
Homomorphic Signatures with Efficient
Verification for Polynomial Functions

Dario Catalano1, Dario Fiore2, and Bogdan Warinschi3

1 Università di Catania, Italy. catalano@dmi.unict.it
2 IMDEA Software Institute, Spain. dario.fiore@imdea.org
3 University of Bristol, UK. bogdan@compsci.bristol.ac.uk

Abstract. A homomorphic signature scheme for a class of functions C
allows a client to sign and upload elements of some data set D on a
server. At any later point, the server can derive a (publicly verifiable)
signature that certifies that some y is the result computing some f ∈ C
on the basic data set D. This primitive has been formalized by Boneh
and Freeman (Eurocrypt 2011) who also proposed the only known con-
struction for the class of multivariate polynomials of fixed degree d ≥ 1.
In this paper we construct new homomorphic signature schemes for such
functions. Our schemes provide the first alternatives to the one of Boneh-
Freeman, and improve over their solution in three main aspects. First,
our schemes do not rely on random oracles. Second, we obtain security
in a stronger fully-adaptive model: while the solution of Boneh-Freeman
requires the adversary to query messages in a given data set all at once,
our schemes can tolerate adversaries that query one message at a time, in
a fully-adaptive way. Third, signature verification is more efficient (in an
amortized sense) than computing the function from scratch. The latter
property opens the way to using homomorphic signatures for publicly-
verifiable computation on outsourced data. Our schemes rely on a new
assumption on leveled graded encodings which we show to hold in a
generic model.

1 Introduction

Cryptographic mechanisms for building trust are essential for the shift towards
a world where weak clients leverage access to all-powerful servers to remotely
store and compute on data. Trust issues include availability of storage, privacy
of data, authenticity of delegated computation, etc. which in turn take a mul-
titude of forms. For example, privacy concerns range from simply ensuring the
secrecy of stored data, to additionally allowing for search over outsourced data
and/or optimizing storage space. This paper contributes to the area of verifi-
able computation, and specifically to the setting in which a client delegates the
computation of one or more functions F1, F2, . . . , Fn on one or more of its data
sets D1, D2, . . . , Dm. The crucial requirement here is that the answer y returned
by the server, purportedly the result of Fi(Dj), can be efficiently verified. Ef-
ficiency has multiple dimensions, but two are needed to avoid trivial solutions:
the client should not have to store all data Dj on which the server computes
and/or verification should be faster than simply computing Fi on Dj .



In addition to the different forms of efficiency one may require, the problem
of verifiable computation also comes in several different scenarios. For example,
the function computed by the server may be fixed or changing, the data stored
may be fixed or incrementally updated, the client may have access to multiple
(non-communicating) servers, the verification of the result may be interactive,
etc. In this work we focus on the scenario where the client has access to a single
server, he can incrementally add data on the server, the functions to be computed
are not known in advance, and the verification of the result is non-interactive
and can be done publicly.

To place our contribution in the landscape of solutions for verifiable com-
putation and to facilitate the comparison with existent solutions, we note that
previously proposed protocols for verifiable computation use one of two tech-
niques. The first type of solutions (which for brevity we call proof-based) build
on foundations going back to Micali’s computationally sound proofs [26]. The
idea is for the server to provide (or to prove knowledge of) a certificate for the NP
statement: y = F (D). The earlier work used probabilistically checkable proofs
(PCPs) [26], whereas recent results rely on succinct arguments (SNARGs) or suc-
cinct arguments of knowledge (SNARKs) [7,22] where the dependency between
the length of the statement and the proof is greatly reduced. Other protocols
where proofs are not explicitly mentioned can be thought of as instantiations
where the proofs are encrypted information-theoretic secure MAC [21,27].

The second type of solutions use homomorphic authenticators; we refer to
these constructions as authenticator-based. In these constructions, one attaches
to every input data an unforgeable authenticator. The main property is that any
operation (gate) used in the computation which takes as input correctly authen-
ticated data, produces a result together with a valid authenticator. Solutions
exist in both the symmetric and the public-key setting. Depending on how the
authenticator is verified, we distinguish between homomorphic message authen-
tication codes [24,10,4] and homomorphic signatures [9]. Clearly, the difficulty
of the problem increases with the class of functions one considers. For example,
there are numerous signature schemes homomorphic with respect to linear func-
tions over vector spaces [1,8,23,2,13,14,19,3,12]. In contrast, there has been little
progress on signature schemes homomorphic with respect to non-linear poly-
nomials. The only known construction is provided by Boneh and Freeman [9]
who construct a homomorphic signature scheme for multivariate polynomials of
constant degree.

Summary of our contribution and relation to previous work. In this paper we
provide the first alternative to the homomorphic signature scheme of Boneh and
Freeman (henceforth BF), which is the work closest to ours. Our result improves
over the BF solution in three main aspects. First, we solve a problem left open
in [9], as unlike the BF scheme, our construction does not rely on the random
oracle assumption. Second, our scheme is proven secure in a stronger adaptive
model: in the BF scheme the adversary is restricted to query signatures on mes-
sages belonging to a given data set all at once; in contrast, our construction is
proven secure against adversaries that can query one message at a time in a



fully adaptive way. Finally, our construction enjoys efficient verification in that
verifying a signature against a function f can be done faster than computing f
(and in particular does not require storing the input data). More accurately, this
property holds in an amortized sense: after a single (local) pre-computation of f ,
one can verify the evaluation of f on any dataset more efficiently. This property
has been recently identified, defined and realized for homomorphic MACs in [4].
Our construction is the first to achieve efficient verification for homomorphic
signatures, and therefore it opens the way to using homomorphic signatures for
verifiable computation.

We remark that other constructions of homomorphic authenticators are ei-
ther in the symmetric key setting [24,10,4], or are for the restricted class of linear
functions [1,8,23,2,13,14,19,3,12]. Below we discuss the benefits that our solution
brings to the broader field of verifiable computation. We start with general re-
marks on the benefits that authenticator-based solutions hold over proof-based
ones.

Incremental, compositional verifiable computation. Homomorphic au-
thenticators naturally give rise to incremental/composable verifiable computa-
tion: the output of some computation on authenticated data is already authen-
ticated so it can be fed as input for follow-up computation. This property is
of particular interest to parallelize computations (e.g., MapReduce). Emulating
this composition within the proof-based frameworks is possible [7] but it leads
to complex statements and less natural realizations. For an extensive discussion
of this issue see [24].

Flexible scenarios. Furthermore, homomorphic authenticators are applica-
ble to a broader range of scenarios as neither the data to be computed on, nor the
function to be applied need to be known in advance. For example the data can
be incrementally updated (by authenticating and uploading new pieces of data),
and the function to be applied can be selected at any point by the server (with-
out having to wait for some parameters generated by the client). In contrast,
in (most) proof-based solutions the function needs to be known at the moment
when data is uploaded, or a copy of the data needs to be kept locally by the
client [21,15,6,18,27,7,22]. Perhaps the biggest advantage of verifiable computa-
tion based on authenticators is that verification does not need the input data;
indeed we only need to check that the result comes with a valid authentica-
tor. Just like for incremental computation, an analogous result can be obtained
with proof-based constructions through theoretically beautiful but practically
cumbersome solutions. For example, one can fix the computation performed by
the server to be some universal circuit and then see the actual function to be
computed as part of the data that is uploaded. While the dependency between
data and functions is broken, verification would still need the whole data (and
function description) as input.

