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Abstract. We present a signature scheme provably secure in the stan-
dard model (no random oracles) based on the worst-case complexity
of approximating the Shortest Vector Problem in ideal lattices within
polynomial factors. The distinguishing feature of our scheme is that it
achieves short signatures (consisting of a single lattice vector), and rela-
tively short public keys (consisting of O(logn) vectors.) Previous lattice
schemes in the standard model with similarly short signatures, due to
Boyen (PKC 2010) and Micciancio and Peikert (Eurocrypt 2012), had
substantially longer public keys consisting of Ω(n) vectors (even when
implemented with ideal lattices).

1 Introduction

Lattice based cryptography [3,4], originally an area of primarily theoretical inter-
est, has seen a tremendous growth during the last decade, due both to substan-
tial efficiency improvements obtainable using lattices with algebraic structure
[16,28], and to the enormous versatility afforded by the Learning with Errors
(LWE) problem [33]. One of the problems that has received most attention so
far, is that of lattice based signatures [24,13,21,9,35,14,22,12,6]. From a theo-
retical point of view, digital signatures can be constructed from any one-way
function [34,19]. So, the existence of digital signature schemes based on the
hardness of lattice problems directly follows from Ajtai’s seminal work [3]. But
generic constructions are rather inefficient. Inputs and outputs of lattice based
cryptographic functions typically consist of one or more Ω̃(n)-dimensional vec-
tors, where n is the security parameter. Generic digital signature constructions
require n parallel applications of a one-way function. So, even if each one-way
function takes as input a single vector, the resulting digital siguatures consist
of n vectors, and require Ω̃(n2) storage even when using algebraic lattices [28].
So, finding efficient constructions of signatures directly based on hard lattice
problems has been an important problem since the early days of lattice cryptog-
raphy, with the main goal of finding “short” signatures, i.e., lattice signatures
consisting of a single lattice vector.

The first direct constructions of lattice signatures were given in [24] and
[13]. Both schemes achieved “short” signatures, consisting of a single lattice vec-
tor, but each work had its own pros and cons. On the one hand [24] gave a



scheme provably secure in the standard model of computation, and with very
simple signing/verification procedures, but only provided a direct construction
of one-time signatures: digital signature schemes that can be used to sign a sin-
gle message. Such schemes can be turned into general purpose signature schemes
with only a logarithmic loss in efficiency using standard tree constructions. How-
ever, these transformations can be quite expensive in practice, because they lead
to signatures consisting of O(log n) vectors. Given that signature size is often
the most critical efficiency parameter affecting the practicality of a scheme, such
signatures can no longer be considered “short”. On the other hand, [13] gave a
scheme that allowed to produce short signatures for arbitrarily many messages,
but only offered heuristic security in the random oracle model. Moreover, the
scheme of [13] was not entirely practical, involving a rather complex signing al-
gorithm based on sampling lattice vectors with gaussian distribution, a problem
that only recently has found more satisfactory solutions [29].

Two lines of research have evolved from [13], trying to address either the
security or efficiency limitations of that work:

– A first line of research [21,22,14,12,6,15] kept investigating lattice signature
in the random oracle model, with the goal of achieving the highest possible
levels of performance, and schemes that are efficient enough to be used in
practice.

– A second line of work, [11,9,29] kept pursuing the important goal of obaining
security in the standard model of computation (no random oracles) while at
the same time improving the efficiency and potential practicality of previous
schemes. Our work is part of this second line of research, which we describe
in more detail.

The current state of the art, when it comes to short lattice signatures in the
standard model, is given by the scheme of Boyen [9], with additional security and
efficiency improvements described in [29]. This scheme achieved the important
goal of “short” lattice signatures (consisting of a single lattice vector), without
resorting to the random oracle model. The main drawback of this scheme was the
huge public key involved. Lattice public keys, even in the random oracle model
[13,21,22,14,12,6], consist of one or more n×m matrices, each of which typically
requires Ω̃(n2) storage. For the sake of comparison, we consider natural adap-
tations of [11,9,29] to the algebraic/ring setting, where n ×m matrices can be
implicitly described by a single m-dimensional vector. Going back to the signa-
ture scheme of [9,29], public keys consist of Ω(n) matrices, and therefore require
at least quadratic Ω̃(n2) total storage even when using “compact” algebraic lat-
tices. We remark that digital signature schemes can be efficiently constructed
out of identity based encryption (IBE) by using ciphertexts as signatures, and
lattice based IBE with short ciphertexts are also known [11,2,1]. However, lattice
IBE schemes are built on top of the signature techniques from [11,9], and bear
the same limitations when it comes to public key size: lattice IBE [11,2,1] use
public keys consisting of Ω(n) matrices, and result in Ω̃(n2) or even Ω̃(n3) pubic
key size depending on the type of lattices employed.



Reducing the size of, not only the signatures, but also the public key, was
the main open problem left by [11,9,29,2,1]. We remark that the last few years
have seen major efficiency progress on lattice signatures in the random oracle
model [13,21,22,14,12,6], leaving a substantial gap between random oracle and
standard model signatures. Still, designing efficient signature schemes without
random oracles is an important and well established problem, both for the the-
ory and practice of cryptography. A recent work in this direction is the paper
of Bohl et al. [7,8,36], which formalized1 a general “confined guessing” tech-
nique applicable to a variety of (not only lattice) settings. Here we describe
their results, limited to the case of lattice signatures, and specialized to alge-
braic/ring lattices. Among other things, [7] gives a standard model lattice signa-
ture with public keys consisting of a single matrix, and therefore requiring only
O(m) = Ω̃(n) storage when using algebraic/ring lattices. However, this comes at
a substantial cost in terms of signature size: the digital signatures of [7] consist
of O(log n) vectors. While a O(log n) increase may not seem much, it is quite a
high cost when it comes to signature size, both in theory and in practice. In fact,
a similar trade-off was already known since the very first direct construction of
lattice signatures [24], which, as alredy discussed, produced general signatures
consisting of O(log n) vectors (as well as short public keys). In other words, just
like [24], the lattice signatures of [7] are not “short”. (The main contribution of
[7] over the classic scheme of [24], is that the results of [7] also apply to general
lattices.)

