider cryptographic schemes where security is proven by
an efficient algorithm called a reduction, R, that is successful in solving problem
I given black-box access to an adversary that successfully attacks the scheme. We
define security in the form of advantage functions AdvSA(λ) := Pr[1 ← SA(1λ)]
for algorithm S (which is often called a challenger), which should be negligible
for any probabilistic polynomial time adversary A.

Definition 6 (Security of Π). Cryptosystem Π is secure in the sense of S
under the hardness assumption on I with black-box reduction R if for any A
advantage AdvIRA(λ) is not negligible if AdvSA(λ) is not negligible.

Though C, R, I, and S are defined as single algorithms, they can be natu-
rally extended to sets of algorithms. In particular, security is often proven by
sequences of games and each game reduces to an individual hardness assumption.

4.2 Abstract Algorithms

Let ÃO denote an algorithm where Ã is called an abstract algorithm that com-
putes group operations through oracle O. Oracle O is called a group operation
oracle and given locally to host algorithm Ã. It is initialized with a description
of bilinear groups that is common for all algorithms in a cryptosystem. It per-
forms generic group operations over the bilinear groups like the generic group
oracle [22]. We follow the model by Maurer [17] for group operations. It forces
the host algorithm be explicit in checking equality. It is useful for our purpose
as we need to know which elements the host algorithm tests equality.

Oracle O also works as an interface for sending and receiving group elements.
When ÃO and B̃O interact, group elements are sent and received through the
oracles and all other data are exchanged directly between the host algorithms.
As mentioned above, a description of bilinear groups is common to the oracles.

We also consider O in the random oracle model [4] to capture functions
that map arbitrary input to a random source group element and that map
group elements attached by arbitrary string to a random string. O provides
these functions by interacting with random oracles HG : {0, 1}∗ → G and
Hstr : Gk × {0, 1}∗ → {0, 1}ℓ for some k and ℓ.

Every group element (more precisely a pointer to it) is associated with an ob-
ject identifier (oid for short). It is an arbitrarily prescribed string that identifies
the role of the element in a cryptosystem like “the third element of a cipher-
text” or “the first element of a secret-key.” The way oids are assigned to group
elements is a part of an algorithm and indeed as important as computations in
the algorithm. We restrict that only a constant number of distinct oids is used
in a cryptosystem so that a dependency graph can be described in a constant
size as we explain later. In general, oids can be arbitrarily specified. We con-
sider a conventional case where oids are named after variables used in describing
algorithms in F and I. It is indeed how we did for Waters’ IBE in Section 3.
When there are indexed variables that grows in the security parameter like the
public-key of Water’s IBE, they are assigned the same oid if they are involved
in the computation in the same manner. For instance, the same oid ui is given
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to all group elements u1, . . . , un in the example in Section 3. This convention for
oids applies to all schemes considered in this paper.

Let (q,G,GT , e, G) be symmetric bilinear groups and let Gt = e(G,G). We
define an extended group operation oracle O for symmetric bilinear group of
prime order q. In the following, pointers are taken sequentially from 1, and
queries with unused pointers are rejected. We omit group operations and equality
checking in the target group in the following description.

[Extended Group Operation Oracle O]

– init: Initialize lists Ls and Lt with entries (pt , G) and (pt t, Gt) respectively
with fresh pointers pt and pt t. Return (q, pt , pt t).

– gop(pt1, a1, . . . , ptk, ak, oid): For every pt i, search Ls for (pt i, Xi). Compute
X :=

∏
Xi

ai ∈ G and store (pt , X) with fresh pt . Output pt .
– pair(pt1, pt2): Search Ls for (pt1, X1) and (pt2, X2). ComputeX := e(X1, X2)

and store (pt , X) to Lt with fresh pt . Output pt .
– equal(pt1, pt2): Search Ls for (pt1, X1) and (pt2, X2). If X1 ≡ X2 ∈ G then

return 1. Return 0, otherwise.
– hash2g(str, oid): (This query is accepted only when random oracle HG is

available.) If the same input has been queried before, return the same answer.
Otherwise send (str, oid) to HG and receive X ∈ G. Store (pt , X) to Ls with
fresh pt , and return pt .

