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Abstract. We introduce and study the notion of non-interactive se-
cure multiparty computation (NIMPC). An NIMPC protocol for a func-
tion f(x1, . . . , xn) is specified by a joint probability distribution R =
(R1, . . . , Rn) and local encoding functions Enci(xi, ri), 1 ≤ i ≤ n. Given
correlated randomness (r1, . . . , rn) ∈R R, each party Pi, using its in-
put xi and its randomness ri, computes the message mi = Enci(xi, ri).
The messages m1, . . . ,mn can be used to decode f(x1, . . . , xn). For a
set T ⊆ [n], the protocol is said to be T -robust if revealing the messages
(Enci(xi, ri))i 6∈T together with the randomness (ri)i∈T gives the same in-
formation about (xi)i 6∈T as an oracle access to the function f restricted
to these input values. Namely, a coalition T can learn no more than the
restriction of f fixing the inputs of uncorrupted parties, which, in this
non-interactive setting, one cannot hope to hide. For 0 ≤ t ≤ n, the
protocol is t-robust if it is T -robust for every T of size at most t and it is
fully robust if it is n-robust. A 0-robust NIMPC protocol for f coincides
with a protocol in the private simultaneous messages model of Feige et
al. (STOC 1994).

In the setting of computational (indistinguishability-based) security, fully
robust NIMPC is implied by multi-input functional encryption, a notion
that was recently introduced by Goldwasser et al. (Eurocrypt 2014) and
realized using indistinguishability obfuscation. We consider NIMPC in
the information-theoretic setting and obtain unconditional positive re-
sults for some special cases of interest:
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– Group products. For every (possibly non-abelian) finite group G,
the iterated group product function f(x1, . . . , xn) = x1x2 . . . xn ad-
mits an efficient, fully robust NIMPC protocol.

– Small functions. Every function f admits a fully robust NIMPC
protocol whose complexity is polynomial in the size of the input
domain (i.e., exponential in the total bit-length of the inputs).

– Symmetric functions. Every symmetric function f : Xn → Y ,
where X is an input domain of constant size, admits a t-robust
NIMPC protocol of complexity nO(t). For the case where f is a w-
out-of-n threshold function, we get a fully robust protocol of com-
plexity nO(w).

On the negative side, we show that natural attempts to realize NIMPC
using private simultaneous messages protocols and garbling schemes from
the literature fail to achieve even 1-robustness.

Keywords: secure multiparty computation, obfuscation, private simultaneous
messages protocols, randomized encoding of functions, garbling schemes, multi-
input functional encryption.

1 Introduction

We introduce and study the notion of non-interactive secure multiparty com-
putation (NIMPC). This notion can be viewed as a common generalization of
several previous notions from the literature, including obfuscation, private si-
multaneous messages protocols, and garbling schemes. It can also be viewed as
a simpler and weaker variant of the recently introduced notion of multi-input
functional encryption. Before we define the new notion and discuss its relations
with these previous notions, we start with a motivating example.

Consider the following non-interactive scenario for secure multiparty com-
putation. Suppose that each of n “honest but curious” parties holds an input
xi ∈ {0, 1}, and the parties wish to conduct a vote by computing the major-
ity value of their inputs. Moreover, the parties want to minimize interaction by
each independently sending only a single message to each other party.5 It is clear
that in this scenario, without any setup, no meaningful notion of security can be
achieved: each party can efficiently extract the input xi from the message of the
corresponding party by just simulating incoming messages from all other parties
on inputs xj such that

∑
j 6=i xj = bn/2c.

The question we ask is whether it is possible to get better security by allowing
a correlated randomness setup. That is, the parties get correlated random strings
(r1, . . . , rn) that are drawn from some predetermined distribution. Such a setup
is motivated by the possibility of securely realizing it during an offline prepro-
cessing phase, which takes place before the inputs are known (see, e.g. [24], for

5 Alternative motivating scenarios include each party broadcasting a single message,
posting it on a public bulletin board such as a Facebook account, or sending a single
message to an external referee who should learn the output.



further motivation). The above attack fails in this model, since a party can no
longer simulate messages coming from the other parties without knowing their
randomness. On the other hand, it is still impossible to prevent the following
generic attack: any set of parties T can simulate the messages that originate from
parties in T on any given inputs. This allows the parties of T to learn the output
on any set of inputs that is consistent with the other parties’ inputs. In the case
of computing majority, this effectively means that the parties in T must learn
the sum of the other inputs whenever it is in the interval [bn/2c−|T |, bn/2+1c].
When T is small, this would still leave other parties with a good level of security.
Hence, our goal is to obtain protocols that realize this “best possible” security
while completely avoiding interaction.

