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Abstract. Random oracles are powerful cryptographic objects. They
facilitate the security proofs of an impressive number of practical cryp-
tosystems ranging from KDM-secure and deterministic encryption to
point-function obfuscation and many more. However, due to an uninstan-
tiability result of Canetti, Goldreich, and Halevi (STOC 1998) random
oracles have become somewhat controversial. Recently, Bellare, Hoang,
and Keelveedhi (BHK; CRYPTO 2013 and ePrint 2013/424, August
2013) introduced a new abstraction called Universal Computational Ex-
tractors (UCEs), and showed that they suffice to securely replace ran-
dom oracles in a number of prominent applications, including all those
mentioned above, without suffering from the aforementioned uninstan-
tiability result. This, however, leaves open the question of constructing
UCEs in the standard model.
We show that the existence of indistinguishability obfuscation (iO) im-
plies (non-black-box) attacks on all the definitions that BHK proposed
within their UCE framework in the original version of their paper, in
the sense that no concrete hash function can satisfy them. We also show
that this limitation can be overcome, to some extent, by restraining the
class of admissible adversaries via a statistical notion of unpredictability.
Following our attack, BHK (ePrint 2013/424, September 2013), indepen-
dently adopted this approach in their work.
In the updated version of their paper, BHK (ePrint 2013/424, Septem-
ber 2013) also introduce two other novel source classes, called bounded
parallel sources and split sources, which aim at recovering the compu-
tational applications of UCEs that fall outside the statistical fix. These
notions keep to a computational notion of unpredictability, but impose
structural restrictions on the adversary so that our original iO attack
no longer applies. We extend our attack to show that indistinguishabil-
ity obfuscation is sufficient to also break the UCE security of any hash
function against bounded parallel sources. Towards this goal, we use the
randomized encodings paradigm of Applebaum, Ishai, and Kushilevitz
(STOC 2004) to parallelize the obfuscated circuit used in our attack,
so that it can be computed by a bounded parallel source whose sec-
ond stage consists of constant-depth circuits. BHK, in the latest version
of their paper (ePrint 2013/424, May 2014), have subsequently replace
bounded parallel sources with new source classes. We conclude by dis-
cussing the composability and feasibility of hash functions secure against
split sources.
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1 Introduction

Since their formal introduction in the seminal paper of Bellare and Rogaway [13],
random oracles have found extensive use across a wide spectrum of cryptographic
protocols. Their versatility has lead researchers to seek for a unified formaliza-
tion of their useful properties, hoping that such a definition could be eventu-
ally realized. Canetti, Goldreich, and Halevi [20] proposed such a definition, but
somewhat disappointingly, also proved a negative result which ruled out instanti-
ations of random oracles in arbitrary (perhaps artificial) cryptographic protocols
by any keyed hash functions. This negative result was subsequently extended in
a number of works [35,25,22,32,7,21].

UCE security. Bellare, Hoang, and Keelvedhi (BHK) [8,9,10,12] 1 revisited the
above question and formulated an attractive new security notion called Universal
Computational Extractor (UCE). They were able to apply their framework to
an interesting and diverse set of security goals, which included among other
things, security under key-dependent attacks, security under related-key attacks,
simultaneous hardcore bits, point-function obfuscation, garbling schemes, proofs
of storage, and deterministic encryption. Recently, Matsuda and Hanaoka [33]
used UCEs to also build CCA-secure public-key encryption schemes.

The UCE framework comes in two versions: a single-key version (UCE) and a
multi-key version (mUCE). For a keyed hash function H, single-key UCE security
is defined via a two-stage security game consisting of algorithms S and D, called
the source and the distinguisher, respectively. In the first stage, the source is
given access to an oracle Hash that, depending on a challenge bit b, implements
either a random oracle or the concrete hash function with a randomly chosen
key hk. The source terminates with some leakage L, which is then communicated
together with hk to the distinguisher D. The distinguisher’s goal is to guess the
bit b, i.e., guess whether the source interacted with the random oracle or the hash
function. The UCE advantage of the pair (S,D) is defined as the probability of
returning the correct answer scaled away from one-half. (The stronger multi-key
version is defined analogously by introducing Hash oracles for multiple keys and
providing the keys together with leakage to the distinguisher.) We summarize
this interaction schematically in Figure 1, and give the pseudocode in Figure 2.
We refer the reader to the original work for an excellent philosophical perspective
on this framework.

Without any restrictions UCE security cannot be achieved: the source can
simply leak one of its oracle queries together with the corresponding answer to
the distinguisher, which then can locally compute the hash value on the queried

1 Citation [8] refers to the CRYPTO 2013 proceedings version, [9] refers to its full
version on Cryptology ePrint Archive from August 2013 prior to communicating
our basic iO attack (presented in this paper), and [10] refers to the version from
September/October 2013, and [12] refers to the latest version from May 2014.
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Fig. 1: Schematic of the UCE
game.