– hash2str(pt1, . . . , ptk, str, oid): (This query is accepted only when random
oracle Hstr is available.) Search Ls for each Xi ∈ G that corresponds to
pt i. If (X1, . . . , Xk, str, oid) has been asked before, return the same value.
Otherwise, send it to Hstr and return the resulting string.

– send(pt , oid): Search Ls for (pt , X) and send (X, oid) to the implicitly spec-
ified destination.

– receive(oid): On receiving this query from the host algorithm, wait to receive
(X, oid ′) from implicitly specified entity. Reject if X ̸∈ G or oid ̸= oid ′ and
continue waiting. Otherwise, store (pt , X) to Ls with fresh pt , and send pt
to the host algorithm.

We make some remarks about object identifier oid given as input for most
queries. When calling gop and hash2g, the host algorithm assigns an object
identifier to the resulting group element by specifying it with oid . The oracle does
not use oid in handling gop query, but it is needed later to build a dependency
graph. It is important to see that oid is included in the input to the random
oracle in hash2g. It allows the host algorithm to virtually deal with several
independent random oracles indexed by oid . For hash2str, it is assumed that
every group elementXi is transformed to its canonical representation in G before
being sent to random oracle Hstr . In general, even if X ≡ Y ∈ G holds, hashing
X and Y may yield different values. This is an important issue as we simulate
a group element in Type-I groups with a pair of group elements in Type-III
allowing different representations. With oid specified in the input, we can control
the representation so that group elements having the same oid has the same
representation.
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Let ΣGsym be the set of possible extended group operation oracles based on a
group generated by Gsym for all sufficiently large λ and all random coins/oracles.
We say O is based on Gsym when we refer to an extended group operation oracle
O in ΣGsym . We now define a cryptosystem consisting of abstract algorithms.

Let Π̃O
Gsym

:= (F̃O, C̃O, R̃O, ĨO) be a cryptosystem obtained by giving oracle O
based on Gsym to (sets of) abstract algorithms F̃ , C̃, R̃, and Ĩ. Let also S̃ be an
abstract challenger algorithm. Let ∆q denote all Gsym that outputs q with the
same probability distribution.

Definition 7 (Correct and Secure Abstract Cryptosystem). A set of
abstract algorithms Π̃ = (F̃ , C̃, R̃, Ĩ) is an abstract cryptosystem with respect
to ∆q and it correct and secure in the sense of S̃ if, for any Gsym ∈ ∆q and

O ∈ ΣGsym , Π̃
O
Gsym

:= (F̃O, C̃O, R̃O, ĨO) is a cryptosystem that is correct and

secure in the sense of S̃O.

5 Conversion Using Dependency Graph

5.1 Simulating Group Operation Oracle

Let (q,G, G̃,GT , e,G, G̃) be asymmetric bilinear groups generated by an asym-
metric group generator Gasym. Let ϕ : G → G̃ be an (inefficient) isomorphism

between the source groups. We use three representations, (G,−), (−, G̃), and
(G, G̃), for a source group element and say that they are of type left, right, and
both, respectively. By type we denote {left, right, both}. We say that type t is
covered by t ′ if t ′ = both or t ′ = t , and denote by t ⊆ t ′. If two types cover
at least in one way, we say that they are compatible. We design operations so
that they can be performed efficiently over two compatible elements. Let G′ de-
note (G ∪ {⊥}) × (G̃ ∪ {⊥}) \ (⊥,⊥) where ⊥ represents absence of data. Let
J : G′ → type be a function that takes an element of G′ as input and outputs
its type. Let matchtype : G′× type→ G′ be a subroutine that takes (X, X̃) ∈ G′

and t ∈ type as input, and remodeled (X, X̃) so that J (X, X̃) = t holds. It is
done by computing X̃ := ϕ(X) or X := ϕ−1(X̃) if necessary, and setting ⊥ to
X or X̃ if either is unnecessary.

Types are assigned by an algorithm D called a deployment. It is an algorithm
that takes an object identifier as input and outputs a type to assign to the iden-
tifier. Based on the asymmetric bilinear groups and deployment D, we construct
an oracle O∗ that simulates a symmetric group operation oracle.

