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Abstract. In this paper we show that indistinguishability obfuscation
for general circuits implies, somewhat counterintuitively, strong impossi-
bility results for virtual black box obfuscation. In particular, it implies:

– The impossibility of average-case virtual black box obfuscation with
auxiliary input for any circuit family with super-polynomial pseudo-
entropy (for example, many cryptographic primitives). Impossibility
holds even when the auxiliary input depends only on the public
circuit family, and not which circuit in the family is being obfuscated.

– The impossibility of average-case virtual black box obfuscation with
a universal simulator (with or without any auxiliary input) for any
circuit family with super-polynomial pseudo-entropy.

These bounds significantly strengthen the impossibility results of Gold-
wasser and Kalai (FOCS 2005).

1 Introduction

The study of program obfuscation—a method that transforms a program (say,
described as a Boolean circuit) into a form that is executable, but otherwise com-
pletely unintelligible—has been a longstanding research direction in cryptogra-
phy. Barak et al. [BGI+01] formalized a number of security notions for this task.
The strongest and most applicable of these notions is virtual black box (VBB) ob-
fuscation, which requires that any adversary trying to learn information from an
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obfuscated program cannot do better than a simulator that is given only black-
box access to the program. Barak et al. constructed contrived function families
that cannot be VBB obfuscated, thus ruling out a universal obfuscator, but they
left open the possibility that large classes of programs might still be obfuscated.
Subsequently, VBB obfuscators were produced only for a number of restricted
(and mostly simple) classes of programs [Can97,CD08,CRV10,BR13a,BBC+14].

In contrast, recent progress for more relaxed notions of obfuscation suggests
a much more positive picture: Garg et al. [GGH+13] proposed a candidate con-
struction for indistinguishability obfuscation for all circuits. This notion requires
only that it is hard to distinguish an obfuscation of C0 from an obfuscation of C1,
where C0 and C1 are circuits of the same size that compute the same function
[BGI+01]. Indeed, unlike the case of VBB obfuscation, there are no known im-
possibility theorems for indistinguishability obfuscation. Furthermore, the Garg
et al. construction and variants thereof were shown to satisfy the VBB guarantee
in ideal algebraic oracle models [CV13,BR13b,BGK+13].

Although indistinguishability obfuscation might initially sound arcane, it
is surprisingly powerful. For example, it amounts to best possible obfuscation
[GR07], in the sense that anything that can be hidden by some obfuscator will
be hidden by every indistinguishability obfuscator. Subsequent to [GGH+13],
a flood of results have appeared showing that indistinguishability obfuscation
suffices for many applications [SW13,GGH+13,HSW13,GGJS13].

Still, for many program classes the meaningfulness and applicability of in-
distinguishability obfuscation is unclear. Thus, understanding which classes of
programs are VBB obfuscatable remains of central importance. Aiming towards
such a characterization, Goldwasser and Kalai [GK05] proved strong limitations
on VBB obfuscation for a broad class of pseudo-entropic programs, including
many cryptographic functions, such as pseudo-random functions and certain
natural instances of encryption and signatures. They showed the impossibility
of a form of VBB security with respect to adversaries that have some a priori
auxiliary information. When the auxiliary information depends on the actual
obfuscated program, they showed that no class of pseudo-entropic functions can
be obfuscated, assuming VBB obfuscation for a simple class of point-filter func-
tions. For auxiliary information that depends only on the class of programs to
be obfuscated, they gave an unconditional result, but only for a restricted class
of programs (those that evaluate NP-filter functions).

This work in a nutshell. We strengthen the impossibility results for VBB ob-
fuscation with auxiliary input, and we suggest another interpretation of auxiliary-
input obfuscation. In a somewhat strange twist, our negative results are based on
indistinguishability obfuscation, which is typically viewed positively. Specifically:

– We weaken the conditions for the impossibility of dependent auxiliary-input
VBB obfuscation to witness encryption, which in turn follows from indistin-
guishability obfuscation.

– We extend the impossibility of independent auxiliary-input VBB obfuscation
to all pseudo-entropic functions, assuming indistinguishability obfuscation.



– We observe that auxiliary-input VBB obfuscation is equivalent to a natural
formulation of VBB obfuscation with universal simulation. This equivalence
provides conceptual support for the significance of our impossibility results.

In the rest of the introduction, we introduce the notion of universal simulation
and further discuss the notion of auxiliary-input VBB obfuscation. Then, we
provide an overview of the results and sketch the proof techniques involved.

Universal simulators. The definition of VBB obfuscation requires that for each
PPT adversary A, there exists a PPT simulator S that succeeds in simulating
the output of A when A is given the obfuscation O(f) but S is given only black-
box access to f . This definition does not say how hard (or easy) it is to find the
corresponding simulator S for a given adversary A. When security with black-
box access to the function depends on computational hardness assumptions,
this definition leaves open the possibility that the obfuscation could be broken
in practice without providing an algorithm that breaks these assumptions.

A stronger and arguably more meaningful definition requires that there exist
an efficient transformation from an adversary to its corresponding simulator, or
equivalently a universal PPT simulator capable of simulating any PPT adversary
A given the code of A. We will refer to such a definition as VBB obfuscation with
a universal simulator.

As we said above, we will show that VBB obfuscation with a universal sim-
ulator is impossible for function families with super-polynomial pseudo-entropy
if general indistinguishability obfuscation is possible.