Main UCES,DH (λ)

b←$ {0, 1}; hk←$ H.Kg(1λ)

L←$ S
Hash

(1
λ
)

b
′←$ D(1

λ
, hk, L)

return (b = b
′
)

Hash(x)

if T [x] = ⊥ then
if b = 1 then

T [x]← H.Ev(1λ, hk, x)

else T [x]←$ {0, 1}H.ol(λ)

return T [x]

Fig. 2: Pseudocode for the UCE game. Here H.ol(λ)
is a function which specifies the length of hash values.

point (the distinguisher knows the hash key) and compare it to the leaked hash
value. Thus, the source needs to be somehow restricted, and this restriction forms
the actual UCE definition: for a source class S we denote the UCE assumption
with sources restricted to S by UCE[S]. Prior to our work, BHK proposed two
source classes via unpredictability and reset security conditions, which in turn
gave rise to two notions called UCE1 and UCE2, respectively.

The UCE1 notion [8,9] is defined using an unpredictability game which re-
quires that when the source is run with a random oracle, its leakage does not
computationally reveal any of its queries. This is formalized by requiring that the
probability that an efficient predictor P can guess a query of S when given L is
negligible. Such a source is then called unpredictable, and leads to the following
definition of UCE1 security: a hash function is UCE1 secure if the advantage
of all efficient, unpredictable sources S, and all efficient distinguishers D in the
UCE game is negligible. The stronger notion of UCE2 security is defined anal-
ogously by requiring that the source satisfies the weaker requirement of reset
security.

Following our obfuscation-based attack (that we describe next and that we
communicated to BHK in August 2013 [11]), the UCE1 and UCE2 notions were
revised in [10] and additional restrictions on sources were imposed. We will be
discussing these shortly, after presenting our first attack.

An obfuscation-based attack on UCE1. Our first attack, described in Section 3,
targets the original UCE notions UCE1 and UCE2, and is based on a recent
breakthrough in the construction of obfuscation schemes. Garg et al. [24] give
a candidate construction for the so-called notion of indistinguishability obfus-
cation [6] based on intractability assumptions related to multi-linear maps. Our
attack shows that any UCE1 construction would need to falsify one of these as-
sumptions. Put differently, if indistinguishability obfuscation exists, then UCE1
security (and hence also the stronger UCE2 security) cannot be achieved.

Roughly speaking, a secure indistinguishability obfuscation (iO) scheme as-
sures that the obfuscations of any two circuits that implement the same function
are computationally indistinguishable. Our attack uses this primitive as follows.
The source picks a random point x, and queries it to Hash to get y. It then
prepares an iO of the Boolean circuit (H(·, x) = y), and leaks it to the distin-
guisher as L. The distinguisher now plugs the hash key hk into this obfuscated



circuit and returns whatever the circuit outputs. It is easy to see that the dis-
tinguisher recovers the challenge bit correctly with an overwhelming probability.
What is less clear, however, is whether or not the source is unpredictable. Recall
that the unpredictability game operates with respect to a random oracle. Let
us now assume, for simplicity, that |hk| < |y|/2 (we will not need to rely on
this assumption in our full attack). For any x, there are at most 2|hk| possible
values for H(hk, x), and a random y would be one of them with probability at
most 2|hk|/2|y| < 2−|y|/2, which is negligible. Consequently, the obfuscated cir-
cuit implements the constant zero function with overwhelming probability. This
allows us to apply the security of the obfuscator to conclude the attack: the
obfuscated circuit does not leak any more information about x than the zero
function would, and since x was chosen randomly, it remains hidden from the
view of any efficient predicator.

Salvaging UCE. Assuming the existence of indistinguishability obfuscation, we
ask to what extent UCE can be salvaged. That is, do there exist other UCE as-
sumptions that allow recovering (some of) the originally presented applications?
We partially salvage UCEs by modifying the unpredictability condition and let-
ting the predictor run in unbounded time. This statistical notion of unpredictabil-
ity restricts the class of admissible sources such that the source implementing
the iO attack falls outside it: an unbounded predictor can reverse-engineer the
computationally secure obfuscator. This modification is validated by the work
of Goldwasser and Rothblum [26] who show that a statistical analogue of iO is
impossible unless the polynomial hierarchy collapses to its second level. As we
discuss in Section 3.2, a large number of interesting applications (such as KDM
and RKA security) survives under this definition.

After communicating our attack, BHK independently suggested the statisti-
cal patch [10]. In the revised version of their paper [10], they recast their proofs
of security to rely only on statistical unpredictability for all applications where
this is possible. We refer to [10] for details on the applications that can be sal-
vaged by statistical UCE1. As mentioned earlier, not all applications can be
salvaged by statistical unpredictability. Hence, BHK also present two additional
UCE notions based on computational unpredictability, which together with the
statistical patch allowed them to fully recover their original set of applications
in light of the aforementioned iO attack. We discuss these next.

Computational UCE. Some applications discussed in [8,9], specifically hardcore
functions, deterministic public-key encryption (D-PKE), message-locked encryp-
tion (MLE), and OAEP rely on computational unpredictability in an intrinsic
way; that is, the reduction only works if the predictor is bound to run in poly-
nomial time. For instance, the source presented in [8,9] for D-PKEs produces
leakage which contains encryptions of messages that have been sent to the Hash
oracle. An unbounded predictor can easily decipher the ciphertexts and predict
Hash queries of the source.

Following the above attack, in the updated version of their paper, BHK [10]
propose two novel UCE notions by imposing additional restrictions on the way



the source operates, while keeping the original computational unpredictability
game. The goal here is that these restrictions are sufficiently strong to circum-
vent our attack, but weak enough so that successful security reductions can be
established.