Improving flexibility is also addressed by the notions of memory delegation
and streaming delegation [16] in which a client can outsource a large memory
to a server, keeps a small local state, and can later delegate and verify compu-
tations on the outsourced memory. This setting is very general and is close to



the one achieved by using homomorphic authenticators. As mentioned in [24], a
difference between memory delegation and homomorphic authenticators is that
the former considers a single user who outsources the data all at once and keeps
a state associated with the data. In contrast, by using homomorphic authentica-
tors various users may independently upload several data items without sharing
any state (beyond the fixed signing key).

Complexity assumptions. In terms of the usual trade-off between efficiency
and the underlying assumptions our scheme fares well. Most proof-based con-
structions rely on proofs (SNARGs, SNARKs) for which instantiations either
rely on the random oracle model [26] or employ non-falsifiable assumptions. Our
scheme is in the standard model and is based on problems in the groups underly-
ing a multi-linear map. Our scheme can be instantiated with any of the existing
graded encoding schemes [20,17] and hence it will increase in efficiency with any
progress on the implementation of the latter primitive [25].

High level idea of our construction. Our scheme signs messages in Zp and is
homomorphic with respect to polynomial functions on Znp (where n is the size
of the data set); the degree of the polynomial is d (which is bounded).

To realize our construction we proceed in three main stages. First we con-
struct an homomorphic scheme (with the same domain, and homomorphic with
respect to the same class of functions) secure in a weaker sense: in an attack, the
adversary asks all of the messages to be signed non-adaptively before the scheme
is initialized. This is the technically most difficult part of the paper. Then we
provide a generic transformation that strengthens any weakly-secure homomor-
phic signature for degree-d polynomials to an adaptive-secure one, i.e. one that
withstands adaptive chosen-message attacks. The third step is to optimize the
resulting construction when instantiated with the weakly-secure scheme that we
develop. Below we provide an overview of these steps, starting with the generic
transformation. Then we describe the main ideas that go into the construction of
our weakly-secure scheme. To conclude, we discuss the efficiency of the scheme
that we obtain from our weakly-secure scheme via both the generic and the
optimized transformation.

In both schemes we encode a message in Zp as the free term of a polynomial
of degree at most d. Messages in the data set are encoded in polynomials of de-
gree one, whereas the results of computations will be encoded by higher degree
polynomials. Start with a weakly secure homomorphic signature scheme Π. The
signing key for the scheme we construct consists of d+1 different signing keys for
Π, say sk1, sk2, . . . , skd+1. If message m is encoded by some polynomial t, then a
signature on m is of the form (σ1, σ2, . . . , σd+1), where σi is a signature using the
weakly secure scheme on t(i) using ski. Since we only work with polynomials of
degree at most d, the d+1 points that are signed uniquely determine the polyno-
mial t, hence the message m. Homomorphicity of the scheme that we construct
follows from that of the underlying scheme. Given signatures (σ1

1 , σ
1
2 , . . . , σ

1
d+1)

and (σ2
1 , σ

2
2 , . . . , σ

2
d+1) for messages m1 and m2, a signature on m1 ◦m2 (where ◦

is one of the operations in Zp) is (σ1
1 ◦σ2

1 , σ
1
2 ◦σ2

2 , . . . , σ
1
d+1◦σ2

d+1). Without going
into the details, a key idea of using the encoding of messages into polynomials



is that a simulator can adaptively sign arbitrary messages, while having access
only to signatures (of Π) on a set of random messages.

Our construction of the weakly-secure signature scheme is based on graded
encodings [20]. The overview here uses the (more idealized) leveled multilinear
maps setting. The basic idea is that a signature on a data set message mi is a
level-1 element of the form Λ = g(ri−mix)b, where gri is some public informa-
tion, b is the secret key and g, gx, gb are in the public key4. Given signatures
on messages m1 and m2 one obtains a signature on the sum by simply com-
puting Λ1 · Λ2. To obtain a signature on the multiplication m1 ·m2, we apply
the graded map to g(r1−m1x)b and g(r2−m2x)b and obtain something of the form

g
[r1r2−(r1m2+r2m1)x+m1m2x

2]b2

2 where g2 is a generator of G2. The main issue with
the resulting signature is verification: here, one should either know the original
messages m1,m2 (which is what we want to avoid) or keep track in the signature
of the middle term in the exponent (which we also want to avoid since this term
grows with successive multiplications). We solve this problem with two main
ideas: (1) we publish a randomized version gabx of the secret value gbx, and (2)
we create a twin version of every signature which has the form Γ = g(r−mx)ab.
This way, a signature on the multiplication of m1 · m2 is obtained by apply-
ing the graded map to Λ1 = g(r1−m1x)b and Γ2 = g(r2−m2x)ab, which produces

something of the form g
[r1r2−(r1m2+r2m1)x+m1m2x

2]ab2

2 . Then, by using gabx, the
latter value can now be “cleaned up” (by multiplying appropriately computed

values) to obtain g
[r1r2−m1m2x

2]ab2

2 . More generally, we show how to clean the
multiplication of arbitrary signatures to always produce a signature of the form

g
[f(r)−f(m)xi]ai−1bi

i , where i is the degree of polynomial f , gi is the generator in
Gi, m is the vector of original messages, and r is the vector of ri’ in the publicly
known gr1 , gr2 , . . .. Related issues that we solve include enabling verification of
these signatures, and ensuring that the cleaning information does not enable the
creation of forgeries. Also, while the simplified description above works for signa-
tures in a single dataset, our full realization provides a way to deal with multiple
datasets. The construction sketched above is homomorphic for polynomials of
degree-d, if instantiated with 2d-linear maps, and is proven weakly-secure under
a new, constant-size, assumption that we prove hard in the generic multilinear
group model. As a final note, we observe that this construction enjoys efficient
verification, which (intuitively) follows from that one can precompute f(r) and
reuse it to verify all signatures for the same f . In terms of efficiency, in this
weakly-secure construction every signature consists of the message m and two
group elements—Λ, Γ—and is in principle of constant size. When instantiated
with currently known graded encoding schemes, each of these group elements
(aka encodings) is of size O(d2 +d log n) (ignoring the security parameter), if we
want to support n-variate polynomials of degree d.

By applying our generic transformation we obtain an adaptive-secure homo-
morphic signature in which signatures have size O(d), which turns into O(d3 +

4 We emphasize that our signatures are quite different, and we only use these to explain
the intuition.



d2 log n) when instantiated with known graded encoding schemes [20,17,25]. We
also show a more optimized transformation tailored to our weakly-secure scheme,
which yields a more efficient adaptive-secure homomorphic signature where, for
instance, the size of the public and the secret key does not grow by a factor
of d. Furthermore, we show that our weakly-secure scheme can be also proven
adaptive-secure, though by assuming a stronger, interactive, assumption.

2 Preliminaries

2.1 Leveled Multilinear Maps and Graded Encodings

In this section we recall the definition of leveled multilinear maps and the com-
putational assumptions used in our scheme. Candidate implementations of this
abstraction have been recently proposed [20,17,25] in the form of graded encod-
ings, a concept similar to generic, leveled multilinear maps.