Our results. We present the first standard model construction of short signatures
based on (algebraic/ring) lattices with relatively small public keys: Similarly
to [9,29], we achieve signatures consisting of a single vector without resorting
to random oracles. At the same time, we substantially reduce the public key
size from the Ω(n) vectors2 of previously best short lattice signatures [9,29] to
just O(log n) vectors. Our scheme is stateless, i.e., all signatures can be pro-
duced independently by running the signing algorithm on input the secret key
and message to be signed. We also give an even more efficient scheme that
further improves the public key size from O(log n) to just O(log log n) vectors
(and at the same time also improves the tightness of the reduction,) almost
matching the asymptotic performance of schemes in the random oracle model
[13,21,22,14,12,6]. This last improvement comes at the cost of statefulness: the
signer has to keep some state information between signatures. However the state
information is extremely simple: all that the signer has to do is to maintain a
counter keeping track of how many signatures have already been produced.

We remark that it is always possible to reduce the public key size by in-
creasing the size of the signatures, simply by compressing the public key using a
collision resistant hash function (which is easily built from lattices [26,5,23,31]),

1 The technique first appeared in the work of Hohenberger and Waters [18,17] and
was also used in [10].

2 Remember we are in the ring setting, so only one vector is required to represent
each matrix.



Scheme Pub. Key Secret Key Signature Reduction SIS parameter β

R1×k
q mat. Rk×k

q mat. Rk
q vec. loss

[13](ROM) 1 1 1 1 Ω̃(n)

[24](Trees) 1 1 logn Q Ω̃(n2)

[11] n n n Q Ω̃(n3/2)

[9,29] n n 1 Q Ω̃(n7/2), Ω̃(n5/2)

[7] 1 1 logc n O(Q2/ε)c Ω̃(n5/2)

Stateless (Sec. 3) logc n logc n 1 O(Q2/ε)c Ω̃(n7/2)

Stateful3 2 logc(logn) 2 logc(logn) 1 2Qc Ω̃(n3/2)

Rq = Zq[X]/f(X) for some (cyclotomic) polynomial f of degree n, q = nO(1), and
k = O(log q). Q denotes the number of signature queries made by the attacker and ε
is its success probability. The value c > 1 is an arbitrary constant that governs the
security/efficiency trade off. The reduction loss is the ratio ε′/ε between the success
probability ε′ of the reduction and the success probability ε of the attacker.

Fig. 1. Comparison to previous work on lattice signatures in the ring setting.

and including the original public key in each signature. So, our first scheme (with
O(log n) vectors in the public key and short signatures) subsumes the results of
[7] in the algebraic/ring lattice setting with O(log n) vectors per signatures.

The efficiency of our lattice constructions, compared to previous schemes
(all adapted to the ring setting), is detailed in Figure 1.The trick leading to our
stateful signature scheme can also be applied to improve the generic construction
of [7]. The description of our generic results is deferred to the full version of our
paper.

Techniques. Our results are obtained by combining several techniques previously
used in the construction of lattice-based signatures. Most notably, we use the
“vanishing trapdoor” technique from [9], and the more recent “confined guess-
ing” method of [7,18,17]. In fact, the key generation, signing and verification
algorithms bear strong similarities with previously proposed schemes. However,
the combination appears to be novel and nontrivial. In particular, while both
the results in [9] and those in [7] are presented for general lattices, the way they
are combined in our work makes essential use of the commutativity properties
of ring/algebraic lattices. More specifically, our proof of security exploits a key
homomorphic property of lattice trapdoors (see Lemma 6) which requires certain
matrix products to commute. This is trivially verified in the ring setting, where
one of the matrices corresponds to a ring scalar, but glamorously fails when the
construction is adapted to arbitrary lattices.

Open problems. Interestingly, the methods employed in this paper to obtain
short lattice signatures with small public key seem specific to the ring/algebraic
lattice setting. Only our generic result (see the full version of this article) with
signatures of log log n many vectors applies to arbitrary lattices. We remark

3 See full version of this article.



that the question of reducing the public key size is mostly important in the ring
setting: when using general lattices, even a single matrix takes quadratic storage,
so there is little hope to reduce the public key size to linear or quasilinear in the
security parameter. Still, it would be nice to achieve results similar to those in
our paper, but for general lattices: is there a standard model signature scheme
based on general lattices with short signatures (consisting of a single vector) and
small public keys (consisting of O(log n) matrices)?

Another important open problem is to further improve the efficiency of our
scheme, and obtain short signatures where the public key is just O(1) matrices
(or vectors, in the ring setting). Indeed, schemes offering both short public key
and short signatures4 in the standard model have been constructed based on the
Computational Diffie-Hellman (CDH) and RSA problems [18,17].

2 Preliminaries

2.1 Signatures

Definition 1. A signature scheme SS is a triple (KeyGen,Sign,Verif) of PPT
(probabilistic polynomial time) algorithms, together with message spaces Mn. It
is correct if, for all messages µ ∈ Mn, Verif(pk, µ, σ) = 1 holds true, except
with negligible probability (in n) over the choice of (sk, pk) ← KeyGen(1n) and
σ ← Sign(sk, µ).

The standard definitions of security for digital signature schemes (under
adaptive and non-adaptive attacks) is given in Figure 2.

EUF-naCMASS(n,A) EUF-CMASS(n,A)

A chooses q messages (µ(j)) ∈Mn

(sk, pk)← KeyGen(1n)
For all j = 0 . . . Q− 1:

σ(j) ← Sign(sk, µ(j)).
A receives pk, σ(0) . . . σ(Q−1).
A sends an attempted forgery (µ♦ , σ♦)
A wins if Verif(pk, µ♦ , σ♦) = 1 and
µ♦ /∈ {µ(j)}.