To recover D-PKEs, MLEs, and OAEP, BHK propose a new UCE assumption
based on computational unpredictability restricted to so-called bounded parallel
sources. Such a source splits into two stages S0 and S1. In the first phase, algo-
rithm S0 prepares a vector of strings. In the second phase, independent instances
of S1 for each entry in the previously prepared vector are run in parallel. Each
instance gets access to the Hash oracle and their combined outputs make up the
final leakage. To circumvent our attack two restrictions on S1 are imposed: its
runtime and number of Hash queries (per instance). The idea here is that com-
puting the obfuscation of a hash function is “too costly,” and hence the attack
cannot be mounted.

In Section 4 we show that this refined notion still falls prey to a similar, but
somewhat more complex attack. The idea is to split the iO attack into two stages
consisting of a high-complexity first stage and a parallelizable second stage. To
this end, we use the powerful randomized encodings paradigm of Applebaum,
Ishai, and Kushilevitz [2] to bring down the complexity of the second stage

of the attack. The randomized encoding f̂(x; r) of f(x) is simply an encoding
of f(x) such that a decoder dec can retrieve the original value f(x) from it,

i.e., dec(f̂(x; r)) = f(x). In addition, a randomized encoding specifies an effi-

cient simulator Sim such that for all x the distributions f̂(x; r) over uniformly
chosen r and Sim(f(x)) are computationally indistinguishable. These properties
combined allow us to show that we can adapt our original attack such that the
source does not leak the obfuscated circuit but rather a randomized encoding of
it. This alone, however, is still not enough for an attack with the restrictions of
bounded parallel sources. Finally, we utilize a special form of decomposable ran-
domized encodings [31] to realize an attack. Such encodings have the property

that each output bit of f̂(x; r) depends on at most a single bit of x (but possi-
bly on the entire string r). The randomized encoding of Applebaum, Ishai, and
Kushilevitz [3] is decomposable and supports all functions in P/poly. We show
how to use such an encoding scheme to split the computation of the encoding
into two phases: a complex first preprocessing phase which does not depend on
the actual input and a very simple second stage which can be parallelized and
where each parallel instance essentially only has to drop one of two bits. We
show that this second stage (which will correspond to S1) can be implemented
by constant-depth circuits consisting only of very few gates. This application of
decomposable randomized encodings could be of interest also in other scenar-
ios where efficiently computing an encoding is important and preprocessing is
possible. In the latest version of their paper [12] BHK has removed bounded
parallel sources and replaced them by new source classes to recover the original
applications.

While bounded parallel sources suffice to also recover simultaneous hard-
core functions, BHK propose a second, simpler UCE assumption based on split



Main UCES,DH (λ)

b←$ {0, 1}; hk←$ H.Kg(λ)

L←$ S
Hash

(1
λ
)

b
′←$ D(1

λ
, hk, L)

return (b = b
′
)

Hash(x)

if T [x] = ⊥ then
if b = 1 then

T [x]← H.Ev(1λ, hk, x)

else T [x]←$ {0, 1}H.ol(λ)

return T [x]

Main PredPS (λ)

done← false; Q← ∅
L←$ S

Hash
(1
λ
); done← true

Q
′←$ P

Hash
(1
λ
, L)

return (Q ∩Q′ 6= ∅)

Hash(x)

if done = false then
Q← Q ∪ {x}

if T [x] = ⊥ then

T [x]←$ {0, 1}H.ol(λ)

return T [x]

Main ResetRS (λ)

Dom← ∅; L←$ S
Hash

(1
λ
);

b←$ {0, 1}
if b = 0 then

for x ∈ Dom do

T [x]←$ {0, 1}H.ol(λ)

b
′←$ R

Hash
(1
λ
, L);

return (b
′
= b)

Hash(x)

Dom← Dom ∪ {x}
if T [x] = ⊥ then

T [x]←$ {0, 1}H.ol(λ)

return T [x]

Fig. 3: The UCE security game together with the unpredictability and reset-security
games.

sources. A split source consists of two parts S0 and S1, in which each part in-
dependently contributes to the leakage sent to the distinguisher. The idea is
that none of these sub-sources gets direct access to the Hash oracle. Rather,
algorithm S0 defines the queries (without access to any hash values) and algo-
rithm S1 gets to see the hash values but not the queries. As for our attack, note
that the associated source needs to know both the query x and its hash value
y ← Hash(x) in order to compute the circuit (H(·, x) = y). We discuss split
sources in a larger context and present necessary conditions for a hash function
to achieve split-source UCE security in the full version of this work [19]. For
example, we show that in order to prove the security of a hash function H, one
needs to show that the function that maps x to the obfuscation of the circuit
H(·, x) must not be one way. We also discuss intricacies regarding composition
of such functions with one-way permutations, and show that such a composition
does not harm standard notions such as collision resistance, pseudorandomness
(and indeed statistical UCE1 security) but provably fails for split-source security.
We present this discussion in the full version.

To conclude, although UCEs strengthen our confidence in the security of
many practical schemes in the random-oracle model, our attacks highlight the
need for a thorough assessment of definitional choices that can be made within
the UCE framework. This assessment, in addition to instantiability questions,
should also include studying concrete instantiations of UCEs such as the SHA
family [34] in HMAC mode, as suggested by BHK [8].