Auxiliary input. The definition of VBB security with auxiliary inputs, origi-
nally considered in [GK05], is a strengthening of VBB security, corresponding to
a setting in which the adversary may have some additional a priori information.

Allowing auxiliary input is crucial when obfuscation is used together with
other components in a larger scheme or protocol. Consider, for example, a zero-
knowledge protocol in which one of the prover’s messages to the verifier contains
an obfuscated program O(f). To prove that the protocol is zero-knowledge, we
would like to show that every verifier V has a zero-knowledge simulator Szk that
can simulate V’s view of the protocol. Intuitively, Szk would rely on the security
of O by thinking of V as an “obfuscation adversary” that is trying to learn
information from O(f). Such an adversary has an “obfuscation simulator” SO
that can learn the same information given only black-box access to f , and Szk
can try to use SO. The problem is that the view of V does not depend only on
the code of V, but also on auxiliary input to V, such as other prover messages
and the statement being proven. An obfuscation definition that does not allow
auxiliary input is insufficient to handle this case.

The problem can be avoided by using a definition that guarantees the ex-
istence of an obfuscation simulator that can simulate the view of V given any
auxiliary input. If the obfuscated program f depends on other prover messages
or on the statement, then we require security with respect to dependent aux-
iliary input. Otherwise independent auxiliary input suffices. The paper [GK05]
considered both of these notions. In the case of dependent auxiliary input, the



virtual black box property is required to hold even when the auxiliary input
given to the adversary and simulator depends on the actual, secret circuit being
obfuscated. In the case of independent auxiliary input, this requirement is weak-
ened: the auxiliary input may depend only on the family of circuits, which is
public. The actual circuit to be obfuscated is chosen randomly from the family,
independently of the auxiliary input given to the adversary and simulator.

More precisely, an obfuscator O for a function family F is (worst-case) VBB
secure with dependent auxiliary inputs if for every probabilistic polynomial-
time (PPT) adversary A, there exists a PPT simulator S such that for ev-
ery f ∈ F and every auxiliary input aux (which may depend on the func-
tion f), the output of A(O(f), aux(f)) is computationally indistinguishable from
Sf (aux(f)). The average-case analogue of this definition requires that the output
of A(O(f), aux(f)) be computationally indistinguishable from Sf (aux(f)) for a
random function f ← F .

VBB security with independent auxiliary inputs is defined only with re-
spect to an average-case definition.7 An obfuscator O for a function family F
is average-case VBB secure with independent auxiliary inputs if for every PPT
adversary A, there exists a PPT simulator S such that for every auxiliary input
aux and for a random f ← F , the output of A(O(f), aux) is computationally
indistinguishable from Sf (aux).

For the case of dependent auxiliary input, Goldwasser and Kalai [GK05]
showed that functions with super-polynomial pseudo-entropy cannot be VBB
obfuscated, assuming that a different class of point filter functions can be VBB
obfuscated. For the weaker notion of VBB obfuscation with independent aux-
iliary input, they showed a more restricted impossibility result for a subclass
of functions called filter functions. Our results extend these theorems, assuming
indistinguishability obfuscators exist.

1.1 Overview of results and techniques

First we prove that VBB security with a universal simulator is equivalent to VBB
security with auxiliary inputs, which is the obfuscation version of the known
equivalence for zero-knowledge proofs [Ore87]. More specifically, we prove that
worst-case VBB security with a universal simulator is equivalent to worst-case
VBB security with dependent auxiliary inputs, and that average-case VBB secu-
rity with a universal simulator is equivalent to average-case VBB security with
independent auxiliary inputs. To be consistent with the literature, when we refer
to VBB security we always consider the worst-case version. When we would like
to consider the average-case version we refer to it as average-case VBB.

Informal Lemma 1. A candidate obfuscator is a (worst-case) VBB obfuscator
with a universal simulator for a class of functions F if and only if it is a (worst-
case) VBB obfuscator for F with dependent auxiliary inputs.

7 It is not clear how to enforce that the auxiliary input is independent of the function
in a worst-case definition.



Informal Lemma 2. A candidate obfuscator is an average-case VBB obfuscator
with a universal simulator for a class of functions F if and only if it is an
average-case VBB obfuscator for F with independent auxiliary inputs.

We state and prove these results as Lemmas 1 and 2 in Section 3.

The above two lemmas imply that in order to obtain negative results for VBB
obfuscation with a universal simulator, it suffices to obtain negative results for
VBB obfuscation with auxiliary inputs.

New impossibility results. We show that indistinguishability obfuscation im-
plies that any function family with super-polynomial pseudo-entropy cannot be
VBB obfuscated with auxiliary input. Loosely speaking, a function family F
has super-polynomial pseudo-entropy if it is difficult to distinguish a genuine
function in F from one that has been randomly modified in some locations:
for every polynomial p there exists a polynomial-size set I of inputs such that
no efficient adversary can distinguish between a random function f ← F and
such a function with its values on I replaced with another random variable with
min-entropy p. We refer the reader to Definition 7 for the precise definition, but
note that such families include all pseudo-random function families. They also
include all semantically secure secret-key or public-key encryption schemes or
secure digital signature schemes, provided that the randomness is generated by
using a (secret) pseudo-random function. (See Claim 4.0.1 in [GK05].)