In generic, symmetric, leveled multilinear maps we assume the existence of
an algorithm G(1λ, k) that, on input the security parameter and an integer k
indicating the number of levels (i.e., the number of allowed pairing operations),
generates the description pp of leveled multilinear groups (G1, . . . ,Gk), each of
large prime order p > 2λ. We let gi be a canonical generator of Gi; we assume
that pp includes g1 ∈ G1. The groups are such that there exists a set of bilinear
maps {ei,j : Gi×Gj → Gi+j}i,j≥1,i+j≤k such that ∀a, b ∈ Zp: ei,j(gai , gbj) = gabi+j .
When obvious from the context we drop the indices i, j from ei,j . We work with
symmetric bilinear maps and we let the canonical generators gi ∈ Gi be obtained
by repeatedly applying the map to g1, i.e. we let gi = e(g1, gi−1).

Hardness Assumption. Below we define the computational assumption that
underlies the security of our scheme. In the full version we justify the assumption
by proving it holds in a generic model for level multilinear maps. The assumption
can also be tested using recently proposed automated techniques [5]. Informally,
the assumption says that given the level-1 encodings ga1 , g

b
1, g

ab
1 , g

x
1 , g

xa
1 , gabx1 with

a, b, x ∈ Zp random, it must be hard to compute a level-k encoding of ak−1(bx)k

(i.e., g
ak−1(bx)k

k ). More formally:

Definition 1 (k-Augmented-Power Multilinear Diffie-Hellman). Let pp
be the description of a set of multilinear groups and g1 ∈ G1 be a random

generator. Let a, b, x
$← Zp be chosen at random. We define the advantage

of an adversary A in solving the k-APMDH problem as AdvAPMDH
A (λ) =

Pr[A(g1, g
a
1 , g

b
1, g

ab
1 , g

x
1 , g

ax
1 , gabx1 ) = g

ak−1(bx)k

k ], and we say that the k-APMDH

assumption holds for G if for every PPT A, AdvAPMDH
A (λ) is negligible in λ.

Graded Encodings. Informally speaking, a k-graded encoding system for a

ring R includes a system of sets {S(α)
i ⊂ {0, 1}∗ : i ∈ [0, k], α ∈ R} such that

for every fixed i ∈ [0, k] the sets {S(α)
i : α ∈ R} are disjoint. The set S

(α)
i con-

tains the level-i encodings of α ∈ R. As a first requirement, the system needs an

algorithm to obtain an encoding ai ∈ S(α)
i of some ring element α (notice that

such encoding can be randomized). Additionally, the encoding system is homo-
morphic in a graded sense. Namely, let us abuse notation and assume that every



set S
(α)
i is a ring where +, · are the usual addition/multiplication operations.

Then, for any ai ∈ S(α)
i and bi ∈ S(β)

i we have ai + bj ∈ S(α+β)
i . Furthermore,

for ai ∈ S(α)
i and bj ∈ S(β)

j we have ai · bj ∈ S(α·β)
i+j , if i + j ≤ k. Finally, the

encoding system has an algorithm to test if a given a is an encoding of 0 in the

last level k, i.e., if a ∈ S(0)
k . We refer to [20] or the full version of our work for a

more precise description of graded encodings.

2.2 Homomorphic Signatures for Multi-Labeled Programs
In this section we provide the definition of homomorphic signatures. Our defini-
tion is essentially the same as the one proposed by Freeman in [19] except that
we adapt it to work in the model of multi-labeled programs introduced in [4] as
an extension to labeled programs [24,10].

Multi-Labeled Programs. A labeled program P consists of a tuple (f, τ1, . . . ,
τn) such that f : Mn → M is a function on n variables (e.g., a circuit), and
τi ∈ {0, 1}∗ is the label of the i-th variable input of f . Labeled programs can be
composed in the following way. Given P1, . . . ,Pt and a function g : Mt →M,
the composed program P∗ is the one obtained by evaluating g on the outputs
of P1, . . . ,Pt, and is compactly denoted as P∗ = g(P1, . . . ,Pt). The labeled
inputs of P∗ are all distinct labeled inputs of P1, . . . ,Pt, i.e., all inputs with
the same label are grouped together in a single input of the new program. Let
fid :M→M be the canonical identity function and τ ∈ {0, 1}∗ be a label. Then
Iτ = (fid, τ) is the identity program for input label τ . Using this notation, observe
that any program P = (f, τ1, . . . , τn) can be expressed as the composition of n
identity programs P = f(Iτ1 , . . . , Iτn).

A multi-labeled program P∆ is a pair (P, ∆) in which P = (f, τ1, . . . , τn) is a
labeled program and ∆ ∈ {0, 1}∗ is a binary string called the data set identifier.
Multi-labeled programs allow for composition within the same data set in the
most natural way, i.e., given multi-labeled programs (P1, ∆), . . . , (Pt, ∆) sharing
the same data set identifier ∆, and given a function g :Mt →M, the composed
multi-labeled program P∗∆ is the pair (P∗, ∆) where P∗ is the composed program
g(P1, . . . ,Pt), and∆ is the data set identifier shared by all the Pi. Similarly to the
labeled case, we define a multi-labeled identity program as I(∆,τ) = ((fid, τ, ), ∆).

Definition 2 (Homomorphic Signatures). A homomorphic signature scheme
HomSig is a tuple of probabilistic, polynomial-time algorithms (KeyGen,Sign,Ver,
Eval) satisfying four properties: authentication correctness, evaluation correct-
ness, succinctness, and security. More precisely:

KeyGen(1λ,L) takes a security parameter λ, the description of the label space
L (possibly fixing a maximum data set size N), and outputs a public key vk
and a secret key sk. The public key vk defines implicitly a message space M
and a set F of admissible functions.

Sign(sk, ∆, τ,m) takes a secret key sk, a data set identifier ∆, a label τ ∈ L, a
message m ∈M, and it outputs a signature σ.

Ver(vk,P∆,m, σ) takes a public key vk, a multi-labeled program P∆ = ((f, τ1,
. . . , τn), ∆) with f ∈ F , a message m ∈ M, and a signature σ. It outputs
either 0 (reject) or 1 (accept).



Eval(vk, f,σ) takes a public key vk, a function f ∈ F and a tuple of signatures
{σi}ni=1 (assuming that f takes n inputs). It outputs a new signature σ.

Authentication Correctness. Intuitively, a homomorphic signature satis-
fies authentication correctness if the signatures generated by Sign(sk, ∆, τ,m)
verify correctly for m as the output of the identity program I(∆,τ). Formally,
HomSig has authentication correctness if for a given label space L, all key pairs

(sk, vk)
$← KeyGen(1λ,L), any label τ ∈ L, data set identifier ∆ ∈ {0, 1}∗, and

any signature σ
$← Sign(sk, ∆, τ,m), Ver(vk, I(∆,τ),m, σ) outputs 1 with all but

negligible probability.