2 Preliminaries

Notation. We denote by λ ∈ N the security parameter, which is implicitly given
to all algorithms (if not explicitly stated so) in the unary representation 1λ. By
{0, 1}` we denote the set of all bit-strings of length `, and by {0, 1}∗ the set of all
bit-strings of finite length. For two strings x1, x2 ∈ {0, 1}∗ their concatenation is



written as x1‖x2. The length of x is denoted by |x| and x[i] is the i-th bit of x.
For a finite set X, we denote the action of sampling x uniformly at random from
X by x←$ X, and denote the cardinality of X by |X|. Algorithms are assumed
to be randomized, unless otherwise stated. We call an algorithm efficient or
PPT if it runs in time polynomial in the security parameter. By y ← A(x; r)
we denote that y was output by algorithm A on input x and randomness r.
If A is randomized and no randomness is specified, then we assume that A is
run with freshly sampled uniform random coins, and write this is as y←$ A(x).
We often refer to algorithms, or tuples of algorithms, as adversaries. We say a
function negl(λ) is negligible if |negl(λ)| ∈ λ−|ω(1)|. In this paper we deploy the
game-playing framework of Bellare and Rogaway [14] with the augmented game
procedures described in [36].

Syntax of hash functions. In line with [8], we consider the following formaliza-
tion of hash functions. A function family H is a five tuple of PPT algorithms
(H.Kg,H.Ev,H.kl,H.il,H.ol) as follows. The algorithms H.kl, H.il, and H.ol are
deterministic and on input 1λ define the key length, input length, and output
lengths, respectively. (We have adopted the simplified notion from [8] here.) The
key generation algorithm H.Kg gets the security parameter 1λ as input and out-
puts a key hk ∈ {0, 1}H.kl(λ). The deterministic evaluation algorithm H.Ev takes
as input the security parameter 1λ, a key hk, a message x ∈ {0, 1}H.il(λ) and
generates a hash value H.Ev(1λ, hk, x) ∈ {0, 1}H.ol(λ).

UCE game. Let H = (H.Kg,H.Ev,H.kl,H.il,H.ol) be a hash function and (S,D)
be a pair of PPT algorithms. We define the UCE advantage of (S,D) against H
through

AdvuceH,S,D(λ) := 2 · Pr
[

UCES,DH (λ)
]
− 1 ,

where game UCES,DH (λ) is shown in Figure 3 on the left.

Unpredictability. A source S is called computationally unpredictable if the ad-
vantage of any PPT predictor P defined by

AdvpredS,P (λ) := Pr
[
PredPS (λ)

]
is negligible, where game PredPS (λ) is shown in Figure 3 in the middle. We denote
the class of all computationally unpredictable sources by Scup.

UCE security. We say a hash function H is UCE1 secure if for all computation-
ally unpredictable PPT sources S and all PPT distinguishers D the advantage
AdvuceH,S,D(λ) is negligible. In the later version of their paper [10], BHK refer to
UCE1 as UCE[Scup]. BHK introduce a stronger version called UCE2 which is
based on the reset-security game ResetRS (1λ) shown in Figure 3 on the right. We
refer the reader to [9] for the details, but note here that UCE2 security implies
UCE1 security and, thus, any attack on UCE1 also applies to UCE2.



We discuss the revised UCE assumptions introduced in [10], namely those for
bounded parallel sources and split sources, in Section 4 and in the full version [19],
respectively.

Indistinguishability obfuscation. Roughly speaking, an indistinguishability ob-
fuscation (iO) scheme ensures that the obfuscations of any two functionally
equivalent circuits are computationally indistinguishable. Indistinguishability
obfuscation was originally proposed by Barak et al. [6] as a potential weakening
of virtual-black-box obfuscation. We recall the definition from [24]. A PPT algo-
rithm iO is called an indistinguishability obfuscator for a circuit class {Cλ}λ∈N if
the following conditions are satisfied:

– Correctness. For all security parameters λ ∈ N, for all C ∈ Cλ, and for
all inputs x we have that

Pr
[
C ′(x) = C(x) : C ′←$ iO(1λ, C)

]
= 1 .

– Security. For any PPT distinguisher D, for all pairs of circuits C0, C1 ∈
Cλ such that C0(x) = C1(x) on all inputs x the following distinguishing
advantage is negligible:

AdvioiO,D,C0,C1
(λ) := Pr

[
D(iO(1λ, C1)) = 1

]
− Pr

[
D(iO(1λ, C0)) = 1

]
.

With their recent candidate construction for indistinguishability obfuscation,
Garg et al. [24] have revived interest in the study of obfuscation schemes (see, for
example, [37,16,28,17,18,23,5,15] and the references therein). Garg et al. prove
that under an intractability assumption related to multi-linear maps their con-
struction yields an indistinguishability obfuscator for all circuits in NC1. Addi-
tionally, assuming a perfectly correct fully homomorphic encryption scheme and
a perfectly sound non-interactive witness-indistinguishable proof system, they
also show how their obfuscation scheme can be bootstrapped to support any
polynomial-size circuit. In a recent work, Barak et al. [5] have further simplified
the construction and showed that it is secure against all generic multi-linear
attacks.

3 UCE1 and UCE2 Security

In this section we formalize our iO attack on the UCE1 (and hence the stronger
UCE2) security of any concrete hash function. We also propose a fix to these
notions which avoids the attack while still being applicable to a number of cryp-
tosystems.