[Simulated Group Operation Oracle O∗]

– init: Initialize lists Ls and Lt with entries (pt , G, G̃) and (pt t, Gt) respectively
with fresh pointers pt and pt t. Return (q, pt , pt t).

– gop(pt1, a1, . . . , ptk, ak, oid): For every pt i, search Ls for (pt i, Xi, X̃i). For
every i where J (Xi, X̃i) does not cover t := D(oid), callmatchtype(Xi, X̃i, t).
Then compute X :=

∏
Xai

i for t = left, or X̃ :=
∏
X̃ai

i for t = right, or both
for t = both. Set ⊥ to X or X̃ if either is not computed. Store (pt , X, X̃)
with fresh pt , and return pt .
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– pair(pt1, pt2): Search Ls for (pt1, X1, X̃1) and (pt2, X2, X̃2). If both J (X1, X̃1)
and J (X2, X̃2) are left or right, then use ϕ or ϕ−1 to compute an element
on the missing side. Then compute Z := e(X1, X̃2) or e(X2, X̃1) whichever
possible. Store (pt , Z) to Lt with fresh pointer pt , and output pt .

– equal(pt1, pt2): Search Ls for (pt1, X1, X̃1) and (pt2, X2, X̃2). If J (X1, X̃1)
and J (X2, X̃2) are incompatible, then compute either X̃2 := ϕ(X2) or X2 :=
ϕ−1(X̃2) whichever missing. Then if X1 ≡ X2 ∈ G or X̃1 ≡ X̃2 ∈ G̃, return
1. Return 0, otherwise.

– hash2g(str, oid): (This query is accepted only when random oracles HG :
{0, 1}∗ → G and HG̃ : {0, 1}∗ → G̃ are available.) Compute t ← D(oid)
and pick fresh pt . If (str, oid) has been queried before and answered with
(pt ′, X, X̃) ∈ Ls, store (pt , X, X̃) to Ls and return pt . Otherwise query
(str, oid) to random oracle HG for t = right or HG̃ for t = left. If t = both,

query (str, oid) to HG and use ϕ to get the corresponding element in G̃. Store
the result with pt to Ls. Then return pt .

– hash2str(pt1, . . . , ptk, str, oid): (This query is accepted only when random
oracle Hstr : (G′)k × {0, 1}∗ → {0, 1}poly(λ) is available.) Search Ls for each
(pt i, Xi, X̃i). Let oid := (oid i, . . . , oidk). For every i where J (Xi, X̃i) does
not cover ti := D(oid i), perform matchtype(Xi, X̃i, ti). Then, if (X1, X̃1, . . . ,
Xk, X̃k, str, oid) has been queried before, return the same value. Otherwise,
send it to random oracle Hstr, and receive a string, str′. Then return str′.

– send(pt , oid): Search Ls for (pt , X, X̃). Compute t ← D(oid). If J (X, X̃) ̸=
t , call matchtype(X, X̃, t). Output ((X, X̃), oid).

– receive(oid): On receiving this query from the host algorithm, wait for re-
ceiving ((X, X̃), oid ′) from outside. Ignore if (X, X̃) ̸∈ G′ or oid ′ ̸= oid or
J (X, X̃) ̸= D(oid), and continue waiting. Otherwise, pick fresh pt , store
(pt , X, X̃) to Ls, and send pt to the host algorithm.

Observe that there are some cases where oracle O∗ performs inefficient com-
putations ϕ or ϕ−1. Nevertheless, it is not hard to inspect that O∗ perfectly
simulates the extended symmetric group operation oracle.

For abstract cryptosystem Π̃, let Π̃O∗

Gasym,D denote a cryptosystem where oracle

O∗ based on asymmetric groups generated by Gasym and deployment D. Let ∆′
q

denote the set of Gasym that outputs q with the same distribution as those in ∆q.

We claim that if Π̃O
Gsym

is correct and secure, then so is Π̃O∗

Gasym,D for any Gsym ∈ ∆q,

Gasym ∈ ∆′
q, and D that stops with an output for any input. Nevertheless, the

notion of secure Π requires algorithms to run efficiently. For a while, we assume
that ϕ and ϕ−1 can be computed efficiently and state the following.