Evaluation Correctness. Informally, this property says that running the
evaluation algorithm on signatures (σ1, . . . , σn) such that σi verifies for mi as the
output of a multi-labeled program (Pi, ∆), produces a signature σ which verifies
for f(m1, . . . ,mn) as the output of the composed program (f(P1, . . . ,Pn), ∆).

More formally, fix a key pair (sk, vk)
$← KeyGen(1λ,L), a function g :Mt →M

and any set of program/message/signature triples {(Pi,mi, σi)}ti=1 such that
Ver(vk,Pi,mi, σi) = 1. If m∗ = g(m1, . . . ,mt), P∗ = g(P1, . . . ,Pt), and σ∗ =
Eval(vk, g, (σ1, . . . , σt)), then Ver(vk,P∗,m∗, σ∗) = 1 holds with all but negligible
probability.

Succinctness. A homomorphic signature scheme is succinct if, for a fixed
security parameter λ, the size of the signatures depends at most logarithmically
on the data set size N .

Security. We say that a homomorphic signature scheme HomSig is secure if
for every PPT adversary A we have Pr[HomUF-CMAA,HomSig(λ) = 1] ≤ ε(λ)
where ε(λ) is a negligible function, and the experiment HomUF-CMAA,HomSig(λ)
is defined as follows.

Key generation The challenger runs (vk, sk)
$← KeyGen(1λ,L) and gives vk to

the adversary.
Signing Queries The adversary can adaptively submit queries of the form

(∆, τ,m), where ∆ is a dataset identifier, τ ∈ L, and m ∈M. The challenger
proceeds as follows: If (∆, τ,m) is the first query with data set identifier ∆,
then the challenger initializes an empty list T∆ = ∅ for ∆. If T∆ does not
already contain a tuple (τ, ·) (i.e., the adversary never asked for a query

(∆, τ, ·)), the challenger computes σ
$← Sign(sk, ∆, τ,m), returns σ to A and

updates the list T∆←T∆ ∪ (τ,m). If (τ,m) ∈ T∆ (i.e., the adversary had al-
ready queried the tuple (∆, τ,m)), then the challenger replies with the same
signature generated before. If T∆ contains a tuple (τ,m′) for some message
m′ 6= m, then the challenger ignores the query.

Forgery The previous stage is repeated a polynomial number of times until the
adversary outputs a tuple (P∗∆∗ ,m∗, σ∗).

Finally, the experiment outputs 1 if the tuple returned by the adversary is
a forgery, and 0 otherwise. However, to do this we need to provide a way for
characterizing forgeries in this model. To this end, we recall the notion of well-
defined program w.r.t. a list T∆ [19]. A labeled program P∗ = (f∗, τ∗1 , . . . , τ

∗
n) is

well-defined with respect to T∆∗ if one of the following two cases holds:



– there exist messages m1, . . . ,mn such that the list T∆∗ contains all tuples
(τ∗1 ,m1), . . . , (τ∗n,mn). Intuitively, this means that the challenger has gener-
ated signatures for the entire input space of f for data set ∆∗.

– there exist indices i ∈ {1, . . . , n} such that (τ∗i , ·) /∈ T∆∗ (i.e., A never asked
signing queries of the form (∆∗, τ∗i , ·)), and the function f∗({mj}(τj ,mj)∈T∆∗∪
{m̃j}(τj ,·)/∈T∆∗ ) outputs the same value for all possible choices of m̃j ∈ M.
Intuitively, this case means that the inputs that were not signed in the ex-
periment never contribute to the computation of f .

The experiment HomUF-CMA outputs 1 if and only if Ver(vk,P∗∆∗ ,m∗, σ∗) =
1 and one of the following conditions holds:

– Type 1 Forgery: no list T∆∗ was created during the game, i.e., during the
experiment no message m has ever been signed with respect to a data set
identifier ∆∗.

– Type 2 Forgery: P∗ is well-defined w.r.t. T∆∗ and m∗ 6= f∗({mj}(τj ,mj)∈T∆∗ ),
i.e., m∗ is not the correct output of the labeled program P∗ when executed
on previously signed messages (m1, . . . ,mn).

– Type 3 Forgery: P∗ is not well-defined w.r.t. T∆∗ .

As pointed out by Freeman [19], for a general class of functions it may not
be possible for the challenger to efficiently decide whether a given program is
well-defined or not. Freeman shows that for the case of linearly-homomorphic sig-
natures this is not an issue. More precisely he shows that any adversary who out-
puts a Type-3 forgery can be converted into one that outputs a Type-2 forgery.
Below, we show two simple propositions that allow to overcome this issue for
the case of homomorphic signatures whose class of supported functions are arith-
metic circuits of degree d, over a finite field of order p such that d/p < 1/2. The
first proposition is taken from [11] and provides a way to probabilistically test
whether a program is well-defined.

Proposition 1 ([11]). Let λ, n ∈ N and let F be the class of arithmetic circuits
f : Fn → F over a finite field F of order p and such that the degree of f is at most
d, for d

p <
1
2 . Then, there exists a probabilistic polynomial-time algorithm that

for any given f ∈ F , decides if there exists y ∈ F such that f(u) = y,∀u ∈ Fn
(i.e., if f is constant) and is correct with probability at least 1− 2−λ.

The second proposition below is the analogue of the one proven by Freeman,
which shows that any adversary who outputs a Type-3 forgery can be converted
into one that outputs a Type-2 forgery. This result has been proven for homo-
morphic MACs in [11]. Here we extend it to homomorphic signatures. For lack
of space, its proof appears in the full version.

Proposition 2. Let λ ∈ N be the security parameter, and let F be the class of
arithmetic circuits f : Fn → F over a finite field F of order p and such that
the degree of f is at most d, for d

p <
1
2 . Let HomSig be a signature scheme with

message space F, and let Eb be the event that the adversary returns a Type-b
forgery (for b = 1, 2, 3) in experiment HomUF-CMA. Then, if for any adversary



B we have that Pr[HomUF-CMAB,HomSig(λ) = 1∧E2] ≤ ε, then for any adversary
A producing a Type-3 forgery it holds Pr[HomUF-CMAA,HomSig(λ) = 1 ∧ E3] ≤
ε+ 2−λ.

Weakly-Secure Homomorphic Signatures. In our work we also consider a
weaker notion of unforgeability for homomorphic signatures. We define experi-
ment Weak-HomUF-CMAA,HomSig which is a variant of HomUF-CMAA,HomSig. The
difference is that before key generation A declares all the signing queries that it
will make (i.e., messages), but without necessarily specifying the data set names,
i.e., A outputs {mτ,j}τ∈L, for j = 1 to Q, where Q is the number of different
queried datasets. Once applying the above change, in the signing query phase, A
will only specify a data set ∆j and will receive signatures on {(∆j , τ,mτ,j)}τ∈L.
Also, notice that with this change, there are no Type-3 forgeries as the data sets
are always full.

While this security notion may look rather weak, in Section 3 we show a
generic way to convert any weakly-secure homomorphic signature for arithmetic
circuits of degree d to an adaptively secure one (for the same class of functions.)