3.1 The iO attack

Our attack uses an indistinguishability obfuscation scheme in a black-box way,
but is non-black-box as it relies on the code of the hash function for obfusca-
tion. (Therefore, the attack does not contradict the positive feasibility of BHK



in the random-oracle model.) We stress that the complexity of running our at-
tack, although high, is polynomial, and will benefit from future advances in the
construction of iO schemes.

Theorem 1 (UCE1 infeasibility). If indistinguishability obfuscation exists,
then UCE1 security cannot be achieved in the standard model.

We now present a sketch of the proof and defer the full proof to the full
version [19].

Proof (sketch). Let H be a UCE1-secure hash function family. Let us assume for
now that H.ol(λ) ≥ 2 ·H.kl(λ), that is, the output length of the hash function is
at least twice the size of a hash key. (We will be dropping this condition shortly.)
Define a source S which generates a random value x←$ {0, 1}H.il(λ) and computes
y ← Hash(x). It then constructs the Boolean circuit

Cλ,H,x,y(·) := (H.Ev(1λ, ·, x) = y) ,

that returns 1 on input hk if, and only if, H.Ev(1λ, hk, x) equals y. The source
S passes on an encoding of circuit Cλ,H,x,y(·) as leakage L to the distinguisher.
We will later use obfuscation to ensure that x is not leaked by the encoding
of Cλ,H,x,y(·) (this is needed for unpredictability). The distinguisher D recovers
circuit Cλ,H,x,y(·) from the leakage L, and computes b′ ← Cλ,H,x,y(hk) using the
given hash key hk, and returns b′. The UCE1 adversary (S,D) has advantage
1 − 2−H.ol(λ): when the source is run with oracle access to H.Ev(1λ, hk, ·), the
circuit always returns 1. When S interacts with a random oracle, y coincides
with H.Ev(1λ, hk, x) with probability 2−H.ol(λ).

Now let iO be an indistinguishability obfuscator. Instead of leaking cir-
cuit Cλ,H,x,y(·), we let S compute an obfuscation of the circuit and output
L←$ iO(Cλ,H,x,y(·)). By the correctness property of the obfuscator, distinguisher
D, as before, has an overwhelming advantage in guessing the challenge bit cor-
rectly. It remains to show that the adapted source S is unpredictable.

In the unpredictability game PredPS (λ) oracle Hash is always implemented
by a random oracle. Thus, with high probability the circuit Cλ,H,x,y(·) is the
constant zero circuit: for any x ∈ {0, 1}n, there are at most 2|H.kl((λ))| possible
values for H.Ev(hk, x), and a random y would be one of the image values with
probability at most 2|H.kl(λ)|2−` which by assumption is less than 2−H.ol(λ)/2.
Now, to see that the source S is unpredictable note that the zero function and
Cλ,H,x,y(·) are functionally equivalent. This means that an indistinguishability
obfuscation of Cλ,H,x,y will not leak any more information about x than the zero
function would. Since x was chosen randomly, it remains hidden from the view
of any PPT predicator P .

It remains to argue how we can drop the requirement on the size of hash keys.
For this note that we can simply choose a t such that t ≥ 2 · dH.kl(λ)/H.ol(λ)e
and let the source leak an obfuscation of the circuit (H.Ev(1λ, ·, x1) = y1 ∧ · · · ∧
H.Ev(1λ, ·, xt) = yt). ut



In the above proof, we relied on the source being able to make multiple
queries to its hash oracle. Bellare, Hoang, and Keelveedhi [11] point out that the
theorem can be extended to a single-query source by applying a pseudorandom
generator to the output of the hash function. This result is noteworthy as several
applications only require the source to make a single query.

3.2 Statistical unpredictability

The iO attack immediately gives rise to the following question: can the UCE1
and/or UCE2 notions be somehow patched so that they avoid the attack while
maintaining (part of) their wide applicability? Fortunately, we show that this is
indeed the case. We start by observing that the security guarantee of the indis-
tinguishability obfuscator is only computational. Consequently, the attack can
be directly ruled out by demanding the source to be statistically unpredictable,
i.e., by letting a potential predictor run in unbounded time (but still impose
polynomial query complexity). More formally, we say a source S is statistically
unpredictable if the advantage of any (possibly unbounded) predictor P with
polynomial query complexity in the PredPS (λ) game shown in Figure 3 (middle)
is negligible. Statistical UCE2 security can be defined analogously, where we
let the reset distinguisher run in unbounded time and only place a polynomial
bound on the number of its queries.

The above definition, in turn, leads to the following two questions: (1) Is a
statistically secure variant of indistinguishability obfuscation possible? (2) Are
there any application scenarios which only rely on this weaker property? Gold-
wasser and Rothblum [26] provide a negative answer to the first question by
showing that the existence of a statistically secure iO scheme implies the col-
lapse of the polynomial hierarchy to its second level. This impossibility result
reinforces our confidence in the soundness of the above definition. For the second
question, recall that the unpredictability game is always defined with respect to
a random oracle, and hence statistical unpredictability may be (non-trivially)
achievable. Indeed, consider a source which samples a random point x, queries
it to its oracle, and leaks the result to the distinguisher. It is easy to see that
this source is statistically unpredictable as a random oracle is one-way against
unbounded adversaries. Indeed, many of the cryptosystems considered by BHK
admit security proofs with sources that essentially take this simple form [8,9].
We present a brief discussion of these in the full version of this work.