Recently, the notion of witness encryption was put forth by Garg et al. [GGSW13].
It was observed by Goldwasser et al. [GKP+13] that an extractable version of
witness encryption can be used to obfuscate the class of point-filter functions
with respect to dependent auxiliary inputs. Thus, together with [GK05], this
shows that the existence of an extractable witness encryption scheme implies
that any function with super-polynomial pseudo-entropy cannot be obfuscated
with respect to dependent auxiliary inputs.

Here we show that the proof of [GK05] actually implies that witness encryp-
tion, without the extractability property, suffices to prove that all functions with
super-polynomial pseudo-entropy are not obfuscatable with respect to dependent
auxiliary inputs.

Informal Theorem 3. Assume the existence of a witness encryption scheme.
Then no function family with super-polynomial pseudo-entropy has an average-
case VBB obfuscator with respect to dependent auxiliary input.

The idea behind the proof is that functions with high pseudo-entropy cannot
be efficiently compressed; i.e., given oracle access to such a function, one can-
not produce a small circuit for it. The reason is that functions with genuinely
high entropy cannot be compressed at all (let alone efficiently), and no efficient
algorithm can distinguish them from those with high pseudo-entropy.

Using this observation, the proof works as follows. Suppose we wish to con-
struct an obfuscation O(f) of a function f that has high pseudo-entropy on a
polynomial-size set I of inputs. We use witness encryption to encrypt a random
bit b so that it can be read only by someone who knows a circuit of size at most
|O(f)| for the values of f on I. Given this encryption of b as auxiliary input,



knowledge of the circuit O(f) suffices to decrypt b. However, black-box access to
f is not enough to produce any small circuit, and so VBB security is violated.

We note that this theorem is true in a strong sense: for any secret pred-
icate π(f) that is not learnable from black-box access to f , there exists an
adversary and auxiliary input aux(f) such that given O(f) and aux(f), the ad-
versary efficiently recovers π(f), whereas given aux(f) and oracle access to f , it
is computationally hard to recover π(f). Moreover, the theorem holds even if we
restrict aux(f) to be an efficiently computable function of f .

It was shown by Garg et al. [GGSW13] (using different terminology) that
indistinguishability obfuscation for point-filter functions implies the existence
of witness encryption. Thus, the informal theorem above can be restated as
follows: assuming the existence of indistinguishability obfuscation for point-filter
functions, functions with super-polynomial pseudo-entropy are not average-case
VBB obfuscatable with respect to dependent auxiliary inputs.

For independent auxiliary input, we make use of a different hypothesis,
namely indistinguishability obfuscation for puncturable pseudo-random functions
(see Definition 6). Roughly speaking, these are pseudo-random functions for
which we can produce alternate keys that effectively randomize the output for
a specified input while leaving the rest of the function unchanged.

Informal Theorem 4. Assume the existence of indistinguishability obfuscation
for a class of puncturable pseudo-random functions. Then no function family
with super-polynomial pseudo-entropy has an average-case VBB obfuscator with
respect to independent auxiliary input.

The proof of this theorem is a little more subtle than the previous proof.
Suppose we are trying to obfuscate a circuit family with high pseudo-entropy
on a set I of inputs. The auxiliary input will be iO(Ks), where iO denotes
indistinguishability obfuscation and Ks is a circuit that takes another circuit
C̃ as input and applies a puncturable pseudo-random function Gs to the values
C̃(I) of C̃ on I. Here, s is a random key.

Now, let O(C) be a candidate obfuscation of a circuit C. By definition,
applying the auxiliary circuit iO(Ks) to O(C) yields Ks(C) (i.e., Gs(C(I))), but
we will show that Ks(C) cannot be computed using only black-box access to C.
If it could, then we could replace the C oracle with suitable random values Y
on I and still get the answer Gs(Y ), by the definition of pseudo-entropy. Then
we could modify the auxiliary input to be iO(K∗s ), where the pseudo-random
function in K∗s has been punctured to randomize its value at Y . The reason this
modification is allowable is that with high probability, Ks and K∗s define the
same function (Y has entropy too high to be compressible to any small circuit,
so no input C̃ to K∗s will ever satisfy C̃(I) = Y ). Thus, iO(Ks) and iO(K∗s ) are
indistinguishable. However, by construction K∗s does not determine the value
Gs(Y ), which is a contradiction.

We state and prove these results more formally as Theorems 1 and 2. Together
with Lemmas 1 and 2, they immediately yield impossibility results for VBB
obfuscation with a universal simulator. In particular, Theorem 1 and Lemma 1
imply the following corollary.



Corollary 1. Assume the existence of a witness encryption scheme. Then no
function family with super-polynomial pseudo-entropy has a VBB obfuscator with
a universal simulator.

As was the case for Theorem 1, this corollary is true in a strong sense: for
any secret predicate π(f) that is not learnable from black-box access to f , there
exists an adversary that efficiently recovers π(f) given O(f), whereas given the
code of the adversary and given oracle access to f , it is computationally hard to
recover π(f).

Theorem 2 and Lemma 2 imply the following corollary.

Corollary 2. Assume the existence of indistinguishability obfuscation for a class
of puncturable pseudo-random functions. Then no function family with super-
polynomial pseudo-entropy has an average-case VBB obfuscator with a universal
simulator.