(sk, pk)← KeyGen(1n), A receives pk
For j = 0 . . . Q− 1:
A chooses µ(j)

A receives σ(j) ← Sign(sk, µ(j))
A sends an attempted forgery (µ♦ , σ♦)
A wins if Verif(pk, µ♦ , σ♦) = 1 and
µ♦ /∈ {µ(j)}.

A signature scheme SS = (KeyGen, Sign,Verif) is EUF-naCMA-secure (or Existen-
tially Unforgeable under non-adaptative Chosen Message Attacks) if no PPT adversary
A wins the EUF-naCMASS game (left) with non-negligible probability n−O(1). The
scheme is EUF-CMA-secure (or Existentially Unforgeable under adaptative Chosen
Message Attacks) if no PPT adversary A wins the EUF-CMASS game (right) with
non-negligible probability n−O(1).

Fig. 2. Definition of security for digital signature schemes.

4 Here by “short” we mean consisting of O(1) group elements.



From Non-Adaptive to Full Security There are two standard techniques to trans-
form non adaptively-secure signature schemes to fully secure ones: Chameleon
Hashing and One Time Signatures both of which can be implemented using lat-
tices [25,13]. For a description of the solution based on Chameleon Hashing see
the full version of this article.

2.2 Lattices and Gaussian Distributions

A (full rank) n-dimensional lattice is the set Λ = L(B) = {Bz : z ∈ Zn} of
all integer linear combinations of n basis vectors B = [b1, . . . ,bn] ∈ Rn×n.
We use notation (x1, . . . , xn) for column vectors, and similarly write (A,B) for
the result of vertically stacking two matrices. The dual lattice Λ∗ is the set of
all v ∈ Rn such that 〈v,x〉 ∈ Z for every x ∈ Λ. If B is a basis of Λ, then
B∗ = B−t is a basis of Λ∗. Many cryptographic applications use a particular
family of so-called q-ary integer lattices, which contain qZm as a sublattice for
some (typically small) integer q. For positive integers n, and q, let A ∈ Zn×mq

be arbitrary and define the following full-rank m-dimensional q-ary lattices:

Λ⊥(A) = {z ∈ Zm : Az = 0 mod q}
Λ(A) = {z ∈ Zm : ∃ s ∈ Znq s.t. z = Ats mod q}.

It is easy to check that Λ⊥(A) and Λ(A) are dual lattices, up to a q scaling
factor: q ·Λ⊥(A)∗ = Λ(A), and vice-versa. For any u ∈ Znq admitting an integral

solution to Ax = u mod q, define the coset (or “shifted” lattice) Λ⊥u (A) = {z ∈
Zm : Az = u mod q} = Λ⊥(A) + x. In the Small Integer Solution problem
(SISp,n,m,β), one is given a matrix A ∈ Zn×mq and is asked to find a nonzero

vector s ∈ Λ⊥(A) such that ‖s‖ ≤ β where ‖s‖ =
√∑

i s
2
i is the euclidean norm.

The geometric quality of a matrix A ∈ Rm×n is measured by its spectral norm
s1(A) = supx ‖Ax‖/‖x‖.

The n-dimensional Gaussian function ρs : Rn → (0, 1] is defined as ρs(x) =
exp(−π · ‖x/s‖2). For any (countable) set X ⊆ Rn, let ρs(X) =

∑
x∈X ρs(x).

The smoothing parameter of a lattice ηε(Λ) [30] is the smallest s such that
ρ1/s(Λ

∗) ≤ 1 + ε. The discrete gaussian distribution DΛ,s over a lattice Λ is
defined as DΛ,s(x) = ρs(x)/ρs(Λ) for all x ∈ Λ.

We say that a random variable X over R is subgaussian with parameter s > 0
if for all t ∈ R, the (scaled) moment-generating function satisfies E[exp(2πtX)] ≤
exp(πs2t2). If X is subgaussian, then its tails are dominated by a Gaussian of
parameter s, i.e., Pr[|X| ≥ t] ≤ 2 exp(−πt2/s2) for all t ≥ 0. More generally,
we say that a random matrix X is subgaussian (of parameter s) if all its one-
dimensional marginals utXv for unit vectors u,v are subgaussian (of parameter
s). It follows immediately from the definition that the concatenation of inde-
pendent subgaussian vectors with common parameter s, interpreted either as a
vector or as a matrix, is subgaussian with parameter s. For any lattice Λ ⊂ Rn
and s > 0, the distribution DΛ,s is subgaussian with parameter s.

We will need the following standard result from the non-asymptotic theory
of random matrices; for further details, see [37].



Lemma 1. Let X ∈ Rn×m be a subgaussian random matrix with parameter s.
There exists a universal constant C ≈ 1/

√
2π such that for any t ≥ 0, we have

s1(X) ≤ C · s · (
√
m+

√
n+ t) except with probability at most 2 exp(−πt2).

2.3 Rings and Ideal Lattices

We consider lattice problems restricted to ideal lattices [28,23,32]. Most of our
results apply to ideal/module lattices over arbitrary cyclotomic rings, but for
simplicity we focus our presentation on so-called “SWIFFT” rings [26,5]. These
are rings of the form R = Z[X]/(Φ2n(X)) or Rq = (R/qR), where n is a power
of 2, q is an integer, and Φ2n(X) = Xn+1 is the cyclotomic polynomial of degree
n. For our construction we will require that Φ2n(X) does not split into low degree
polynomials modulo the prime factors of q. More concretely we choose q = 3k

and rely on the following.

Fact 1 (Irreducible factors of Φ2k(X) modulo 3. Corollary of [20, Theorem 2.47]).
For any k ≥ 3 and 2n = 2k we have Φ2n(X) ≡ (Xn/2 + Xn/4 − 1) · (Xn/2 −
Xn/4 − 1) mod 3 and both factors are irreducible in F3[X].