The above discussion motivates the following notion of non-interactive secure
multiparty computation (NIMPC). An NIMPC protocol for a function f(x1, . . . , xn)
is defined by a joint probability distribution R = (R1, . . . , Rn) and local encod-
ing functions Enci(xi, ri), where 1 ≤ i ≤ n. For a set T ⊆ [n], the protocol is said
to be T -robust (with respect to f) if revealing the messages (Enci(xi, ri))i 6∈T to-
gether with the randomness (ri)i∈T , where (r1, . . . , rn) is sampled from R, gives
the same information about (xi)i 6∈T as an oracle access to the function f re-
stricted to these input values. For 0 ≤ t ≤ n, the protocol is said to be t-robust
if it is T -robust for every T of size at most t, and it is said to be fully robust if
it is n-robust.

Recent work on multi-input functional encryption [13] implies that the exis-
tence of a fully robust NIMPC protocol for general functions, with indistinguish-
ability based security, is equivalent to indistinguishability obfuscation (assum-
ing the existence of one-way functions). Combined with the recent breakthrough
on the latter problem [11], this gives candidate NIMPC protocols for arbitrary
polynomial-time computable functions. (See Section 1.2 for discussion of these
and other related works.) The above positive result leaves much to be desired in
terms of the underlying intractability assumptions and the potential for being
efficient enough for practical use. Motivated by these limitations, we consider
the goal of realizing NIMPC protocols with information-theoretic security for
special cases of interest.

1.1 Our results

We obtain the following unconditional positive results on NIMPC.

Group products. For every (possibly non-abelian) finite group G, the iter-
ated group product function fG(x1, . . . , xn) = x1x2 . . . xn admits an efficient,
fully robust NIMPC protocol. The construction makes a simple use of Kilian’s
randomization technique for iterated group products [26]. While the security
analysis in the case of abelian groups is straightforward (see Example 6), the
analysis for the general case turns out to be more involved and is deferred to
the full version of this paper. We note that this result cannot be combined with
Barrington’s Theorem [4] to yield NIMPC for NC1. For this, one would need to
assign multiple group elements to each party and enforce nontrivial restrictions



on the choice of these elements. In fact, efficient information-theoretic NIMPC
for NC1 is impossible, even with indistinguishability-based security, unless the
polynomial-time hierarchy collapses [15] (see Section 1.2).

Small functions. We show that every function f admits a fully robust NIMPC
protocol whose complexity is polynomial in the size of the input domain (i.e.,
exponential in the total bit-length of the inputs). This result can provide a light-
weight solution for functions defined over an input domain of a feasible size. This
result is described in Section 3. The technique used for obtaining this result also
yields efficient protocols for computing OR of n bits and, more generally, w-out-
of-n threshold functions where either w or n− w are constant.

Symmetric functions. Finally, we show that every symmetric function h :
Xn → Y , where X is an input domain of constant size, admits a t-robust NIMPC
of complexity nO(t). Thus, we get a polynomial-time protocol for any constant t.
More generally, our solution applies to any branching program over an abelian
group G, that is, a function h : X1 × · · · ×Xn → Y of the form h(x1, . . . , xn) =
f(
∑n
i=1 xi) for an arbitrary function f : G → Y (the complexity in this case is

|G|O(t)). Useful special cases include the above voting example, its generalization
to multi-candidate voting (where the output is a partially ordered list such as
“A > B = C > D”), as well as natural bidding mechanisms. We note that while
this construction is only t-robust, larger adversarial sets T can only learn the
sum

∑
i6∈T xi (e.g., the sum of all honest votes in the majority voting example) as

opposed to all the inputs of honest parties. This construction is more technically
involved than the previous constructions. A high level overview of a special case
of the construction is given in Section 4, and a formal treatment of the general
case appears in the full version of this paper. In the full version we also describe
a more efficient variant of the construction for the case t = 1.

Inadequacy of existing techniques. On the negative side, in the full version
we show that natural attempts to realize NIMPC using PSM protocols or gar-
bling schemes from the literature fail to achieve even 1-robustness. This holds
even for simple function classes such as symmetric functions.

Applications. Our main motivating application is for scenarios involving secure
computations without interaction, such as the one described above. While in the
motivating discussion we assumed the parties to be honest-but-curious, offering
protection against malicious parties in the above model is in some sense easier
than in the standard MPC model. Indeed, malicious parties pose no additional
risk to the privacy of the honest parties because of the non-interactive nature of
the protocol. Moreover, a reasonable level of correctness against malicious parties
can be achieved via the use of pairwise authentication (e.g., in the case of binary
inputs, the correlated randomness setup may give each party MAC-signatures
on each of its two possible messages with respect to the verification key of each
other party). In the case where multiple parties receive an output, adversarial
parties can use their rushing capabilities to make their inputs depend on the
information learned on other inputs, unless some simultaneous broadcast mech-
anism is employed. For many natural functions (such as the majority function)



this type of rushing capability in the ideal model is typically quite harmless,
especially when T is small. Moreover, this issue does not arise at all in the case
where only one party (such as an external server) receives an output.