After we communicated our attack [11], BHK in the revised version of their
paper [10] also independently suggested the statistical notion of unpredictabil-
ity. They denote by Ssup the class of all statistically unpredictable sources and
recast their proofs of the above to use UCE[Ssup]. We refer to [10] for details
on the applications that can be salvaged with statistical UCE1 aka UCE[Ssup]
(resp. statistical UCE2 aka UCE[Ssrs]).

We end this section by noting that for the hardcore predicate, BR93 en-
cryption, D-PKE, MLE and OAEP application scenarios discussed in [8,9], the
leakage contains auxiliary information related to a query x that only computa-
tionally hides x (e.g., it might contain a one-way image f(x), or an encryption



of x). Consequently, an unbounded predictor might well be able to guess the
point x, and in these cases our statistical patch is no longer useful. Despite this,
we observe that UCE-secure hash functions with regard to statistical unpre-
dictability are hardcore for highly non-injective one-way functions. (The proof
is essentially equivalent to that in [9] and relies on the fact that any (even an
unbounded) predictor cannot recover the exact query if the preimage space is
super-polynomially large.)

4 Bounded Parallel Sources

In version [10] of their paper, BHK introduce novel UCE-type security notions
to recover applications where statistical unpredictability is of no help. The main
idea behind these new UCE assumptions is that, in order to keep the unpre-
dictability condition computational, the source needs to operate in a restricted
way so that the iO attack cannot be mounted any longer.

A new restricted source class that BHK introduce to recover the deterministic
public-key encryption (D-PKE), message-locked encryption (MLE), and OAEP
applications is that of bounded parallel sources. In parallel sources the source
splits into two parts S0 and S1 as follows. The first part of the source S0 does
not get oracle access to Hash, and simply outputs some preliminary leakage L0

and a vector L′ of arbitrary bit strings. For each entry in L′ an independent
instance of the second part of the source S1 is run. This can be done in parallel
as the several invocations do not share any coins or state. Instance i of S1 is
given L′[i] as input which then produces leakage L[i]. As opposed to S0, the
second part S1 of parallel sources has oracle access to Hash. The final leakage
of the source S := Prl[S0, S1] is set to be L := (L0,L). The details of a parallel
source S = Prl[S0, S1] are given in Figure 4 on the left.

Without any further restrictions, parallel sources are as powerful as regular
sources: simply ignore S0 and let a single S1 generate the entire leakage. Thus,
in order to circumvent the iO attack, further restrictions are necessary. To this
end, BHK restrict the resources of S0 and S1 via polynomials τ , σ, and q as
follows: (1) the running time (circuit size) of each invocation of S1 is at most
τ(·); (2) each invocation of S1 makes at most q(·) oracle queries; and (3) the
length of initial leakage L0 output by S0 is at most σ(·). BHK then consider the
class Sprlτ,σ,q consisting of all parallel sources satisfying these bounds, and define
UCE for computationally unpredictable, bounded parallel sources by considering
UCE[Scup ∩ Sprlτ,σ,q].

For their results on D-PKE and MLE schemes, the parameters τ , σ, and
q need to be fine-tuned according to the underlying encryption scheme. More
precisely, BHK set q to 1 (each instance of S1 makes a single hash query), σ
to the size of a key-pair (0 in the case of MLEs), and τ to the runtime of the
encryption operation plus the input and key sizes of the encryption scheme. It
is easily seen that our basic attack does not fall into this class as long as the
computation of the obfuscated circuit takes longer than what is granted by τ .



Prl Source SHash(1λ)

(L0,L
′)←$ S0(1λ)

for i = 1, . . . ,
∣∣L′∣∣ do

L[i]←$ SHash
1 (1λ,L′[i])

L← (L0,L)
return L

Splt Source SHash(1λ)

(L0,x)←$ S0(1λ)
for i = 1, . . . , |x| do

y[i]←$ Hash(x[i])
L1←$ S1(1λ,y);L← (L0, L1)
return L

Fig. 4: The parallel source S = Prl[S0, S1] on the left and the split source S =
Splt[S0, S1] on the right as defined in the updated version of [10]. In both cases the
source consists of two parts S0 and S1 that jointly generate leakage L. For split sources
neither part gets direct oracle access to Hash. For parallel sources additional restric-
tions on the runtime and the number of queries of S1, and the length of leakage L0

are imposed. Note that the invocations of S1 are parallelizable and independent of one
another.

In choosing the parameters for bounded parallel sources, one has to strike
a delicate balance between the complexity of obfuscating a hash function and
the cost of encryption (resp. the application in question). Indeed, suppose that
a bounded parallel source assumption with parameters as above is used to prove
an MLE scheme secure in the standard model. Now if the complexity of the
encryption scheme is high (e.g., because it is implemented based on iO [37] or
because it includes (artificial) redundant code), then the assumption can be
broken by the iO attack, as described in the previous section. Similarly, if one
could reduce the complexity of obfuscating the hash function, an attack would
become feasible. However, considering the current state of research, obfuscation
is a very costly operation and thus, intuitively, computing the obfuscation of a
hash function should be harder than encrypting a message.

Interestingly, as we show in this section, it is the parallel complexity of ob-
fuscating a hash function (after a possibly complex preprocessing phase) that
matters for the attack, and we can show that the latter can lie in a complex-
ity class which is dramatically below that of computing the obfuscation of the
hash function. More precisely, we show how to combine our iO attack with the
randomized encodings of Applebaum, Ishai, and Kushilevitz [2] to split the at-
tack into two stages such that the second stage is highly parallelizable. Before
describing our attack, let us briefly recall the notion of randomized encodings.