2 Preliminaries

Let F = {fs} be a family of polynomial-size circuits. In what follows, we write
F =

⋃
k∈N Fk with Fk = {fs}s∈{0,1}k . Each circuit fs will have size poly(|s|),

where poly denotes an unspecified, polynomially-bounded function.

Definition 1 (VBB obfuscation with universal simulator). Let F = {fs}
be a family of polynomial-size circuits. We say that a probabilistic algorithm O
(mapping circuits to circuits) is an obfuscation of F with a universal simulator
if the following conditions hold:

– Correctness: For every function fs ∈ F and every possible input x,

O(fs)(x) = fs(x).

– Polynomial slowdown: There exists a polynomial p such that for every
fs ∈ F ,

|O(fs)| ≤ p(|fs|).
– Security with a universal simulator: There exists a (possibly non-uniform)

PPT S such that for every (possibly non-uniform) PPT A, every predicate π,
every k ∈ N, and every s ∈ {0, 1}k,∣∣Pr[A(O(fs)) = π(s)]− Pr[Sfs(A) = π(s)]

∣∣ = negl(k), (1)

where the probabilities are over the random coin tosses of A and S. Here
negl(k) denotes an unspecified, negligible function (i.e., |negl(k)| = O(1/kc)
for each constant c > 0).

We say that O is an average-case obfuscation of F with a universal simulator
if Equation (1) holds for random s ← {0, 1}k; in other words, it means there
exists a (possibly non-uniform) PPT S such that for every (possibly non-uniform)
PPT A, every predicate π, and every k ∈ N,∣∣Pr[A(O(fs)) = π(s)]− Pr[Sfs(A) = π(s)]

∣∣ = negl(k),

where the probabilities are over s← {0, 1}k and over the coin tosses of A and S.



When A is non-uniform, the notation Sfs(A) of course means that S is given
a circuit for A for inputs of the appropriate size. When A is uniform, it means
the same thing as in the non-uniform case; equivalently, S is given the code for
A together with 1time(A(O(fs))) to ensure that it is allowed enough time.

In Definition 1, we have conflated the circuit size parameter k and the security
parameter of the obfuscation method. One could distinguish between them at the
cost of more notation, but this conflation is harmless for impossibility theorems.

Definition 2 (VBB obfuscation with auxiliary inputs). Let F = {fs} be
a family of polynomial-size circuits. We say that a probabilistic algorithm O is an
obfuscation of F with (dependent) auxiliary inputs if it satisfies the correctness
and polynomial slowdown conditions of Definition 1, and in addition it satisfies
the following security requirement:

– Security with auxiliary inputs: For every (possibly non-uniform) PPT A,
there exists a (possibly non-uniform) PPT S such that for every predicate π,
every k ∈ N, every s ∈ {0, 1}k, and every auxiliary input aux(s) of size
poly(k),∣∣Pr[A(O(fs), aux(s)) = π(s, aux(s))]− Pr[Sfs(aux(s)) = π(s, aux(s))]

∣∣ = negl(k),

where the probabilities are over the random coin tosses of A and S. We write
aux(s) as a function of s for clarity, but this is implicit in the quantification.

We say that O is an average-case obfuscation of F with (dependent) auxiliary
inputs if the above equation holds for random s← {0, 1}k; namely, if for every
(possibly non-uniform) PPT A there exists a (possibly non-uniform) PPT S such
that for every predicate π, every k ∈ N, and every auxiliary input aux(s) of size
poly(s) (and allowed to depend on s),∣∣Pr[A(O(fs), aux(s)) = π(s, aux(s))]− Pr[Sfs(aux(s)) = π(s, aux(s))]

∣∣ = negl(k),

where the probabilities are over s ← {0, 1}k and over the random coin tosses
of A and S.

In the definition above we allowed the auxiliary input to depend on the func-
tion being obfuscated. In what follows we define VBB obfuscation with indepen-
dent auxiliary inputs, where we restrict the auxiliary input to be independent of
the function being obfuscated. For this definition, only the average-case version
makes sense.

Definition 3 (Average-case VBB obfuscation with independent aux-
iliary inputs). Let F = {fs} be a family of polynomial-size circuits. We say
that O is an obfuscation of F with independent auxiliary inputs if it satisfies the
correctness and polynomial slowdown conditions of Definition 1, and in addition
it satisfies the following security requirement:

– Average-case security with independent auxiliary input: For every
(possibly non-uniform) PPT A, there exists a (possibly non-uniform) PPT



S such that for every predicate π, every k ∈ N, and every auxiliary input
aux ∈ {0, 1}poly(k),∣∣Pr[A(O(fs), aux) = π(s, aux)]− Pr[Sfs(aux) = π(s, aux)]

∣∣ = negl(k),

where the probabilities are over s← {0, 1}k and the coin tosses of A and S.

Definition 4 (Witness encryption). A witness encryption scheme for an NP
language L with corresponding witness relation RL is a pair of PPT algorithms
(Enc,Dec) such that the following conditions hold:

– Correctness: For all (x,w) ∈ RL and every b ∈ {0, 1},

Pr[Dec(Encx(1k, b), w) = b] = 1− negl(k).

– Semantic Security: For every x 6∈ L and every (possibly non-uniform)
PPT adversary A,∣∣Pr[A(Encx(1k, 0)) = 1]− Pr[A(Encx(1k, 1)) = 1]

∣∣ = negl(k),

where the probability is over the random coin tosses of Enc and A.