The goal of eliminating simultaneous interaction in secure MPC protocols
was put forward by Halevi, Lindell, and Pinkas (HLP) [20, 17]. In contrast to
the HLP model, which requires the parties to sequentially interact with a central
server, our protocols are completely non-interactive and may be applied with or
without a central server. While HLP assume a standard PKI and settle for
computational security, we allow general correlated randomness which, in turn,
also allows for information-theoretic security.

The NIMPC primitive can also be motivated by the goal of obtaining garbling
schemes [30, 5] or randomized encodings of functions [22, 1] that are robust to
leakage of secret randomness. Indeed, in Yao’s garbled circuit construction, the
secrecy of the input completely breaks down if a pair of input keys is revealed.
In the full version of this paper, we show that this is also the case for other
garbling schemes and randomized encoding techniques from the literature. The
use of t-robust NIMPC can give implementations of garbled circuits and related
primitives that are resilient to up to t fully compromised pairs of input keys.

While we did not attempt to optimize the concrete efficiency of our con-
structions, they seem to be reasonably practical for some natural application
scenarios. To give a rough idea of practical feasibility, consider a setting of non-
interactive MPC where there are n clients, each holding a single input bit, who
send messages to a central server that computes the output. For n = 20, our
fully robust solution for small functions requires each client to send roughly 6MB
of data and store a comparable amount of correlated randomness. In the case of
computing a symmetric function, such as the majority function from the above
motivating example, one can use an optimized protocol, which appears in the
full version of this paper, to get a 1-robust solution with the same message size
for n ≈ 1400 clients (offering full protection against the server and single client
and partial protection against larger collusions).

In contrast to the above, solutions that rely on general obfuscation techniques
are currently quite far from being efficient enough for practical use. We leave
open the question of obtaining broader or stronger positive results for NIMPC,
either in the information-theoretic setting or in the computational setting with-
out resorting to general-purpose obfuscation techniques.

1.2 Related work

In the following, we discuss connections between NIMPC and several related
notions from the literature.

Relation with obfuscation. As was recently observed in the related context of
multi-input functional encryption (see below), NIMPC generalizes the notion of
obfuscation. The goal of obfuscation is to provide an efficient randomized map-
ping that converts a circuit (or “program”) from a given class into a functionally
equivalent circuit that hides all information about the original circuit except its



input-output relation. An obfuscation for a given circuit class C reduces to a
fully robust NIMPC for a universal function UC for C. Concretely, UC takes two
types of inputs: input bits specifying a circuit C ∈ C, and input bits specifying an
input to this circuit. An NIMPC protocol for UC , in which each bit is assigned to
a different party, gives rise to the following obfuscation scheme. The obfuscation
of a circuit C consists of the message of each party holding a bit of C, together
with the randomness of the parties holding the input bits for C. By extending
the notion of NIMPC to apply to a class of functions (more accurately, function
representations), as we do in the technical sections, it provides a more direct
generalization of obfuscation that supports an independent local restriction of
each input bit.

In contrast to obfuscation, NIMPC is meaningful and nontrivial to realize
even when applied to a single function f (rather than a class of circuits), and even
when applied to efficiently learnable functions (in particular, finite functions).
Indeed, the requirement of hiding the inputs of uncorrupted parties is hard to
satisfy even in such cases.

The relation with obfuscation implies limitations on the type of results on
NIMPC one can hope to achieve, as it rules out fully robust protocols with
simulation-based security for sufficiently expressive circuit classes [3]. Moreover,
it follows from the results of [15] that some functions in NC1 (in fact, even some
families of CNF formulas) do not admit an efficient and fully robust information-
theoretic NIMPC protocol, even under an indistinguishability-based definition,
unless the polynomial-time hierarchy collapses. However, these negative results
on obfuscation do not rule out general solutions with indistinguishability-based
security or with a small robustness threshold t, nor do they rule out fully robust
solutions with simulation-based security for simple but useful function classes.