Lemma 2 (Hensel Lemma). Let R = Z[X]/(F (X)) for some monic poly-
nomial F ∈ Z[X]. For any prime p, if u ∈ Rpe is invertible modp (i.e. it is
invertible in Rp) then u is also invertible in Rpe .

Corollary 1. let n ≥ 4 be a power of 2, q ≥ 3 a power of 3, and set Rq =
Z[X]/(Φ2n(X), q). Then, any nonzero polynomial t ∈ Rq of degree d < n/2 and
coefficients in {0,±1} is invertible in Rq.

Elements in R have a natural representation as polynomials of degree n− 1
with coefficients in Z, and R can be identified (as an additive group) with the
integer lattice Zn, where each ring element a = a0 + a1x + . . . + an−1x

n−1 ∈
R is associated with the coefficient vector (a0, . . . , an−1) ∈ Zn. We use the
identification R = Zn to define standard lattice quantities like the euclidean
length of a ring element ‖a‖ =

√∑
i |ai|2, or the spectral norm of a ring element

s1(r) = supx ‖r · x‖/‖x‖. The ring R is also identified with the sub-ring of
anti-circulant square matrices of dimension n by regarding each ring element
r ∈ R as a linear transformation x 7→ r ·x over (the coefficient embedding) of R.
Notice that the definition of spectral norm of a ring element is consistent with
the definition of spectral norm of the corresponding anticirculant matrix. The
following lemma provides a useful bound on the spectral norm of ring elements.

Lemma 3. For any ring element r ∈ R, we have s1(r) ≤ ‖r‖1 =
∑
i |ri|.

Proof. Let ωk = eπı(2k−1)/n (for k = 1, . . . , n) be the complex roots of the cyclo-
tomic polynomial Φ2n. Consider the image of r under the canonical embedding
σ : R → Cn, which is defined as σ(r) = (r(ω1), . . . , r(ωn)). Using the fact that
σ : R → Cn is a ring homomorphism (with the product � in Cn defined compo-
nentwise) and a scaled isometry (satisfying ‖σ(r)‖ =

√
n · ‖r‖) we get

s1(r) = sup
x

‖r · x‖
‖x‖

= sup
x

‖σ(r · x)‖
‖σ(x)‖

= sup
x

‖σ(r)� σ(x)‖
‖σ(x)‖

≤ ‖σ(r)‖∞.



Since for any i, |ωi| = 1, we have |r(ωi)| =
∣∣∣∑j rjω

j
i

∣∣∣ ≤∑ |rj | = ‖r‖1. It follows

that s1(r) ≤ ‖σ(r)‖∞ = maxi |σ(r)i| ≤ ‖r‖1.

The discrete Gaussian distribution over the ring DR,s ≡ Dn
Z,s is defined

as usual by identifying the ring R with Zn under the coefficient embedding.
It follows that the discrete gaussian distribution over the ring x ← DR,s is
subgaussian of parameter s when x is regarded as a vector. For the anti-circulant
matrix representation, we have the following fact, (proof in App. A).

Fact 2. If R ← Dw×k
R,s , then with overwhelming probability we have s1(R) ≤

s
√
n ·O(

√
w +
√
k + ω(

√
log n)).

The euclidean length of vectors in Rkq is defined similarly by identifying Zq
with the set of representatives {−(q−1)/2, . . . ,+(q−1)/2}. Similarly, we define
the q-ary lattices Λ(A) and Λ⊥(A) when A ∈ Rn×mq is a matrix over the ring Rq
using the standard isomorphism of Rq and the sub-ring of anticirculant matrices
in Zn×nq .

Definition 2. In the Small Integer Solution over Rings problem (RingSISq,n,m,β),
one is given a row vector A ∈ R1×m

q , and is asked to find a nonzero vector

x ∈ Λ⊥q (A) such that ‖x‖ ≤ β.

Let Um be the uniform distribution over m-dimensional row vectors of ring
elements A = [a1,a2, . . . ,am] ∈ R1×m

q . The smoothness proof from [13] can
be adapted to this specific ring case (proof in App. A). A more general ring
regularity result can be found [27, Theorem 7.4], but unfortunately it gives a
larger bound (by a factor n) on required standard deviation s than our specialized
lemma.

Lemma 4 (Smoothness Lemma). Let Rq = Z[X]/(Φ2n(X), q) for n ≥ 4 a

power of 2 and q = 3k a power of 3. Let w ≥ 2dlog2 qe+ 2 and s ≥ ω(
√

lnnw).
With overwhelming probability over the choice of A ← Uw, if xi ← DR,s (for
i = 1, . . . , w) are chosen independently at random, then the sum

∑
i ai · xi is

within negligible statistical distance from the uniform distribution over R.

A handy corollary used several time in our proof is the following.

Corollary 2 (Min-entropy bound). Set Rq as above, and let w ≥ 2dlog2 qe+
3, s ≥ ω(

√
lnnw). With overwhelming probability over the choice of A ← Uw,

if xi ← DR,s (for i = 1, . . . , w) are chosen independently at random, then for
any nonzero vector V ∈ Rw \{0} the conditional min-entropy of

∑
i vi ·xi given∑

i ai · xi is at least Ω(n).

2.4 Lattice Trapdoors

We use the strong lattice trapdoor construction and algorithms of [29]. For
a modulus q = 3k and integer dimension n, define the gadget matrix G =[
In | 3 · In | . . . | 3k−1 · In

]
∈ Zn×knq .



Definition 3. For any A ∈ Zn×(m+kn)
q , and (invertible) H ∈ Zn×nq , a G-

trapdoor for A with tag H is a matrix R ∈ Zm×knq such that A(R, I) = HG.

The definition is extended to trapdoors R ∈ Zm′×knq with m′ ≤ m by padding

them with zero columns so that [R,O] ∈ Zm×knq .