Definition 5 (Indistinguishability obfuscation). Let C be a family of polynomial-
size circuits. A PPT algorithm iO is said to be an indistinguishability obfuscator
for C if it satisfies the correctness and polynomial slowdown conditions of Defi-
nition 1, and in addition it satisfies the following security requirement:

– Indistinguishability: For all C,C ′ ∈ C that are of the same size and define
the same function, iO(C) and iO(C ′) are computationally indistinguishable.
More formally, for every (possibly non-uniform) PPT distinguisher D,

|Pr[D(iO(C)) = 1]− Pr[D(iO(C ′)) = 1]| = negl(k),

where the probability is over the random coin tosses of iO and D.

We next define puncturable pseudo-random functions, following [SW13]. We
consider a simple case in which any PRF might be punctured at a single point.

Definition 6 (Puncturable PRFs). Let `,m be polynomially bounded length
functions. An efficiently computable family of functions

G =
{
Gs : {0, 1}m(k) → {0, 1}`(k)

∣∣∣ s ∈ {0, 1}k, k ∈ N
}
,

associated with an efficient (probabilistic) key sampler GenG, is a puncturable
PRF if there exists a puncturing algorithm Punc that takes as input a key s ∈
{0, 1}k and a point x∗ ∈ {0, 1}m(k) and outputs a punctured key sx∗ so that the
following conditions are satisfied:

– Functionality is preserved under puncturing: For every x∗ ∈ {0, 1}m(k),
if we sample s from GenG(1k) and let sx∗ = Punc(s, x∗), then Gs and Gsx∗

have the same values at every point other than x∗ with probability 1.



– Indistinguishability at punctured points: The two ensembles{(
x∗, sx∗ ,Gs(x

∗)
) ∣∣ s← GenG(1k), sx∗ = Punc(s, x∗)

}
x∗∈{0,1}m(k),k∈N ,{(

x∗, sx∗ , u
) ∣∣∣ s← GenG(1k), sx∗ = Punc(s, x∗), u← {0, 1}`(k)

}
x∗∈{0,1}m(k),k∈N

are computationally indistinguishable by (possibly non-uniform) PPT distin-
guishers.

To be explicit, we include x∗ in the distribution; throughout, we shall assume
for simplicity that a punctured key sx∗ includes x∗ in the clear. As shown
in [BGI13,BW13,KPTZ13], the pseudo-random functions from [GGM86] yield
puncturable PRFs as defined above.

Definition 7 (Pseudo-entropy of a circuit class). Let p = p(k) be a poly-
nomial. We say that a class of circuits C =

⋃
k∈N Ck has pseudo-entropy at least

p = p(k), if there exists a polynomial t = t(k) and a subset Ik ⊆ {0, 1}k of
size t(k), and for every C ∈ Ck there exists a random variable Y C = (Yi)i∈Ik ∈
{0, 1}Ik , such that the following conditions hold:

1. The random variable Y C has statistical min-entropy at least p(k). In other
words, each of its values occurs with probability at most 2−p(k).

2. For every (possibly non-uniform) PPT distinguisher D,∣∣∣Pr[DC(1k) = 1]− Pr[DC◦Y C

(1k) = 1]
∣∣∣ = negl(k),

where C ◦ Y C denotes an oracle that agrees with C except that Y C replaces
the values of C for inputs in Ik. Here the probabilities are over C ← Ck, the
random variable Y C , and the random coin tosses of D.

We say that C has super-polynomial pseudo-entropy if it has pseudo-entropy
at least p for every polynomial p, and we then call the circuits in C pseudo-
entropic.

3 Equivalence between a universal simulator and
auxiliary inputs

In this section we show that VBB obfuscation with a universal simulator is
equivalent to VBB obfuscation with auxiliary inputs. Specifically, we prove the
following two lemmas.

Lemma 1. Let F = {fs} be a family of polynomial-size circuits. Then O is
a VBB obfuscator for F with a universal simulator if and only if it is a VBB
obfuscator for F with dependent auxiliary inputs.

Lemma 2. Let F = {fs} be a family of polynomial-size circuits. Then O is an
average-case VBB obfuscator for F with a universal simulator if and only if it
is an average-case VBB obfuscator for F with independent auxiliary inputs.



Proof of Lemma 1.
(⇒): Suppose that O is a VBB obfuscator for F with a universal simulator.
Namely, there exists a (possibly non-uniform) PPT S such that for every (possi-
bly non-uniform) PPT A, every predicate π, every k ∈ N and every s ∈ {0, 1}k,∣∣Pr[A(O(fs)) = π(s)]− Pr[Sfs(A) = π(s)]

∣∣ = negl(k),

where the probabilities are over the random coin tosses of A and S.
We will prove that O is a VBB obfuscator for F with dependent auxil-

iary inputs. To this end, fix any (possibly non-uniform) PPT adversary A. Let
SA be the PPT simulator defined as follows: for every auxiliary input aux(s),

SfsA (aux(s)) runs the universal simulator Sfs on input Aaux(s), where Aaux(s) is
the (non-uniform) adversary that simulates A with auxiliary input aux(s). We
need to prove that for every predicate π, every k ∈ N, and every s ∈ {0, 1}k,∣∣∣Pr[A(O(fs), aux(s)) = π(s, aux(s))]− Pr[SfsA (aux(s)) = π(s, aux(s))]