2.3 Homomorphic Signatures with Efficient Verification

We propose the notion of homomorphic signatures with efficient verification,
which naturally extends to the public-key setting the analogous notion intro-
duced for homomorphic MACs in [4]. Roughly speaking, this property says that
the verification algorithm can be split in two phases. In an offline phase, given
the verification key vk and a labeled program P, one precomputes a concise
key vkP . The latter key can then be used to verify signatures (in the online
phase) w.r.t. P and any dataset ∆. Crucially, vkP can be reused an unbounded
number of times, and the verification cost of the online phase is much less than
running P. As in [4], this efficiency property is defined in an amortized sense,
so that verification is more efficient when the same program P is executed on
different data sets. This property enables the use of homomorphic signatures for
publicly-verifiable delegation of computation on outsourced data.

The formal definition follows.

Definition 3. Let HomSig = (KeyGen,Sign,Ver,Eval) be a homomorphic signa-
ture scheme for multi-labeled programs. HomSig satisfies efficient verification if
there exist two additional algorithms (VerPrep,EffVer) such that:

VerPrep(vk,P): on input the verification key vk and a labeled program P =
(f, τ1, . . . , τn), this algorithm generates a concise verification key vkP . We
stress that this verification key does not depend on any data set identifier ∆.

EffVer(vkP , ∆,m, σ): given a verification key vkP , a data set identifier ∆, a
message m ∈ M and a signature σ, the efficient verification algorithm out-
puts 0 (reject) or 1 (accept).

The above algorithms are required to satisfy the following two properties:

Correctness. Let (sk, vk)
$← KeyGen(1λ) be honestly generated keys, and

(P∆,m, σ) be any program/message/signature tuple with P∆ = (P, ∆) such



that Ver(vk,P∆,m, σ) = 1. Then, for every vkP
$← VerPrep(vk,P), EffVer(vkP ,

∆,m, σ) = 1 holds with all but negligible probability.

Amortized Efficiency. Let P∆ = (P, ∆) be a program, let (m1, . . . ,mn) ∈
Mn be any vector of inputs, and let t(n) be the time required to compute P(m1,
. . . ,mn). If vkP←VerPrep(vk,P), then the time required for EffVer(vkP , ∆,m, τ)
is t′ = o(t(n)).

Notice that in our efficiency requirement, we do not include the time needed to
compute vkP . This is justified by the fact that, being vkP independent of ∆,
the same vkP can be re-used in many verifications involving the same labeled
program P but many different ∆. Namely, the cost of computing vkP is amortized
over many verifications of the same function on different data sets.

3 From Weakly-Secure to Adaptive-Secure Homomorphic
Signatures

In this section we show how to convert a weakly-secure homomorphic signature
that works for arithmetic circuits of degree k, into an adaptive-secure one sup-
porting the same class of functionalities. The only restriction is that the message
space is expected to be some finite field, e.g., Zp for a prime p, that does not
depend on the secret key. In the full version we show how to extend these ideas to
the case where the messages and the polynomials supported by the homomorphic
signature scheme are defined over the integers.

The basic idea behind the conversion is to interpret the message one wants
to sign as the free term of a random degree-1 (univariate) polynomial t(z) de-
fined over a finite field. Next, rather than signing m, one signs (k + 1) points
of this polynomial, e.g., t(1), . . . , t(k + 1), by using (k + 1) different secret keys.
To homomorphically evaluate a function over such signatures, one executes the
Eval algorithm in a point-wise fashion. Interestingly, the homomorphic proper-
ties of the underlying signature scheme remains preserved because of analogous
properties of polynomials. The formal description of the scheme follows.

Let HomSig = (KeyGen,Sign,Eval,Ver) be a weakly-secure scheme with mes-
sage space Zp, our (adaptive-secure) homomorphic signature HomSig∗ = (KeyGen∗,
Sign∗,Eval∗,Ver∗) works as follows.

KeyGen∗(1λ, k,L). Let λ be the security parameter, k ∈ N+ be a constant denot-
ing the bound on the degree of the supported polynomials, and L ⊂ {0, 1}∗
be a set of admissible labels L = {τ1, . . . , τN}, for some N = poly(λ). The
algorithms runs (k + 1) times KeyGen(1λ, k,L). Denoting by (vki, ski) the
public key/secret key pair obtained from the i-th execution of KeyGen, the
algorithm outputs sk = (sk1, . . . , skk+1), vk = (vk1, . . . , vkk+1). The message
space M is Zp

Sign∗(sk, ∆, τ,m). The signing algorithm takes as input the secret key sk =
(sk1, . . . , skk+1), a data set identifier ∆ ∈ {0, 1}∗, a label τ ∈ L and a message
m ∈ Zp. The signing procedure consists of two main steps. First it generates
a random degree-1 (univariate) polynomial t(z) such that t(0) = m ∈ Zp.



Second, for i = 1, . . . , k + 1, it signs t(i) using σi
$← Sign(ski, ∆, τ, t(i)). In

other words, each t(i) is signed with respect to a different signing key ski.
The signing algorithm returns σ = ((σ1, t(1)), . . . , (σk+1, t(k + 1)).

Eval∗(vk, f,σ). The public evaluation algorithm takes as input the public key
vk, an arithmetic circuit f : Znp → Zp and a vector σ of n signatures

σ(1), . . . , σ(n) such that σ(i) is a (k+1)-tuple ((σ
(i)
1 , t(i)(1)), . . . , (σ

(i)
k+1, t

(i)(k+
1)). Eval∗ computes a signature σ = ((σ1, t(1)), . . . , (σk+1, t(k+1))), by com-

puting σi ← Eval(vki, f, (σ
(1)
i , . . . , σ

(n)
i )) and t(i)←f(t(1)(i), . . . , t(n)(i)).

Ver∗(vk,P∆,m, σ). Let P∆ = ((f, τ1, . . . , τn), ∆) be a multi-labeled program
such that f : Znp → Zp is an arithmetic circuit of degree d ≤ k. Let m ∈ Zp
and σ = ((σ1, t(1)), . . . , (σk+1, t(k + 1)).
First of all, Ver∗ checks that the signatures on all the values t(i) are correct.
To do so, it runs bi←Ver(vki,P∆, t(i), σi), ∀i = 1, . . . , k + 1. If b1 = . . . =
bk+1 = 1 Ver∗ proceeds to the next step, otherwise it stops and returns 0.
So, if the values t(i) in the signature are valid, Ver∗ uses these values to
interpolate a polynomial t(z) of degree (at most) k. More precisely, this is
done as follows: if the degree of the arithmetic circuit f is k, t(z) is inter-
polated using all the t(i)’s; if, on the other hand, f is of degree d < k, the
algorithm first interpolates t(z) using t(1), . . . , t(d+ 1) and then checks that
t(z) is correct with respect to t(d + 2), . . . , t(k + 1).5 Finally, Ver∗ checks
whether t(0) = m or not. Again, if any of the above tests fail the algorithm
outputs 0, otherwise it outputs 1.

To complete the description of HomSig∗ we give the algorithms for efficient
verification:

VerPrep∗(vk,P). Let P = (f, τ ) be a labeled program for an arithmetic circuit
f ∈ Znp → Zp with labels τ = (τ1, . . . , τn). For i = 1 to (k+ 1) the algorithm

runs vk
(i)
P = VerPrep(vki,P) and returns the efficient verification key vkP =

(vk
(1)
P , . . . , vk

(k+1)
P ).