The quality of a trapdoor R is measured by the spectral norm s1(R), and [29]
gives efficient algorithms to generate uniformly random matrices A together with
high quality trapdoors, and to sample cosets Λ⊥u (A) with Gaussian distribution
Ds for sufficiently large s. Notice that the tag H can immediately be recovered
from A and R as the first block of HG, and does not need to be specified
explicitly. But when one says that R is a trapdoor, it is usually assumed that
the associated tag H is an invertible matrix.

Theorem 3 ([29]). There is an efficient algorithm SampleD(A,u,R, s) that

on input a matrix A ∈ Zn×(m+kn)
q , a syndrome u ∈ Znq , a G-trapdoor R ∈

Zm×knq for A, and parameter s > ω(
√

log n) · s1(R), produces a sample from the
distribution DΛ⊥u (A),s.

The efficient trapdoor generation algorithm of [29] follows immediately from
the definition of G-trapdoor: one simply chooses A′ ∈ Zn×mq uniformly at ran-

dom, samples a trapdoor matrix R ∈ Zm×nkq with small entries, and outputs
A = [A′,HG − A′R]. As pointed out in [29], the algorithm is immediately
adapted to ideal lattices, using the observation that the identity matrix In is
precisely the matrix corresponding to the ring element 1 ∈ R, so the gadget ma-
trix G can be regarded as a row vector of ring elements [1, 3, 9, . . . , 3k−1] ∈ R1×k.
The trapdoor generation algorithm is then analyzed using Theorem 4, and the
trapdoor quality is bounded applying Fact 2 to the concatenation of subgaussian
random variables ri ← DR,s ≡ Dn

Z,s. The formal result is stated below.

Theorem 4. There is a polynomial time algorithm GenTrap(A′,H, s) that on
input a matrix A′ ∈ R1×w

q , tag H ∈ Rq, and parameter s > ω(
√

lnnw), outputs

a matrix A′′ ∈ R1×k
q and a G-trapdoor R ∈ Rw×kq for A = [A′,A′′] with tag H

such that s1(R) = s ·O(
√
w+
√
k+ω(

√
log n)). Moreover, if w ≥ 2(dlog2 qe+ 1)

then with overwhelming probability over the choice of A′ ← Uw, the distribution
of A′′ is statistically close to uniform.

In order to allow for the generation of trapdoors for multiple matrices that
share the same A′, we made A′ an explicit input to the trapdoor genera-
tion algorithm. When A′ ← Uw is chosen freshly at random, we simply write
GenTrap(w,H, s) and let GenTrap output the whole A = [A′,A′′].

Notice that G-trapdoors generated in the ring setting also satisfy the def-
inition of G-trapdoor for general lattices. So, Theorem 3 can be used as it is,
simply by viewing ring trapdoors R ∈ Rw×kq as matrices R ∈ Zwn×kn under
the standard embedding from R to the subring of anticirculant matrices. For
convenience, we reformulate Theorem 3 as a corollary specialized to the ring
setting.



Corollary 3. There is an efficient algorithm SampleD(A,u,R, s) that on input

a matrix A ∈ R1×(w+k)
q , a syndrome u ∈ Rq, a G-trapdoor R ∈ Rw×kq for A

with invertible tag H ∈ R, and parameter s > ω(
√

log n) · s1(R), produces a
sample statistically close to the distribution DΛ⊥u (A),s.

We remark that GenTrap can be called with arbitrary (not necessarily in-
vertible) tags H. The algorithm still outputs a uniformly random A and small
s1(R), but the inversion algorithm of Corollary 3 cannot be used with such
invalid trapdoors.

3 Our Scheme

The scheme is parametrized by an integer n which we assume is a power of 2,
and a modulus q = 3k which we assume to be a power of 3. (Other parameter
settings are possible, but we consider these specific values for concreteness.)
These parameters define the ring Rq = Z[X]/(Φ2n(X), q), where (for n a power
of 2) Φ2n(X) = Xn + 1 is the cyclotomic polynomial of degree n. The scheme
also uses the parameters w = 2dlog2 qe + 2, m = w + k, s = n3/2 · ω(log n)3/2,
and a collection of tags defined below. We recall that the polynomial Φ2n(X) is
irreducible in Z[X], but it can be factored in Fp[X] for some primes p. Our choice
of q = 3k ensures that, in F3[X], the polynomial Φ2n(X) factors into the product
of just 2 irreducible polynomials of degree n/2. (See Fact 1.) In particular, by
Corollary 1, any nonzero polynomial of degree less than n/2 with coefficients in
{0,±1} is invertible in Rq.

Tags For any real constants c > 1 and α ≥ 1
c−1 (fixed throughout the rest of this

section) define the sets of tag prefixes Ti = {0, 1}ci of (strictly increasing) lengths
c0 = 0, ci = bαcic for i ∈ {1, . . . , d} where d = blogc(n/(2α))c = O(log n). We
identify each tag prefix t = [t0, . . . , tci−1] ∈ Ti with a corresponding ring element
t(X) =

∑
j<ci

tjX
j ∈ Rq with binary coefficients tj ∈ {0, 1} and degree less

than ci ≤ cd ≤ n/2. It follows that for any two distinct tag prefixes t, t′ ∈ Ti,
the difference (t(X)− t′(X)) is invertible in Rq. For any full tag t ∈ T = Td and
i ≤ d, we write t≤i ∈ Ti for its prefix of length ci, and t[i] for the (ring) difference
t≤i(X)− t≤i−1(X) ∈ Rq.

Unlike previous work using tags [29,11,9], our construction relies not only
on the algebraic (invertibility) properties of tags, but also on their geometric
properties, described in the following lemma.

Lemma 5. For any i ≤ d and tags t, t′ ∈ T , one has s1((t− t′)[i]) ≤ ci − ci−1.