∣∣∣ = negl(k),

where the probabilities are over the random coin tosses of A and S.
To do so, we check that∣∣∣Pr[A(O(fs), aux(s)) = π(s, aux(s))]− Pr[SfsA (aux(s)) = π(s, aux(s))]

∣∣∣
=
∣∣Pr[A(O(fs), aux(s)) = π(s, aux(s))]− Pr[Sfs(Aaux(s)) = π(s, aux(s))]

∣∣
≤
∣∣Pr[A(O(fs), aux(s)) = π(s, aux(s))]− Pr[Aaux(s)(O(fs)) = π(s, aux(s))]

∣∣
+
∣∣Pr[Aaux(s)(O(fs)) = π(s, aux(s))]− Pr[Sfs(Aaux(s)) = π(s, aux(s))]

∣∣
= negl(k),

where the first equation follows by the definition of SA, the inequality follows
from the triangle inequality, and the last equation follows from the definition
of Aaux(s) and from the fact that O is VBB secure with the universal simulator S.

(⇐): Suppose that O is a VBB obfuscator for F with dependent auxiliary inputs.
Namely, for every (possibly non-uniform) PPT A there exists a (possibly non-
uniform) PPT S such that for every predicate π, every k ∈ N, every s ∈ {0, 1}k,
and every auxiliary input aux(s) of size poly(k),∣∣Pr[A(O(fs), aux(s)) = π(s, aux(s))]− Pr[Sfs(aux(s)) = π(s, aux(s))]

∣∣ = negl(k),

where the probabilities are over the random coin tosses of A and S. We prove
that O is a VBB obfuscator for F with a universal simulator. To this end, let A∗

be a universal PPT adversary that interprets its auxiliary input aux = aux(s) as
a (possibly non-uniform) PPT adversary and runs this adversary. (As pointed
out after Definition 1, we must interpret this carefully regarding running times in
the uniform case.) The fact that O is a VBB obfuscator with dependent auxiliary
inputs implies that there is a PPT simulator S such that for every predicate π,
every k ∈ N, every s ∈ {0, 1}k, and every auxiliary input aux(s) of size poly(k),∣∣Pr[A∗(O(fs), aux(s)) = π(s, aux(s))]− Pr[Sfs(aux(s)) = π(s, aux(s))]

∣∣ = negl(k),
(2)



where the probabilities are over the random coin tosses of A∗ and S. We claim
that S is a universal simulator for O. Namely, we claim that for every (possibly
non-uniform) PPT adversary A, every predicate π, every k ∈ N, and every
s ∈ {0, 1}k, ∣∣Pr[A(O(fs)) = π(s)]− Pr[Sfs(A) = π(s)]

∣∣ = negl(k).

To see why, note that∣∣Pr[A(O(fs)) = π(s)]− Pr[Sfs(A) = π(s)]
∣∣

≤ |Pr[A(O(fs)) = π(s)]− Pr[A∗(O(fs),A) = π(s)]|
+
∣∣Pr[A∗(O(fs),A) = π(s)]− Pr[Sfs(A) = π(s)]

∣∣
=
∣∣Pr[A∗(O(fs),A) = π(s)]− Pr[Sfs(A) = π(s)]

∣∣
= negl(k),

where the inequality follows from the triangle inequality, the next equation fol-
lows from the definition of A∗, and the last equation follows from Equation (2).

ut
The proof of Lemma 2 is almost identical to that of Lemma 1 (see arXiv

paper 1401.0348v3 at http://arXiv.org/abs/1401.0348v3 for the details).

4 Impossibility for obfuscation with auxiliary inputs

As mentioned in the introduction, Goldwasser and Kalai [GK05] proved that
either point-filter functions are not obfuscatable with dependent auxiliary in-
puts or all function families with sufficient pseudo-entropy are not obfuscat-
able with dependent auxiliary inputs. It was recently observed by Goldwasser
et al. [GKP+13] that extractable witness encryption implies that point-filter
functions are obfuscatable with dependent auxiliary inputs, and thus that any
function family with sufficient pseudo-entropy is not obfuscatable with depen-
dent auxiliary inputs. We now show that the same impossibility result (with
essentially the same proof as in [GK05]) can be obtained assuming the existence
of witness encryption, without any extractability property.

Theorem 1. Assume the existence of a witness encryption scheme for an NP-
complete language. Then no function family with super-polynomial pseudo-entropy
has an average-case VBB obfuscator with respect to dependent auxiliary input.

In fact, the proof rules out average-case obfuscation if we restrict the auxiliary
input to be efficiently computable given the function (or even oracle access to
the function).

Theorem 2. Assume the existence of indistinguishability obfuscation for a class
of puncturable pseudo-random functions. Then no function family with super-
polynomial pseudo-entropy has an average-case VBB obfuscator with respect to
independent auxiliary input.



We describe the specific class for which we need indistinguishability obfusca-
tion in the proof of the theorem.

Theorems 1 and 2, together with Lemmas 1 and 2, immediately yield im-
possibility results for VBB obfuscation with a universal simulator. In particular,
Theorem 1 and Lemma 1 imply the following corollary.

Corollary 1. Assume the existence of a witness encryption scheme for an NP-
complete language. Then no function family with super-polynomial pseudo-entropy
has a VBB obfuscator with a universal simulator.

Theorem 2 and Lemma 2 imply the following corollary.