EffVer∗(vkP , ∆,m, σ). Let (σ = ((σ1, t(1)), . . . , (σ(k+1), t(k + 1)). For i = 1 to

(k+ 1), the online verification algorithm runs bi←EffVer(vk
(i)
P , ∆, t(i), σi). If

the t(i)’s correctly interpolate to m and ∧k+1
i=1 bi = 1, output 1. Otherwise

output 0. Notice that if the EffVer provides efficient verification, then EffVer∗

has efficient verification as well.

In the following theorem (its proof is in the full version), we show that if
HomSig is a weakly-secure scheme, our transformation yields an adaptive-secure
homomorphic signature.

Theorem 1. If HomSig is a weakly-secure homomorphic signature scheme for
arithmetic circuits of degree d ≤ k then HomSig∗ is an adaptive-secure homo-
morphic signature scheme for the same class of circuits.

5 This is done by simply recomputing the interpolated polynomial on points (d +
2), . . . , (k + 1).



4 A Weakly-Secure Homomorphic Signature
In this section we describe our construction of homomorphic signatures with ef-
ficient verification from leveled multilinear maps. When working with 2k-linear
maps, our scheme can support the evaluation of arithmetic circuits of degree
k. The scheme presented in this section is proven weakly-secure under the AP-
MDH assumption (Definition 1). This construction can then be turned into an
adaptive-secure scheme by either applying our generic transformation of Section
3, or by tailoring our generic technique to this scheme.

Here we describe the scheme using the abstraction of leveled multilinear
maps. A discussion about implementing the scheme with graded encodings is
given later in this section and more details appear in the full version.

Without loss of generality our scheme works with arithmetic circuits in which
addition gates take inputs of the same degree. Notice that any arithmetic circuit
f : Fn → F of degree d can be converted into another circuit f̃ : Fn+1 → F of the
same degree d such that f̃ can compute the same function of f . The idea of the
transformation is very simple: one first adds to f̃ (say at the end) one additional
input wire, labeled by u; then, whenever there is an addition gate taking inputs
x1, x2 such that deg(x1) < deg(x2), one multiplies x1 by u as many times as
needed to obtain a wire x′1 such that deg(x1) = deg(x2). Finally, by assigning 1 to
the input labeled by u, it is easy to see that f̃(m1, . . . ,mn, 1) = f(m1, . . . ,mn).
From now on we assume that the circuits used in our scheme have this form.

In what follows we provide a full-detailed description of our construction,
which is rather intricate. We refer the reader to the introduction for a more
intuitive explanation of our ideas.

To build our scheme we use a regular signature scheme Σ′ = (KeyGen′,Sign′,
Ver′), a pseudorandom function F : K × {0, 1}∗ → Z2

p with key space K, and
an implementation of leveled multilinear groups whose description is generated
by G. Our homomorphic signature scheme HomSig = (KeyGen,Sign,Eval,Ver)
works as follows.

KeyGen(1λ, k,L). Let λ be the security parameter, k ∈ N+ be a constant denot-
ing the bound on the degree of the supported polynomials, and L ⊂ {0, 1}∗
be a set of admissible labels L = {u} ∪ {τ1, . . . , τN}, for some N = poly(λ).
Here “u” (which stands for “unity”) is a special additional label that is
used for the modified arithmetic circuits in which addition gates always take
in homogenous monomials. The set of labels is implicitly defining the maxi-
mum data set size N supported by the scheme. The key generation algorithm
works as follows.

– Generate a key pair (sk′, vk′)
$← KeyGen′(1λ) for the regular signature

scheme.
– Choose a random seed K

$← K for the PRF FK : {0, 1}∗ → Z2
p.

– Run G(1λ, 2k) to generate the description of (2k)-linear groups G1, . . . ,G2k

of order p, where p is a prime number of roughly λ bits. In the scheme, we
use group elements with subscripts to denote the group they live in. Also,
for an h1 ∈ G1, we denote by hi ∈ G1 the i-fold graded multiplication of
h1. Analogous notation is used for other group elements.



– Choose random elements g1, h1
$← G1 as well as N + 1 random values

Rτ
$← G1, ∀τ ∈ L.

Finally, output sk = (sk′,K), vk = (vk′, g1, h1, {Rτ}τ∈L), and let the message
space M be Zp.

Sign(sk, ∆, τ,m). The signing algorithm takes as input the secret key sk =
(sk′,K), a data set identifier ∆ ∈ {0, 1}∗, a label τ ∈ L and a message
m ∈ Zp. The signing procedure consists of two main steps. First, it uses
the pseudorandom function to (re-)derive some common parameters for the
dataset ∆ and signs the public part of these parameters using the regular
signature scheme. Second, it uses the secret part of the parameters for ∆ to
create the homomorphic component of the signature which is the one strictly
bound to (∆, τ,m). The latter procedure is the core of our technique. We
describe it below as a separate subroutine.
– HomSign(vk, a, b, τ,m): this algorithm simply computes Λ1 = (Rτh

−m
1 )b,

Γ1 = Λa1 , and returns ν = (m,Λ1, Γ1).
The full signing algorithm proceeds as follows.
1. Derive two integers (a, b)←FK(∆) using the pseudorandom function, and

compute A1 = ga1 , B1 = gb1, C1 = gab1 , T1 = ha1 , U1 = hab1 .
2. Run the routine HomSign(vk, a, b, u, 1) described above, to compute a

triple ν∆,u = (1, Λu, Γu) ∈ Zp × G2
1. The tuple ν∆,u is essentially the

homomorphic component of a signature of “1” with respect to the special
label “u” and for the dataset ∆. This signature ν∆,u is needed to perform
the homomorphic evaluations on the modified circuits.

3. Let pp∆ = (∆,A1, B1, C1, T1, U1, ν∆,u) be the public parameters of dataset
∆. Then sign pp∆ using the regular signature scheme, i.e., compute
σ∆←Sign′(sk′, pp∆).

4. Run HomSign(vk, a, b, τ,m) to generate a tuple ν = (m,Λ1, Γ1) ∈ Zp ×
G2

1.
Finally, the signing algorithm returns the signature σ = (pp∆, σ∆, ν). Ob-
serve that when generating many signatures for the same dataset ∆ the steps
1–3 can be executed only once.

Eval(vk, f,σ). The public evaluation algorithm takes as input the public key
vk, an arithmetic circuit f : Znp → Zp and a vector σ of n signatures

σ(1), . . . , σ(n) such that σ(i) = (pp
(i)
∆ , σ

(i)
∆ , νi) for i = 1, . . . , n. Eval computes

a signature σ = (pp∆, σ∆, ν) as follows.