Proof. Since the difference (t−t′)[i] is a trinary polynomial with at most ci−ci−1
nonzero coefficients, we have ‖(t− t′)[i]‖1 ≤ ci − ci−1. It follows from Lemma 3
that s1((t− t′)[i]) ≤ ‖(t− t′)[i]‖1 ≤ ci − ci−1.



3.1 Our Scheme

Key Generation naSS.KeyGen(n): The key generation algorithm runs (A,R)←
GenTrap(w, I, σ) with σ = ω(

√
log n), and chooses A[0],A[1], . . .A[d],U ∈ R1×k

q

and v ∈ Rq uniformly at random. It then outputs the secret key sk = R, and
public key pk = (A,A[0],A[1], . . .A[d],U,v). The public key implicitly defines a

collection of matrices At = [A|A[0] +
∑d
i=1 t[i] ·A[i]] indexed by the tags t ∈ T .

Since σ = ω(
√

log n), by Theorem 4 and Lemma 2, the distribution of A ∈
R1×m
q is statistically close to Um, and R is a G-trapdoor for A (and therefore

also for all At) with invertible tag I and quality s1(R) ≤
√
n · ω(log n).

Signature naSS.Sign(sk = R,µ ∈ {0, 1}nk ⊂ Rkq ): Parse µ as a vector of Rkq
splitting the nk bits into k binary polynomials. Choose a uniformly random tag
t ∈ T , and compute the matrix At and ring element u = U · µ + v. Then, use
the G-trapdoor R to sample a vector s← SampleD(A,u,R, s). Output the pair
σ = (t, s) as the signature.

Verification naSS.Verif(pk,µ ∈ {0, 1}nk ⊂ Rkq , σ = (t, s)): Compute At and
u = U · µ + v as in the signing algorithm. Then, check that ‖s‖ ≤ s

√
nm and

that At · s = u.

Correctness The correctness of the scheme is easily verified: Since s > ω(
√

log n)·
s1(R), by Corollary 3 the vector s produced during the signature generation
process follows the distribution DΛ⊥u (At),s and has length at most s

√
nm =

O(s
√
nk) with overwhelming probability. So, the signature (t, s) is accepted by

the verification algorithm.

3.2 Security Proof

The security of the scheme is based on the following homomorphic property of
G-trapdoors over rings. We remark that the property makes essential use of the
commutativity of matrices corresponding to ring elements in Rq, so it does not
trivially adapts to general lattices, unless one restricts the set of tags to scalar
matrices.

Lemma 6. For i = 0, . . . , d, let R[i] ∈ Rw×k be a G-trapdoor for [A,A[i]] with

tag H[i] ∈ Rq, where A[i] ∈ R1×k
q . Then, any linear combination R =

∑
i ci ·R[i]

with ci ∈ Rq is a G-trapdoor for [A,
∑
i ciA[i]] with tag H =

∑
i ciH[i].

Proof. By definition of G-trapdoor, we know that [A,A[i]](R[i], I) = H[i]G for
all i. Therefore[

A,
∑

i
ciA[i]

]
(R, I) = AR +

∑
i
ciA[i] =

∑
i
ci(AR[i] + A[i])

=
∑

i
ci[A,A[i]](R[i], I) =

∑
i
ciH[i]G = HG.

Therefore R is a G-trapdoor with tag H.



Theorem 5 (EUF-naCMASecurity). Under the RingSISn,m,q,β assumption

for β = Õ(n7/2), the above scheme naSS is EUF-naCMA secure. More pre-
cisely, if there exists an attacker A against EUF-naCMAnaSS that runs in time
T , makes at most Q queries where 1 ≤ Q ≤ 2o(n) and succeeds with probability
ε ≥ 2−o(n), then, there exists an algorithm SA that runs in time T ′ = T+poly(n),

and solves SIS(n,w, q, β) with probability ε′ ≥ Ω
(
ε1+c

Q2c

)
.

The rest of the section is devoted to the proof of the theorem.

Confined Guessing Stage We assume we have an attacker A against the EUF-
naCMA security of naSS that makes at most Q = 2o(n) signature queries, and
succeeds with probability ε ≥ 2−o(n). Let i? the smallest index such that 2Q2/ε ≤
|Ti? |. (Notice that such index exists because 2Q2/ε = 2o(n) ≤ 2b

n
2c c ≤ |T |.) This

guarantees that, if one chooses Q tags at random in Ti? , then they will be all
distinct except with probability at most ε/2.

The simulator S receives Q non-adaptive signature queries µ(0) . . .µ(Q−1)

from A. For each message µ(j), the simulator S chooses a uniformly random tag

t(j) ∈ T . If a collision of prefixes happens (i.e., if t
(j)
≤i? = t

(k)
≤i? for some j 6= k)

the simulator aborts. (This happens with probability at most ε/2.) Otherwise,
S chooses a prefix t?≤i? ∈ Ti? uniformly at random. (The rest of the tag t?

will be specified later on.) The hope is that the adversary will output a forgery
(t�, s�) such that t�≤i? = t?≤i? . We will make the adversary’s view statistically
independent from the choice of t?≤i? ∈ Ti? , so that t�≤i? = t?≤i? will hold true
with probability 1/|Ti? |.

Simulating Key Generation and Signatures The simulator also receives a RingSIS
challenge, the row vector A← Um, from which it will build the public key. This
is done by running (A[i],R[i]) ← GenTrap(A,H[i], σ

′) with σ′ = ω(
√

log n)) for
i = 0, . . . , d and

H[i] =


0 ∈ Rq if i > i?

1 ∈ Rq if 1 ≤ i ≤ i?
−t?≤i? if i = 0.