Corollary 2. Assume the existence of indistinguishability obfuscation for a class
of puncturable pseudo-random functions. Then no function family with super-
polynomial pseudo-entropy has an average-case VBB obfuscator with a universal
simulator.

All that remains is to prove Theorems 1 and 2. For notation in both proofs,
let C =

⋃
k∈N Ck be a class of circuits with super-polynomial pseudo-entropy

such that each C ∈ Ck maps {0, 1}`(k) to {0, 1}`′(k). Let O be any candidate
obfuscator for C, and let m(k) be a polynomial such that |O(C)| ≤ m(k) for
every C ∈ Ck.

4.1 Proof of Theorem 1

The fact that C has super-polynomial pseudo-entropy implies that it has pseudo-
entropy at least m(k) + k. In particular, recalling Definition 7, this implies that
there exists a polynomial t = t(k) and a subset Ik ⊆ {0, 1}k of size t(k) such
that for every C there exists a random variable Y C = (Y1, . . . , Yt) such that the
following conditions hold:

1. The random variable Y C has statistical min-entropy at least m(k) + k.
2. For every (possibly non-uniform) PPT distinguisher D,∣∣∣Pr[DC(1k) = 1]− Pr[DC◦Y C

(1k) = 1]
∣∣∣ = negl(k),

where C ◦Y C denotes an oracle that agrees with C except that Y C replaces
the values of C for inputs in Ik. Here the probabilities are over C ← Ck, the
random variable Y C , and the random coin tosses of D.

We define an NP language L by

L = {(xi)i∈Ik | k ∈ N and ∃ circuit C with |C| ≤ p(k) and C(i) = xi for i ∈ Ik} .

Set x = (C(i))i∈Ik and let aux(C) = Encx(1k, b), where b ← {0, 1} is a
random bit and Enc is a witness encryption for the language L. Note that the
fact that there is a witness encryption for an NP-complete language implies that
there is a witness encryption for every NP language, and in particular for L.

Given O(C) and aux(C) = Encx(1k, b), one can efficiently decrypt b with
probability 1 − negl(k), since O(C) is a valid witness of x. It remains to prove
the following claim.



Claim. For any (possibly non-uniform) PPT adversary S which takes as input
aux(s) = Encx(1k, b) and has black-box access to C,

Pr[SC(Encx(1k, b)) = b] ≤ 1

2
+ negl(k).

Proof. Suppose for the sake of contradiction that there exists a PPT adversary
S such that

Pr[SC(Encx(1k, b)) = b] ≥ 1

2
+ ε(k)

for some non-negligible function ε, where the probability is over random C ← Ck,
the choice of b, and the randomness of Enc.

Let D be the distinguisher that, given oracle access to C, does the following.
First, it computes x = (C(i))i∈Ik by querying the oracle t(k) times. Then it
computes Encx(1k, b) and simulates SC(Encx(1k, b)) to arrive at its output.

By assumption,

Pr[DC(1k) = b] ≥ 1

2
+ ε(k).

Thus, because C has super-polynomial pseudo-entropy,

Pr[DC◦Y C

(1k) = b] ≥ 1

2
+ ε(k) + negl(k). (3)

When it is given oracle access to C ◦ Y C , D replaces x with x∗ = Y C , and at
the end it is trying to recover b from Encx∗(1

k, b).

Note however that x∗ has min-entropy m(k) + k, and so the probability that
it is in L is at most 2−k. (For each of the at most 2m(k) circuits of size m(k)
in the definition of L, the probability of obtaining x∗ is at most 2−m(k)−k.)
Thus, Equation (3) contradicts the semantic security of the underlying witness-
encryption scheme.

Remark 1. Note that for any secret predicate π that is not learnable from black-
box access to the circuit, we could have taken the auxiliary input to be aux(C) =
Encx(1k, b) where b = π(C) (as opposed to being truly random). In this case,
there exists a PPT adversary A that given the obfuscated circuit O(C) and
the auxiliary input aux(C) outputs π(C) with probability 1, whereas any PPT
simulator cannot learn π(C) from aux(C) and black-box access to C.

Using Lemma 1, we conclude that for any secret predicate π that is not
learnable from black-box access to the circuit and for any circuit C there exists
an adversary Aaux(C) that outputs π(C) with probability 1, whereas any universal
simulator S, which is given black box access to C and takes as input the code
of Aaux(C), cannot learn the predicate π(C).

Thus our negative result is a strong one: VBB obfuscation with a universal
simulator cannot conceal any secret predicate that is not learnable from black-
box access to the circuit.



4.2 Proof of Theorem 2

We first describe an auxiliary-input distribution ensemble Z and a PPT adver-
sary A such that given z ← Z and an obfuscation of C ← C, A always learns
some predicate π(C, z). Then, we show that any PPT simulator that is only
given oracle access to C fails to learn the predicate.

The auxiliary input distribution Z. By assumption, C has pseudo-entropy
at least m(k) + k. Let {Ik}k∈N be the sets guaranteed by Definition 7, where Ik
is of polynomial size t(k), and let G be a puncturable one-bit PRF family

G =
{
Gs : {0, 1}`

′(k)·t(k) → {0, 1}
∣∣∣ s ∈ {0, 1}k, k ∈ N

}
.