Lemma 8. If Π̃ is a cryptosystem with respect to ∆q, and it is correct and

secure in the sense of S̃, then for any Gasym ∈ ∆′
q and for any D, cryptosystem

Π̃O∗

Gasym,D is correct and secure in the sense of S̃O∗
if O∗ computes ϕ and ϕ−1

efficiently.

Proof. (sketch) Correctness can be assured by observing that views of abstract
algorithms with O∗ and O are identical. Regarding security, we show that if there
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exists Gsym ∈ ∆q and A that successfully attacks Π̃O∗

Gasym,D in the sense of S̃O∗
,

then there exists adversary B that is successful in attacking Π̃O
Gsym

in the sense

of S̃O for Gsym. We construct Gsym using Gasym by representing a group element
with a pair of source group elements of asymmetric groups. We then construct
B by using A. On receiving a group element, B invokes D and run matchtype to
remodel the input for A. Outgoing group elements from A are also remodeled by
applying matchtype. Non-group elements are sent and received intact. We argue

that if AdvS̃
O∗

A (λ) is not negligible then so is AdvS̃
O

B (λ) since the view of S̃ is
identical. Since O∗ computes ϕ and ϕ−1 in matchtype efficiently by hypothesis,
all algorithms are efficient here. ⊓⊔

In reality, however, ϕ and ϕ−1 are inefficient in Type-III groups and hence O∗

is inefficient in general. Nevertheless, there may exist Π̃ and D where Π̃O∗

Gasym,D

never performs the inefficient computation. For such Π̃ and D, Π̃O∗

Gasym,D is correct
and secure. Accordingly, the task of conversion is now reduced to find efficient
D that never have O∗ compute either ϕ or ϕ−1. It is the main issue we address
in the rest of this section.

We proceed to argue whether the assumption deduced from the converted
problem is plausible or not. Consider group operation oracle O based on Gsym.
Let Isym = (ĨOgen , ĨOver , ĨOguess) be a problem defined over symmetric bilinear
groups. Similarly, let O∗ be a group operation oracle based on Gasym and D.
Let Iasym = (ĨO∗

gen , ĨO
∗

ver , ĨO
∗

guess) be a problem defined over asymmetric bilinear
groups. Let {D} be a set of D that makes Iasym efficient. By {Iasym} we denote
the family of problems obtained by defining Iasym for each D ∈ {D}. We call
{Iasym} a family of co∗-problems.

Some restrictions apply to Isym. We only consider Isym that verifies mem-
bership of all incoming group elements, and do not use hash functions hash2g
and hash2str. Furthermore, the default generator is included in every problem
instance. Then the following holds.

Theorem 9 (Generic Hardness of co∗-Problem Family). If there exists
(qs, q̃s, qt, qp, ϵ, τ)-successful generic adversary for Iasym ∈ {Iasym}, then there
exists an (qs + q̃s, qt, qp, ϵ, τ

′)-successful generic adversary against Isym where τ ′

is τ +O(qs + q̃s).

5.2 Dependency Graphs

We begin by defining a dependency graph for an abstract algorithm. Let O be a
group operation oracle for some group order q. Let Ã be an abstract algorithm
and ÃO(in) be its execution on input in. (When Ã is interactive, in also repre-
sents inputs obtained through interaction.) We define a dependency graph for Ã
through the interaction between Ã and O as follows. It also defines a list NoDup
called a ban list that includes oids for group elements generated by hash2g.

[Dependency Graph for Abstract Algorithm Ã]
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1. Initialize Γ to an empty directed graph. Also initialize lists Lpair, Leq, and
NoDup to be empty.

2. Pick O for order q, and select in from appropriate domain. Initialize Lpt to

empty. Run Ã. For each query from Ã to O, do as follows.
– gop(pt1, a1, . . . , ptk, ak, oid) → pt : Add a node labeled by oid to Γ and

record (pt , oid) to Lpt. Then, for every node oid i that corresponds to
pt i, add an edge (oid i, oid) to Γ .

– pair(pt1, pt2): Find (pt1, oid1) and (pt2, oid2) from Lpt. If (oid1, oid2) ∈
Lpair in any order, do nothing. Otherwise, pick two nodes with unique
labels, say p[0] and p[1], and add them to Γ . Add edges (oid1, p[0]) and
(oid2, p[1]) to Γ as well. Add (oid1, oid2) to Lpair.