Since ω(
√

log n) ≤ σ′, by Theorem 4 the matrices A[i] are statistically close to

uniform. Moreover, by Fact 2, each R[i] ∈ Rm×k is a G-trapdoor for [A,A[i]]

with s1(R[i]) ≤
√
n ·ω(log n). Therefore, by Lemma 6, Rt = R[0] +

∑d
i=1 t[i] ·R[i]

is a G-trapdoor for At = [A,A[0] +
∑
i t[i] ·A[i]] with tag Ht = t≤i? − t?≤i? . The

quality of this trapdoor is

s1(Rt) ≤ s1(R[0]) +
∑

i
s1(t[i] ·R[i]) ≤

(
1 +

∑
i
s1(t[i])

)
max
i
s1(R[i])

≤
(

1 +
∑

i
(ci − ci−1)

)√
n · ω(log n) = n3/2 · ω(log n)

where we have used the geometric bound s1(t[i]) ≤ ci− ci−1 from Fact 5. So, the
simulator can use Rt as a trapdoor to sign messages with tag t as long as Ht

is invertible. We observe that Ht = 0 whenever t?≤i? = t≤i? (i.e., when t?≤i? is a



prefix of t), and it is invertible otherwise. So, the simulator can efficiently answer

all signature queries except at most for one index j such that t
(j)
≤i? = t?≤i? . If such

index exists, set µ? = µ(j) and t? = t(j) (recall that we’ve only chosen the prefix
t?≤i? of t? at the confined guessing stage), otherwise S chooses a random µ?

and a random t? extension of t?≤i? . We will use our last degree of freedom v to
“program” a signature for this only message µ?: choose a signature s? ← Dm

R,s,
and set v = At?s?−Uµ?. Applying Lemma 4, we check that v is close to uniform
and independent of At? , U and µ. This shows how to efficiently simulate public
key and signatures that are indistinguishable from a real attack.

Notice that we have not specified how to choose U yet. In order to for the
simulator to exploit the forgery, we want U = ARU for some RU with small
entries. We can set RU ← DR,σ′ so that, by Lemma 4, U = ARU is statistically
close to uniform, and s1(RU) =

√
n · ω(log n).

Exploiting the forgery After all those shenanigans from the simulators S, with
probability at least ε/2, the adversary outputs a forgery (t�, s�) for some message
µ� of his choice. The simulator’s secret hope that t�≤i? = t?≤i? is fulfilled with
probability 1/|Ti? |; if not, S aborts. Otherwise we have

At? · s? = U · µ? + v and At� · s� = U · µ� + v

Recall that for any tag t ∈ T we have At = [A|HtG − ARt] (Rt is a G-
trapdoor of At with tag Ht); additionally the condition t�≤i? = t?≤i? ensures
Ht? = Ht� = 0. We derive

[A|−ARt? |−ARU] ·
[

s?1
s?2
µ?

]
= v = [A|−ARt� |−ARU] ·

[
s�1
s�2
µ�

]
.

In particular we obtain Aw = 0 for

w = (s?1 − s�1 − (Rt? · s?2 −Rt� · s�2)−RU(µ? − µ�)) .

Quite obviously, w is small (we will quantify below). Less obviously, it is
nonzero, except with negligible probability. We split our analysis into 4 different
cases, corresponding to different types of forgeries (µ?, t?, s?) 6= (µ�, t�, s�):

case 1 s?2 6= s�2. Even revealing RU and all R[i] for i > 0, one has that R[0] ·(s?1−s�1)
conditioned on the knowledge of Ā and A[0] = AR[0] contains at least Ω(n)
bits of min-entropy, using Corollary 2. In particular the probability that
w = 0 is less than 2−Ω(n).

case 2 µ? 6= µ�. Even revealing all R[i] for i ≥ 0, one has that RU · (s?1 − s�1)
conditioned on the knowledge of Ā and U = ARU contains at least Ω(n)
bits of min-entropy, using Corollary 2. In particular the probability that
w = 0 is less than 2−Ω(n).

case 3 s?1 = s�1, t? 6= t�. Choose some i such that t?[i] 6= t�[i]. Even revealing RU and

all R[j] for j 6= i, one has that R[i] ·s?1 conditioned on the knowledge of Ā and



A[i] = AR[i] contains at least Ω(n) bits of min-entropy, using Corollary 2.
So does (t?[i] − t�[i]) · R[i] · s?1 since t?[i] − t�[i] is an invertible element of Rq
(Corollary 1). In particular the probability that w = 0 is less than 2−Ω(n).

case 4 s?2 = s�2,µ
? = µ�, t? = t�, s?1 6= s�1. In this case one notices that w = s?1−s�1 6=

0 and concludes.

Size of the extracted SIS solution Because s?, s� are valid signatures, ‖s?‖, ‖s�‖ ≤
s
√
m ≤ n2w ·ω(log n)3/2. Additionally s1(Rt) ≤ n3/2 ·ω(log n) for any tag t ∈ T ,

as proved above, and ‖µ?‖, ‖µ�‖ ≤
√
m = O(

√
nk) and RU ≤

√
n · ω(log n).

Combining all those bounds we obtain

‖w‖ ≤ n7/2 · log n · ω(log n)5/2.

Success probability of the simulation The success probability ε′ of the simulator
is at least (ε− ε/2)/|Ti? | − 2−Ω(n) where

– ε is the success probability of the attacker,
– ε/2 bounds the probability of a collision of tags,
– 1/|Ti? | is the probability that the confined guess is correct, i.e., t�≤i? = t?≤i? ,

and
– 2−Ω(n) bounds the probability that the extracted SIS solution is zero.

Our choice of i? (see confined guessing stage) guarantees that 2ci?−1 < 2Q2

ε ≤
2ci? = |Ti? |. We also have ci? ≤ αci

?