First, set pp∆ = pp
(1)
∆ and σ∆ = σ

(1)
∆ . Namely, we take the common parame-

ters of the first signature in the vector. Observe that our notion of evaluation
correctness works for signatures in the same data set, i.e., all these signatures
are supposed to share the same parameters.
In the second stage, Eval computes the homomorphic component ν by ho-
momorphically evaluating the circuit f over the values {νi}ni=1. To do so, it
proceeds over f gate by gate.
At every gate fg, given two values ν1, ν2 (or a value ν1 and a constant
c ∈ Zp), Eval runs the algorithm ν←GateEval(vk, pp∆, fg, ν1, ν2) described
below that returns a new value ν, which is in turn passed on as input to the



next gate in the circuit. When the computation reaches the last gate of the
circuit f , Eval outputs the value ν obtained by running GateEval on such last

gate. On input ν1 = (m1, Λ
(1)
i , Γ

(1)
i ) ∈ Zp × G2

i and ν2 = (m2, Λ
(2)
j , Γ

(2)
j ) ∈

Zp × G2
j , GateEval(vk, pp∆, fg, ν1, ν2) proceeds as follows. For an addition

gate f+, it computes m = m1 + m2, Λi = Λ
(1)
i · Λ

(2)
i , and Γi = Γ

(1)
i · Γ (2)

i .
For a multiplication-by-constant gate f× and constant c ∈ Zp, it computes

m = c ·m1, Λi = (Λ
(1)
i )c, and Γi = (Γ

(1)
i )c. For a multiplication gate f×, it

computes m = m1 ·m2, Λd = e(Λ
(1)
i , Γ

(2)
j ) · e(Λ(1)

i , Um2
j ) · e(Um1

i , Λ
(2)
j ), and

Γd = e(Γ
(1)
i , Γ

(2)
j ) · e(Γ (1)

i , Um2
j ) · e(Um1

i , Γ
(2)
j ).

Ver(vk,P∆,m, σ). Let P∆ = ((f, τ1, . . . , τn), ∆) be a multi-labeled program such
that f : Znp → Zp is an arithmetic circuit of degree d ≤ k. Let m ∈ Zp and
σ = (pp∆, σ∆, ν) be a signature with ν = (m,Λd, Γd) ∈ Zp × G2

d. First, run
Ver′(vk′, pp∆, σ∆) to check that σ∆ is a valid signature on pp∆ for the same
∆ taken as input by the verification algorithm. If σ∆ is valid, then proceed
as follows. Otherwise, stop and return 0 (reject).
Use the graded maps to evaluate the circuit f on the values (Rτ1 , . . . , Rτn).
Namely, replace additions in f (for inputs of degree i) by the group oper-
ation in Gi, whereas a multiplication in f , with inputs of degree i and j
respectively, is replaced by evaluating the graded map ei,j . We compactly
denote this operation as R = f(Rτ1 , . . . , Rτn) ∈ Gd. Next, output 1 only if
the following two equations are satisfied:

e(R · h−md , ga
d−1bd

d ) = e(Λd, gd) (1)

e(Λd, A1) = e(Γd, g1) (2)

Finally, to complete the description of HomSig we give the algorithms for efficient
verification:

VerPrep(vk,P). Let P = (f, τ ) be a labeled program for an arithmetic circuit
f ∈ Znp → Zp with labels τ = (τ1, . . . , τn). The algorithm computes R =

f(Rτ1 , . . . , Rτn) ∈ Gd, hd, ga
d−1bd

d = e(Cd−1, B1), and returns the concise

verification key vkP = (vk′, g1, hd, g
ad−1bd

d , R).
EffVer(vkP , ∆,m, σ). The online verification is basically the same as Ver except

that the values R, hd, g
ad−1bd

d have been already computed in the off-line
phase and are now part of the online algorithm’s input. Notice that the
computational complexity of the online verification depends only on the com-
plexity of computing the group operations and the bilinear maps in equations
(1), (2). Using current graded encoding schemes, the cost essentially becomes
poly(k, logN) which is much less than the cost of evaluating an N -variate
polynomial of degree k.

It is easy to see that running the combination of VerPrep and EffVer produces
the same result as running Ver.

Very intuitively, the correctness of the scheme follows by that, for any opera-
tion +,×, GateEval preserves the form of the signatures, i.e., Λi = (Rh−mi )a

i−1bi

and Γi = Λai .



In the following theorem we prove that HomSig is a weakly-secure homomor-
phic signature scheme. For lack of space, the proof of security and a formal proof
of correctness appear in the full version.

Theorem 2. If Σ′ is an unforgeable signature scheme, F is a pseudorandom
function, and G is the generator of 2k-linear groups such that the 2k-APMDH
assumption holds for G, then HomSig is a weakly-secure homomorphic signature
scheme for arithmetic circuits of degree k.

Achieving Adaptive Security. In order to achieve adaptive security for the
scheme described above, we discuss three different approaches. The first one is
to apply our generic transformation of Section 3. In the transformed scheme,
both public/secret keys and the signatures are longer by a factor of d, that for
the class of functions considered in this work is assumed to be independent of
n. As a second possibility, we exploit the specific structure of our weakly-secure
scheme, and show a more optimized transformation which avoids increasing the
size of public and secret keys, i.e., they remain of the same size as in HomSig.
Finally, as a third possibility, we show that, under a stronger, interactive variant
of the APMDH assumption, the scheme HomSig is by itself adaptive-secure. The
optimized transformation and the adaptive security of HomSig appear in the full
version of our work.

Instantiating the Scheme with Graded Encodings. In the full version of
our paper we show how to translate the scheme presented above to the setting
of graded encodings [20,17]. Here we discuss the changes incurred by our scheme
to accommodate the differences between multilinear maps and (known) graded
encoding schemes. Recall that graded encodings can be randomized. In addition:
(1) the ring R in which the encoded values live is not public, i.e., the order p
of the encoding sets Si may not be publicly known (although a lower bound
on p is public); (2) one cannot (publicly) encode arbitrary elements “in the
exponent”; (3) in order for the zero-test to work properly, one can support only a
bounded number of operations over the encodings. To address the first difference,
our scheme signs messages that are integers within a certain bound B, and as
the class of admissible functions we consider N -variate polynomials of constant
degree k over the integers. We can then bound the size of all reachable outputs
(obtained by applying an admissible f on integers in ZB) – say it is B∗ – and
finally we instantiate the parameters of the graded encoding scheme accordingly
so that the order p of the ring is such that p > B∗. For the second difference,
we note that graded encodings allow one to encode arbitrary elements with
the knowledge of a trapdoor which, in our case, can be made available to the
signer. In the key generation we let the signer use this procedure to publish
level-1 encodings of the logB∗ powers of 2 (i.e., the equivalent of h2

j

1 ). This way,
upon verification, an encoding of m (i.e., hmd ) can be obtained by adding up the
encodings of the appropriate powers of 2, according to the bit-decomposition of
m (i.e., hmd = e(

∏
j:mj=1 h

2j

1 , hi−1)). This operation can be done by “consuming
the noise” of at most logB∗ additions. To address the third difference, we note
that the solutions to (1) and (2) already provide a bound on the maximum



number of operations (additions and multiplications) that will be performed
over the encodings when running the homomorphic evaluation algorithm. Using
such bounds it is then possible to take appropriately large parameters of the
graded encodings that can accommodate this number of operations.

Acknowledgements. The research of Dario Fiore has been partially sup-
ported by the European Commission’s Seventh Framework Programme Marie
Curie Cofund Action AMAROUT II (grant no. 291803), and by the Madrid
Regional Government under project PROMETIDOS-CM (ref. S2009/TIC1465).
The work of Bogdan Warinschi has been supported in part by ERC Advanced
Grant ERC-2010-AdG-267188-CRIPTO, by EPSRC via grant EP/H043454/1,
and has received funding from the European Union Seventh Framework Pro-
gramme (FP7/2007-2013) under grant agreement 609611 (PRACTICE).