– equal(pt1, pt2): Let oid1 and oid2 be nodes for pt1 and pt2, respectively.
If oid1 = oid2, or (oid1, oid2) ∈ Leq in any order, do nothing. Otherwise,
add a node with a unique label, say E, and edges (oid1, E) and (oid2, E)
to Γ . Add (oid1, oid2) to Leq.

– hash2g(str, oid) → pt : Add a node oid to Γ and add (pt , oid) to Lpt.
Store oid to NoDup if not yet stored.

– hash2str(pt1, . . . , ptk, str, oid): Let oid = (oid i, . . . , oidk). For every oid ′
i

stored with pt i in Lpt, if oid i ̸= oid ′
i, then add node oid i and edge

(oid ′
i, oid i) to Γ . (This means that the element identified by pt i was

originally associated to object identifier oid ′
i but now regarded as oid i

by the host algorithm.)
– send(pt , oid): For oid ′ stored with pt in Lpt, if oid ̸= oid ′, then add node

oid ′ and edge (oid ′, oid).
– receive(oid)→ pt : Add node oid to Γ . Then record (pt , oid) to Lpt.

In the above, adding nodes and edges are done if they do not exist in Γ .
Also skip adding self-directing edges.

3. Go back to step 2 and repeat the above for all q and in.

The above algorithm defines how to construct a dependency graph for Ã. In
fact, repeating for all q and in as instructed in the last step is infeasible in reality.
We nevertheless expect that Γ is finite size for certain Ã. It is particularity the
case when Ã behaves independently of the security parameter, or nodes related
to the security parameter are indexed and given the same object identifier as we
see for public key ui in the example in Section 3. In the real world, building a
dependency graph for algorithm Ã needs to look into Ã rather than treating Ã
as black-box as above.

The nodes added in pair are called pairing nodes. A node is called a regular
node if it is not either of the above.

Next we define a dependency graph for a cryptosystem, Π̃ = (F̃ , C̃, R̃, Ĩ).
Basically it is a graph obtained by merging dependency graphs for all algorithms
in Π̃. Yet we need to work on some details for formality as shown below.

[Dependency Graph for Cryptosystem Π̃]

1. Build a dependency graph and list NoDup for every algorithm in Π̃. It is
assumed that pairing nodes, equality nodes, and local nodes are given globally
unique names.
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2. Merge all the graphs and NoDup obtained in the previous step.

3. If two nodes are connected to more than one pair of pairing nodes, remove
all but one pair of the pairing nodes. Do the same for equality nodes.

4. Output the resulting graph and NoDup.

Let Cconst be a class of abstract cryptosystems that has a constant-size de-
pendency graph in the security parameter. In the rest of the paper, we focus on
cryptosystems in Cconst.

5.3 Deployment Algorithm

Given a dependency graph Γ for Π̃ ∈ Cconst, we construct a deployment D. Recall
that if the target algorithm performs hash2g(str , oid), then the result should be
a group element in either G or G̃ but not both simultaneously. Thus D must not
return both for such oid . To deal with similar demand from practice that some
nodes should stay in either group, we use a ban list, NoDup, which specifies oids
that must not be assigned to both.

We consider splitting a dependency graph into two graphs so that each graph
represents nodes and computations in G or G̃. The split must meet the conditions
defined below.

Definition 10 (Valid Split). Let Γ = (V,E) be a dependency graph for Π̃ ∈
Cconst. Let P = (p1[0], . . . , pnp [1]) ⊂ V be pairing nodes. A pair of graphs Γ0 =
(V0, E0) and Γ1 = (V1, E1) is a valid split of Γ with respect to NoDup ⊆ V if:

1. merging Γ0 and Γ1 recovers Γ ,

2. for each i ∈ {0, 1} and every X ∈ Vi \ P the subgraph Anc(Γ,X) is in Γi,

3. for each i ∈ {1, . . . , np} paring nodes pi[0] and pi[1] are separately included
in V0 and V1.

4. No node in V0 ∩ V1 is included in NoDup.

We then construct a deployment D based on a valid split as follows:

[Deployment Algorithm D : oid→ type]

Given object identifier oid as input, return left or right or both if a node
labeled as oid is included in Γ0 or Γ1 or both, respectively.