We define two circuit families

K =
{
Ks : {0, 1}m(k) → {0, 1}

∣∣∣ s ∈ {0, 1}k, k ∈ N
}
,

K∗ =
{
K∗sx∗ : {0, 1}m(k) → {0, 1}

∣∣∣ s ∈ {0, 1}k, x∗ ∈ {0, 1}`′(k)·t(k), k ∈ N
}
.

Given a circuit C̃ : {0, 1}` → {0, 1}`′ of size m as input, the circuit Ks com-
putes x := C̃(Ik) := (C̃(i))i∈Ik and outputs Gs(x). See Figure 1.

Hardwired: a PRF key s ∈ {0, 1}k and the set Ik.

Input: a circuit C̃ : {0, 1}` → {0, 1}`
′
, where |C̃| = m(k).

1. Compute x = C̃(Ik).
2. Return Gs(x).

Fig. 1. The circuit Ks.

The circuit K∗sx∗ , has a hardwired PRF key sx∗ that was derived from s by
puncturing it at the point x∗. It operates the same as Ks, except that when
x = x∗, it outputs an arbitrary bit, say, 0. See Figure 2. In particular, if x∗ 6=
C̃(Ik) for all circuits C̃ ∈ {0, 1}m(k), then K∗sx∗ and Ks compute the exact same
function.

We are now ready to define our auxiliary-input distribution Z = {Zk}k∈N.
Let d = d(k) be the maximal size of circuits in either K or K∗, corresponding
to security parameter k. Denote by [K]d a circuit K padded with zeros to size
d, and by [K]d the class of circuits where every circuit K ∈ K is replaced with
[K]d. Let iO be an indistinguishability obfuscator for the class [K ∪ K∗]d.

The distribution Zk simply consists of an obfuscated (padded) circuit Ks for
a randomly generated s. See Figure 3.

The adversary A and predicate π. The adversary A, given auxiliary input
z = [iO(Ks)]d(k) and an obfuscation O(C) with C ∈ Ck, outputs

z(O(C)) = Ks(O(C)) = Gs(O(C)(Ik)) = Gs(C(Ik)),



Hardwired: a punctured PRF key sx∗ = Punc(s, x∗) and the set Ik.

Input: a circuit C̃ : {0, 1}` → {0, 1}`
′
, where |C̃| = m(k).

1. Compute x = C̃(Ik).
2. If x 6= x∗, return Gsx∗ (x).
3. If x = x∗, return 0.

Fig. 2. The circuit K∗sx∗ .

1. Sample s← GenG(1k).
2. Sample an obfuscation z ← iO([Ks]d(k)).
3. Output z.

Fig. 3. The auxiliary input distribution Zk.

where the above follows by the definition of Ks and the functionality of iO and
O.

Thus, A always successfully outputs the predicate

π(C,Ks) = Ks(C) = Gs(C(Ik)).

Adversary A cannot be simulated. We prove the following claim implying
that the candidate obfuscator O for the class C fails to meet the virtual black
box requirement:

Claim. For any PPT simulator S,

Pr
C←Ck
z←Zk

[
SC(z) = π(C, z)

]
≤ 1

2
+ negl(k).

Proof. Assume towards contradiction that there exists a PPT simulator S that
learns π(C, z) with probability 1

2 + ε(k), for some non-negligible ε. We show how
to use S to break either the pseudo-entropy of C or the pseudo-randomness at
punctured points of G.

According to the definition of Zk,

Pr
[
SC(iO([Ks]d) = Gs(C(Ik))

]
≥ 1

2
+ ε(k),

where the probability is over C ← Ck, s← GenG(1k), and the random coin tosses
of S.

Now, for every C ∈ Ck, let Y C = (Y1, . . . , Yt) be the random variable guar-
anteed by the pseudo-entropy of values in Ik (Definition 7). We first consider an



alternative experiment in which the oracle C is replaced with an oracle C ◦ Y C

that behaves like C on all points outside Ik, and on points in Ik answers accord-
ing to Y C . We claim that

Pr
[
SC◦Y

C

(iO([Ks]d) = Gs(Y
C)
]
≥ 1

2
+ ε(k)− negl(k),

where the probability is over C ← Ck, the random variable Y C , s ← GenG(1k),
and the coin tosses of S. Indeed, this follows directly from the pseudo-entropy
guarantee (Definition 7), together with the fact that a distinguisher can sample
s and compute iO([Ks]d) on its own.

Next, we change the above experiment so that instead of an indistinguisha-
bility obfuscation of Ks, the simulator gets an indistinguishability obfuscation
of the circuit K∗s∗x , where s is punctured at the point x∗ = Y C . We claim that

Pr
[
SC◦Y

C

(iO([K∗sx∗ ]d) = Gs(Y
C)
]
≥ 1

2
+ ε(k)− negl(k),

where the probability is over C ← Ck, the random variable Y C , s ← GenG(1k),
and the coin tosses of S, x∗ = Y C , and sx∗ = Punc(s, x∗). Indeed, recalling that
Y C has min-entropy m(k) + k for every C ∈ Ck, there does not exist a circuit C̃
such that x∗ := Y C = C̃(Ik), except with negligible probability 2−k. However,
recall that in this case Ks and K∗sx∗ have the exact same functionality, and thus
the above follows by the indistinguishability obfuscation guarantee.

It is now left to note that S predicts with noticeable advantage the value
of Gs at the punctured point x∗, and thus violates the pseudo-randomness at
punctured points requirement (Definition 6).
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