4.1 Randomized encodings

Randomized encodings allow one to substantially reduce the complexity of com-
puting a function f by instead computing an encoding of it. This technique was
first introduced by Ishai and Kushilevitz [29,30] in the context of multi-party
computation and has since found many applications [2,3,31,27,4,1]. The formal-
ization of randomized encodings that we use here is due to Applebaum, Ishai,
and Kushilevitz (AIK) [2] and is adapted to the setting of perfect correctness and

computational privacy. Informally, we say that f̂(x; r) is a randomized encoding



of some function f(x) if (1) given f̂(x; r) one can efficiently recover function
value f(x), and (2) given f(x), one can efficiently sample from the distribution

f̂(x; r) induced by uniformly choosing r.
More precisely, a randomized encoding scheme RE consists of three efficient

algorithms (enc, dec,Sim) as follows: (1) a probabilistic encoding algorithm enc
which on input a security parameter 1λ, a circuit computing fλ : {0, 1}n(λ) →
{0, 1}`(λ) (of size polynomial in λ) and an x ∈ {0, 1}n(λ) outputs an encoding
z ∈ {0, 1}s(λ); (2) a deterministic decoder algorithm dec which on input the
security parameter 1λ and an encoding z ∈ {0, 1}s(λ) outputs an image point
y ∈ {0, 1}`(λ); and (3) a probabilistic simulation algorithm Sim which on input
1λ and an image point y ∈ {0, 1}`(λ) outputs an encoding z ∈ {0, 1}s(λ). To keep
our notation consistent with the previous literature on randomized encoding,
for a given circuit fλ, we will refer to the the mapping enc(1λ, fλ, ·; ·) by f̂λ :
{0, 1}n(λ)×{0, 1}m(λ) → {0, 1}s(λ), where {0, 1}m(λ) is the randomness space of
enc. We say scheme RE is a perfectly correct, computationally private randomized
encoding for a circuit class {Fλ}λ∈N if it satisfies the following two conditions.

– Correctness. For any fλ ∈ Fλ and any input x ∈ {0, 1}n(λ) we have that

Pr
[
dec(1λ, f̂λ(x; renc)) = fλ(x) : renc←$ {0, 1}m(λ)

]
= 1 .

– Privacy. For any PPT distinguisher D, any fλ ∈ Fλ, and any input x ∈
{0, 1}n(λ) the distinguishing advantage AdvreRE,D,x is negligible, where advan-
tage AdvreRE,D,x(λ) is defined as:

Pr[D(1λ, f̂λ(x; renc)) = 1 : renc←$ {0, 1}m(λ)]−Pr[D(1λ,Sim(1λ, fλ(x)) = 1] .

Functions n, `, s, and m are polynomials, however, we will be dropping the
explicit dependency on λ in order to simplify notation, and set n := n(λ), ` :=
`(λ), s := s(λ), and m := m(λ).

AIK used randomized encodings to construct cryptography in NC0. For us,
the complexity of the encoding is not important. Rather, we will make use of
encodings with small locality, where each bit in the randomized encoding f̂(x; r)
only depends on at most a single bit of x (but possibly many bits of r). We will
return to the topic of locality in Section 4.3.

4.2 Composing iO with randomized encodings

To ease readability, we present our attack in two stages. First, we show that
our iO attack can be composed with any randomized encoding scheme in a
way which neither affects the adversary’s advantage nor the unpredictability of
its implicit source. Then, in the next subsection, we use a special type of RE
scheme known as decomposable randomized encodings [31] to split and parallelize
the adversary’s source in order to meet the (minimal) bounds of q(λ) = 1,
σ(λ) = 0, and τ(λ) ∈ O(λ). Consequently, our attack will rule out bounded



parallel sources for these parameters. Since the bounds that our attacks achieves
are very stringent, and an encryption scheme has to at least run in time O(λ)
(and make a single Hash query), assuming indistinguishability obfuscation, it
is unlikely that bounded parallel sources can be used to instantiate ROs in any
meaningful application scenario.

Let H be a UCE[Scup ∩Sprlτ,σ,q]-secure hash function, iO be an indistinguisha-
bility obfuscator, and let us assume once again that H.ol(λ) ≥ 2 ·H.kl(λ). (As in
the proof of Theorem 1, this assumption will be without loss of generality.)

The attacker. Define Cλ,H,x,y(·) := (H.Ev(1λ, ·, x) = y), and compute a random-
ized encoding of the circuit

f : (x, y, rio) 7→ iO(Cλ,H,x,y(·); rio),

where rio is the randomness used by the obfuscator. As in the proof of Theorem 1,
we consider the source S which chooses random values x, rio, and renc, queries
x to its oracle to obtain y ← Hash(x), and leaks the randomized encoding

L := f̂(x, y, rio; renc) .

The distinguisher D gets as input a hash key hk and an encoding f̂(x, y, rio; renc).
It uses the decoder dec of the randomized encoding scheme to recover

f(x, y, rio)← dec(f̂(x, y, rio; renc)) .

It then interprets the result as a circuit, runs it on on hk, and returns whatever
the circuit outputs.