= c(αci
?−1) < c(ci?−1 + 1). Therefore

|Ti? | = 2ci? ≤ 2c·(ci?−1+1) ≤
(

4Q2

ε

)c
. Overall the success probability of solving

the SIS instance is at least

ε′ ≥ ε

2

(
ε

4Q2

)c
− 2−Ω(n) = Ω

(
ε1+c

Q2c

)
.
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A Missing proofs

Proof (Fact 2). For a vector v ∈ Rn over ring R, let Diag(v) denotes the diagonal
matrice with entries v1 . . . vn. Notice that the component wise product of two
vectors f �g can be written as the matrix-vector product Diag(f) ·g. This gives
the identity σ(f · g) = Diag(σ(f)) · σ(g) for f, g ∈ R with σ : R → Cn denoting
the canonical embedding:

σ : f ∈ R 7→ (f(ω1), . . . f(ω`)) ∈ Cn where ω` = e(2`−1)ıπ/n

. Let R = (ri,j)← Dw×k
R,s ; and set

D =

[
D1,1 ··· D1,k

...
...

Dw,1 ··· Dw,k

]
∈ Cnw×nk and Di,j = Diag(σ(ri,j)) ∈ Cn×n.

We extend the canonical embedding σ : R → Cn to vectors in Rd as its
componentwise application; σ(v) = (σ(v1), . . . σ(vk)) ∈ Cnk. With this notation,
we have σ(R ·v) = D · σ(v); and because the canonical embedding σ is a scaled
isometry, we have s1(R) = s1(D).

Permuting rows and column, D can be rewritten as the block-diagonal ma-
trix B = Diag(B1, . . .Bn) ∈ Cnw×nk, B` ∈ Cw×k where the coefficients of B`

are all the embeddings σ`(ri,j) = ri,j(ω`) for (i, j) ∈ {1 . . . w} × {1 . . . k}. The
coefficients of Re(B`) (the real part of B`) are independent and sub-gaussian of
parameter s

√
n. Indeed

Re(B`) =

n−1∑
k=0

Re(ωk` ) · (ri,j)k

where the (ri,j)k are independent and sub-gaussian of parameter s while |Re(ωk` )| ≤
1. Therefore by Lemma 1

s1(Re(B`)) ≤ s
√
n ·O(

√
w +
√
k + ω(

√
log n))

with overwhelming probability. The same results hold for the imaginary part
Im(B`) of B`. We conclude

s1(D) ≤ s1(B) ≤ max
`
s1(B`) ≤ max

`

√
s1(Re(B`))2 + s1(Im(B`))2

≤ s
√
n ·O(

√
w +
√
k + ω(

√
log n)).
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Proof (Lemma 4). The proof is adapted from [13, Lemma 5.3]. Consider the
lattice Λ(A>) spanned by the columns of A> and the vectors of qZnw; it is the
(scaled) dual of Λ⊥(A). We will first show that the minimal distance λ∞1 (Λ(A>))
is at least q/12 with overwhelming probability, and conclude using [13, Lemma
2.6] that ηε(Λ

⊥(A)) ≤ ω(
√

lnnw) for some negligible function ε(n).
Recall that the irreducible factors of Φ2n(X) mod 3 are P1(X) = Xn/2 +

Xn/4 − 1 and P2(X) = Xn/2 −Xn/4 − 1. Setting p1 = (P1(X)), p2 = (P2(X))
the nonzero ideals of Rq are exactly p1, 3p1 . . . 3

k−1p1; p2, 3p2 . . . 3
k−1p2 and

(1), (3), (32), . . . (3k−1).
Now, fix some x ∈ R \ {0}, et set I = (x), it is one of the nonzero ideal

listed above. Let r ≥ n/2 denotes its rank. Our goal is to prove, that over the
randomness of A ∈ R1×w, the probability that Ax falls in in the hypercube
Cw = {v ∈ Rw| ‖v‖∞ < q/12} is less than 2−O(wr). Because x is a generator of
I the distribution of Ax is uniform over Iw. We proceed by bounding the ratio
|C ∩ I|/|I|.

Case 1: (I = (3h) for h ∈ {0 . . . k − 1}). Observe that |C ∩ I| ≤ |{3hZ ∩
(−q/12, q/12)}n| ≤ d3k−h/6en; which leads to

|C ∩ I|/|I| ≤
(

3k−h/6 + 1

3k−h

)n
≤
(

1

6
+

1

3k−h

)n
≤ 2−n.

Case 2: (I = 3hpi for h ∈ {0 . . . k−1}). Start by noting that any element e of I

can be uniquely written e = Pi(X)·s where s =
∑n/2−1
i=0 siX

i is a polynomial and
of degree strictly less than n/2 in the ideal (3h) ofR. Also note that ‖e‖∞ ≤ q/12
implies ‖s‖∞ ≤ q/12, indeed for i ∈ {0 . . . n/4 − 1} we have ei = −si and for
i ∈ {n/4 . . . n/2− 1} we have ei+n/2 = si. Using a similar counting argument on
valid values of s we derive

|C ∩ I|/|I| ≤
(

3k−h/6 + 1

3k−h

)n/2
≤
(

1

6
+

1

3k−h

)n/2
≤ 2−n/2.

Taking the union bound over all nonzero x we conclude that λ∞1 (Λ(A>)) ≥ q/12
except with probability qn · 2−nw/2 ≤ 2−Ω(n).

Proof (Corollary 2). Without loss of generality assume that v1 6= 0. Applying the
previous Lemma 4 on

∑
i≥2 ai·xi, the knowledge of

∑
i ai·xi = a1·x1+

∑
i≥2 ai·xi

reveals only negligible any information about x1. Also note that x1 mod 3 is
negligibly close to uniform (ηε(3Z) ≤ ω(

√
lnn) for some negligible function ε(n)).

Setting I = (v1) 6= (0) we deduce that v1 · x1 mod 3I is almost uniform
in I/3I. Recall from the previous proof that the only nonzero ideals of Rq
are exactly p1, 3p1 . . . 3

k−1p1; p2, 3p2 . . . 3
k−1p2 and (1), (3), (32), . . . (3k−1) where

both p1 and p2 are ideals of rank n/2. This implies that |I/3I| = 3n/2 or 3n. We
conclude that v1 · x1 has at least Ω(n) bits of entropy and so has

∑
i vi · xi.
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