References

1. S. Agrawal and D. Boneh. Homomorphic MACs: MAC-based integrity for network
coding. In M. Abdalla, D. Pointcheval, P.-A. Fouque, and D. Vergnaud, editors,
ACNS 09, volume 5536 of LNCS, pages 292–305. Springer, June 2009.

2. N. Attrapadung and B. Libert. Homomorphic network coding signatures in the
standard model. In D. Catalano, N. Fazio, R. Gennaro, and A. Nicolosi, editors,
PKC 2011, volume 6571 of LNCS, pages 17–34. Springer, Mar. 2011.

3. N. Attrapadung, B. Libert, and T. Peters. Computing on authenticated data:
New privacy definitions and constructions. In X. Wang and K. Sako, editors,
ASIACRYPT 2012, volume 7658 of LNCS, pages 367–385. Springer, Dec. 2012.

4. M. Backes, D. Fiore, and R. M. Reischuk. Verifiable delegation of computation on
outsourced data. In A.-R. Sadeghi, V. D. Gligor, and M. Yung, editors, ACM CCS
13, pages 863–874. ACM Press, Nov. 2013.

5. G. Barthe, E. Fagerholm, D. Fiore, J. Mitchell, A. Scedrov, and B. Schmidt. Auto-
mated analysis of cryptographic assumptions in generic group models. In Advances
in Cryptology – CRYPTO 2014, LNCS. Springer, 2014.

6. S. Benabbas, R. Gennaro, and Y. Vahlis. Verifiable delegation of computation over
large datasets. In P. Rogaway, editor, CRYPTO 2011, volume 6841 of LNCS, pages
111–131. Springer, Aug. 2011.

7. N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. Recursive composition and
bootstrapping for SNARKS and proof-carrying data. In D. Boneh, T. Roughgar-
den, and J. Feigenbaum, editors, 45th ACM STOC, pages 111–120. ACM Press,
June 2013.

8. D. Boneh, D. Freeman, J. Katz, and B. Waters. Signing a linear subspace: Signature
schemes for network coding. In S. Jarecki and G. Tsudik, editors, PKC 2009,
volume 5443 of LNCS, pages 68–87. Springer, Mar. 2009.

9. D. Boneh and D. M. Freeman. Homomorphic signatures for polynomial functions.
In K. G. Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 149–
168. Springer, May 2011.

10. D. Catalano and D. Fiore. Practical homomorphic MACs for arithmetic circuits.
In T. Johansson and P. Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of
LNCS, pages 336–352. Springer, May 2013.



11. D. Catalano, D. Fiore, R. Gennaro, and L. Nizzardo. Generalizing homomorphic
macs for arithmetic circuits. In PKC 2014: 17th International Workshop on Theory
and Practice in Public Key Cryptography, LNCS. Springer, 2014.

12. D. Catalano, D. Fiore, R. Gennaro, and K. Vamvourellis. Algebraic (trapdoor)
one-way functions and their applications. In A. Sahai, editor, TCC 2013, volume
7785 of LNCS, pages 680–699. Springer, Mar. 2013.

13. D. Catalano, D. Fiore, and B. Warinschi. Adaptive pseudo-free groups and appli-
cations. In K. G. Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS,
pages 207–223. Springer, May 2011.

14. D. Catalano, D. Fiore, and B. Warinschi. Efficient network coding signatures in the
standard model. In M. Fischlin, J. Buchmann, and M. Manulis, editors, PKC 2012,
volume 7293 of LNCS, pages 680–696. Springer, May 2012.

15. K.-M. Chung, Y. Kalai, and S. P. Vadhan. Improved delegation of computation
using fully homomorphic encryption. In T. Rabin, editor, CRYPTO 2010, volume
6223 of LNCS, pages 483–501. Springer, Aug. 2010.

16. K.-M. Chung, Y. T. Kalai, F.-H. Liu, and R. Raz. Memory delegation. In P. Ro-
gaway, editor, CRYPTO 2011, volume 6841 of LNCS, pages 151–168. Springer,
Aug. 2011.

17. J.-S. Coron, T. Lepoint, and M. Tibouchi. Practical multilinear maps over the
integers. In R. Canetti and J. A. Garay, editors, CRYPTO 2013, Part I, volume
8042 of LNCS, pages 476–493. Springer, Aug. 2013.

18. D. Fiore and R. Gennaro. Publicly verifiable delegation of large polynomials and
matrix computations, with applications. In T. Yu, G. Danezis, and V. D. Gligor,
editors, ACM CCS 12, pages 501–512. ACM Press, Oct. 2012.

19. D. M. Freeman. Improved security for linearly homomorphic signatures: A generic
framework. In M. Fischlin, J. Buchmann, and M. Manulis, editors, PKC 2012,
volume 7293 of LNCS, pages 697–714. Springer, May 2012.

20. S. Garg, C. Gentry, and S. Halevi. Candidate multilinear maps from ideal lattices.
In T. Johansson and P. Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of
LNCS, pages 1–17. Springer, May 2013.

21. R. Gennaro, C. Gentry, and B. Parno. Non-interactive verifiable computing: Out-
sourcing computation to untrusted workers. In T. Rabin, editor, CRYPTO 2010,
volume 6223 of LNCS, pages 465–482. Springer, Aug. 2010.

22. R. Gennaro, C. Gentry, B. Parno, and M. Raykova. Quadratic span programs
and succinct NIZKs without PCPs. In T. Johansson and P. Q. Nguyen, editors,
EUROCRYPT 2013, volume 7881 of LNCS, pages 626–645. Springer, May 2013.

23. R. Gennaro, J. Katz, H. Krawczyk, and T. Rabin. Secure network coding over the
integers. In P. Q. Nguyen and D. Pointcheval, editors, PKC 2010, volume 6056 of
LNCS, pages 142–160. Springer, May 2010.

24. R. Gennaro and D. Wichs. Fully homomorphic message authenticators. In K. Sako
and P. Sarkar, editors, ASIACRYPT 2013, Part II, volume 8270 of LNCS, pages
301–320. Springer, Dec. 2013.

25. A. Langlois, D. Stehle, and R. Steinfeld. GGHLite: More efficient multilinear maps
from ideal lattices. In Advances in Cryptology – Eurocrypt 2014, LNCS. Springer,
2014.

26. S. Micali. Computationally sound proofs. SIAM J. Comput., 30(4):1253–1298,
2000.

27. B. Parno, M. Raykova, and V. Vaikuntanathan. How to delegate and verify in
public: Verifiable computation from attribute-based encryption. In R. Cramer,
editor, TCC 2012, volume 7194 of LNCS, pages 422–439. Springer, Mar. 2012.


	Homomorphic Signatures with Efficient Verification for Polynomial Functions
	Introduction
	Preliminaries
	Leveled Multilinear Maps and Graded Encodings
	Homomorphic Signatures for Multi-Labeled Programs
	Homomorphic Signatures with Efficient Verification

	From Weakly-Secure to Adaptive-Secure Homomorphic Signatures
	A Weakly-Secure Homomorphic Signature