Lemma 11. If there exists a valid split with respect to Π̃ ∈ Cconst and NoDup,
then, for oracle O∗ based on Gasym and D with a valid split, Π̃O∗

Gasym,D is efficient.

The above lemma can be proved by observing that for each case that Π̃O∗

Gasym,D
computes inefficient isomorphisms in gop, pair, equal, hash2g, and hash2str, the
split D is based on must be invalid.
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5.4 How to Find the Best Valid Split

Let Γ = (V,E) be a dependency graph for Π̃ where V consists of regular nodes
{X1, . . . , Xk} and pairing nodes P := {p1[0], . . . , pnp [1]}. We construct an algo-
rithm FindSplit that finds all valid splits.

[Algorithm: FindSplit(Γ , NoDup)]

1. Initialize L to empty.
2. Set B ⊆ R so that every Bi ∈ B has no outgoing edges. For each Xi ∈ R do:

– if Xi is not in Anc(Γ,Bi) for all Bi ∈ B ∪ P , then:
• For every Xj ∈ B that is in Anc(Γ,Xi), do B := B \ {Xj}.
• B := B ∪ {Xi}.

3. Repeat the following for ℓ = 0, . . . , 2np+nb − 1 where nb := |B|.
(a) Set Γ0 = (V0, E0), Γ1 = (V1, E1) be empty graphs.
(b) For i = 1, . . . , np, do Γ0 ← Γ0 ⊕ Anc(Γ, pi[biti(ℓ)]) and Γ1 ← Γ1 ⊕

Anc(Γ, pi[1− biti(ℓ)]).
(c) For j = 1, . . . , nb and i = bitnp+j(ℓ), do Γi ← Γi ⊕ Anc(Γ,Bj).
(d) Append (Γ0, Γ1) to L if V0 ∩ V1 ∩ NoDup.

4. Output L.

Lemma 12. List L includes all valid split of Γ .

Proof. (sketch) We verify that every (Γ0, Γ1) in L satisfies the conditions in Defi-
nition 10. First we show that Γ0⊕Γ1 = Γ . Observe that FindSplit is deterministic
and only the order of elements in R may impact the result through construction
of B. Consider B obtained from R, and B′ from permutation of R. Suppose that
X ∈ B and X ̸∈ B′ happens. Then there exits Y ∈ B′ that has path from X
to Y . We can argue that such Y cannot exist in B without contradicting to the
presence of X in B. Similarly, as Y is not in B, there exists node, say Z, in B
that has path from Y to Z. If Z is not identical to X, there exists path from X to
Z that contradicts to the presence of X in B. Thus, we have X = Z. This means
that X and Y are on a circle and thus Anc(Γ,X) = Anc(Γ, Y ). Thus procedures
in further steps are not affected whichever B or B′ are used. Then observe that,
from step (b) and (c), we have Γ0 ⊕ Γ1 = Anc(Γ, p1[1]) ⊕ Anc(Γ, p1[0]) ⊕ · · · ⊕
Anc(Γ, p1[0])⊕Anc(Γ,B1)⊕· · ·⊕Anc(Γ,Bnb

) = Γ . Next, the second condition is
met since, in step 3-(b) and (c), every node is included in Γi together with their
ancestor subgraphs. By the property of Anc(), the subgraph contains a subgraph
of every node in it. The third condition is assured since in step 3-(b) every pair
of pairing nodes are merged to Γ0 and Γ1 separately. Finally, the constraint by
NoDup is met due to step 3-(d) which forces the exactly the same constraint as
in the fourth condition.
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Appendix

A Dependency Graphs for Waters’ IBE
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Fig. 2. Dependency graph for each algorithm in Waters’ IBE scheme.
.



20 Masayuki Abe, Jens Groth, Miyako Ohkubo, and Takuya Tango

p1[0] p1[1] p2[0] p2[1]p3[0] p3[1]

g

A B C

g1 g2

C2d2

u’ui

C3d1

msk

Fig. 3. Dependency graph for Waters’ IBE scheme obtained by merging all graphs for
individual algorithms.
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Fig. 4. A valid split for minimum public key. Nodes in graph (1) and (2) represent
group elements in G and G̃, respectively.
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