By correctness of the randomized encoding, the advantage of the adversary is
identical to the one in our original iO-attack. Moreover, the source is computa-
tionally unpredictable which follows when combining the analysis of the previous
section with the privacy of the randomized encoding. We give the formal analysis
of advantage and success probability in the full version [19].

4.3 Splitting and parallelizing S using decomposable REs

The attack described in the previous subsection works for any randomized encod-
ing scheme. In particular, now, we will use a decomposable randomized encoding
scheme to instantiate the attack; this allows us to recast the above source as a
bounded parallel source. Let us begin with the definition decomposable random-
ized encodings.

Decomposable encodings. In a decomposable randomized encoding (DRE) scheme,

every output bit of the encoding f̂(x; r) depends on at most a single bit of
x (but possibly on arbitrarily many bits of r). More precisely, a decompos-
able randomized encoding scheme DRE consists of a four tuple of algorithms
(idx, enc, dec,Sim) as follows. Algorithm idx on input a circuit f and an index
i ∈ [s] outputs an index j ∈ [n] ∪ {0}. The decomposable encoding algorithm



enc operates based on a local encoding algorithm enc as follows. On input a
circuit f , a point x, and random coins renc, for each i ∈ [s] compute zi ←
enc(f, i, x[idx(f, i)]; renc), where we define x[0] :=⊥, and return z ← (z1, . . . , zs).
Algorithms dec and Sim play the same roles as those in a conventional RE
scheme. As before, we denote enc(f, i, b; renc) by f̂i(b; renc). Thus we may write

f̂(x; renc) = f̂1(x[idx(1)]; renc)‖f̂2(x[idx(2)]; renc)‖ · · · ‖f̂s(x[idx(s)]; renc) .

As Ishai et al. [31] point out, several constructions of randomized encodings
are decomposable. For example, AIK’s construction based on garbled circuits [3]
is a decomposable, perfectly correct, and computationally private randomized
encoding for any function in P/poly. Their construction relies only on the exis-
tence of secure pseudorandom generators.

Using decomposable encodings, we show that our attack can be parallelized.
The idea is that each instance of S1 is responsible for computing a single bit of
f̂(x; renc). However, potentially, computing even a single bit of f̂(x; renc) can be
a computationally heavy task. We thus outsource pre-computation to S0 such
that for S1, computing a single bit of f̂(x; renc) becomes easy. For concreteness,

let us think about the instance of S1 that computes the first bit of f̂(x; renc). As

the encoding is decomposable, the first bit of f̂(x; renc) only depends on a single

bit xi of x. S0 now picks renc and computes the first bit of f̂(x; renc) simply for
both cases, xi = 0 and if xi = 1. It obtains two values and passes these two
values to S1. Now, as source S1 has access to Hash it can compute the actual
xi and its task is thus merely picking the right precomputed bit as output. We
give the full description of the attack in the full version [19].

Theorem 2 (Bounded parallel UCE infeasibility). If indistinguishability
obfuscation (and PRGs) exist, then UCE[Scup∩Sprlτ,σ,q] security cannot be achieved
in the standard model for q 6= 0, any σ ≥ 0, and τ ∈ Ω(λ).

Following the above attack, BHK [12] retracted bounded parallel sources and
replaced them by new source classes that are specifically designed according to
each application scenario.

5 Split Sources

In principle, bounded parallel sources would also suffice to recover the application
of UCEs to hardcore functions. However, for this purpose, BHK [10] introduce
a second, simpler UCE notion which is based on computational unpredictability
and so-called split sources. A split source S is composed of two algorithms S0 and
S1, where neither gets direct access to the Hash oracle. Algorithm S0 outputs L0

together with a vector of points x. For each entry of x, the corresponding Hash
value is computed, and the vector of hash values y is formed. Algorithm S1 is then
run on y produces leakage L1. The leakage of the split source S := Splt[S0, S1]
then equals L := (L0, L1). We give the pseudocode in Figure 4 on the right.



Split sources avoid our original attack, as well as its generalized version, as
neither component of the source gets direct access to the Hash oracle. In the
full version of this work [19], we discuss the composition of split-source UCE-
secure functions with one-way permutations and also study the implications of
existence of certain forms of obfuscators on their feasibility.

For example, consider a hash function where its inputs are first run through
a one-way permutation before being hashed. Intuitively, this application of a
one-way permutation should not harm UCE security. Indeed, this can be easily
seen to be the case for the standard notions of one-wayness, collision resistance,
and pseudorandomness. We show that statistical UCE1 security also enjoys this
property. However, when composing a UCE[Scup ∩ Ssplt] hash functions with a
one-way permutation, the resulting function fails to be UCE[Scup∩Ssplt] secure.

We also show that certain levels of unobfuscatability are necessary for a hash
function to achieve UCE security with respect to split sources. For instance,
the function that maps x to an obfuscation of the circuit H(·, x) must not be
one way. Further, this must also be the case for obfuscators that are specially
designed to support H. For example, as a practical instantiation of UCEs, BHK
suggest to use the SHA family [34] in HMAC mode [8]. Our results imply that in
order to obtain confidence in the security of this construction, its extractability
properties in conjunction with, say, the candidate obfuscator of Garg et al. [24]
should be studied. We note that due to their simplicity, our results potentially
also apply to other UCE notions which rely on a computational unpredictability
notion. We refer to [19] for a more detailed discussion of split sources.
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