Multi-input functional encryption. NIMPC can be viewed as a simplified
and restricted form of multi-input functional encryption, a generalization of func-
tional encryption [29, 18, 28, 6] that was very recently studied in [13] Multi-input
functional encryption is stronger than NIMPC in several ways, the most impor-
tant of which is that it requires the correlated randomness to be reusable for
polynomially many function evaluations. It was shown in [13] that multi-input
functional encryption for general circuits can be obtained from indistinguishabi-
lity obfuscation and a one-way function. Combined with the recent breakthrough
on obfuscation [11], this gives plausible candidates for indistinguishability-based
multi-input functional encryption, and hence also fully robust NIMPC, for gen-
eral circuits. This general positive result can only achieve computational security
under strong assumptions. In contrast, by only requiring a one-time use of the
correlated randomness, the notion of NIMPC becomes meaningful even in the
information-theoretic setting considered in this work.

Private simultaneous messages protocols. A 0-robust NIMPC protocol for
f coincides with a protocol for f in the private simultaneous messages (PSM)
model of Feige, Kilian, and Naor [10, 21]. In this model for non-interactive se-
cure computation, the n parties share a common source of randomness that is
unknown to an external referee, and they wish to communicate f(x1, . . . , xn)



to the referee by sending simultaneous messages depending on their inputs and
common randomness. From the messages it received, the referee should be able
to recover the correct output but learn no additional information about the in-
puts. (PSM protocols in which each party has a single input bit are also referred
to as decomposable randomized encodings [25] or projective garbling schemes [5].)
While standard PSM protocols are inherently insecure when the referee colludes
with even a single party, allowing general correlated randomness (rather than
common randomness) gets around this limitation. A natural approach for obtain-
ing NIMPC protocols from PSM protocols is to let the correlated randomness
of each party include only the valid messages on its possible inputs. In the full
version of this paper, we show that applying this methodology to different PSM
protocols and garbling schemes from the literature typically fails to offer even
1-robustness. We also show a case where this methodology does work – using
Kilian’s PSM protocol for computing the iterated group product [26] yields a
fully robust protocol.

Bounded-collusion functional encryption. In the related context of (single-
input) functional encryption, Gorbunov et al. [16] have shown how to achieve
security against bounded collusions by combining MPC protocols and random-
ized encoding techniques. Similarly, bounded-collusion identity-based encryption
is easier to construct than full-fledged identify-based encryption [9, 14]. We do
not know how to apply similar techniques for realizing t-robust NIMPC. The
difference is likely to be inherent: while the positive results in [16, 9, 14] apply
even for collusion bounds t that are bigger than the security parameter, a similar
general result for NIMPC would suffice to imply general (indistinguishability)
obfuscation.

2 Preliminaries

Notation 1. For a set X = X1× · · ·×Xn and T ⊆ [n] we denote XT ,
∏
i∈T Xi.

For x ∈ X , we denote by xT the restriction of x to XT , and for a function
h : X → Ω, a subset T ⊆ [n], and xT ∈ XT , we denote by h|T ,xT

: XT → Ω the

function h where the inputs in XT are fixed to xT .

An NIMPC protocol for a family of functions H is defined by three algo-
rithms: (1) a randomness generation algorithm Gen, which given a description
of a function h ∈ H generates n correlated random inputs r1, . . . , rn, (2) a local
encoding function Enci (1 ≤ i ≤ n), which takes an input xi and a random input
ri and outputs a message, and (3) a decoding algorithm Dec that reconstructs
h(x1, . . . , xn) from the n messages. Formally:

Definition 2 (NIMPC: Syntax and Correctness). Let X1, . . . , Xn,R1, . . . ,Rn,
M1, . . . ,Mn and Ω be finite domains. Let X , X1 × · · · × Xn and let H be a
family of functions h : X → Ω. A non-interactive secure multiparty computation
(NIMPC) protocol for H is a triplet Π = (Gen,Enc,Dec) where

– Gen : H → R1 × · · · × Rn is a randomized function,



– Enc is an n-tuple of deterministic functions (Enc1, . . . ,Encn), where Enci :
Xi ×Ri →Mi,

– Dec :M1×· · ·×Mn → Ω is a deterministic function satisfying the following
correctness requirement: for any x = (x1, . . . , xn) ∈ X and h ∈ H,

Pr[r = (r1, . . . , rn)← Gen(h) : Dec(Enc(x, r)) = h(x)] = 1,

where Enc(x, r) , (Enc1(x1, r1), . . . ,Encn(xn, rn)).

The communication complexity of Π is the maximum of log |R1|, . . . , log |Rn|,
log |M1|, . . . , log |Mn|.

We next define the notion of t-robustness for NIMPC, which informally states
that every t parties can only learn the information they should. Note that in our
setting, a coalition T of size t can compute many outputs from the messages of
T , namely, they can repeatedly encode any inputs for the coalition T and decode
h with the new encoded inputs and the original encoded inputs of T . In other
words, they have oracle access to h|T ,xT

(as defined in Notation 1). Robustness

requires that they learn no other information.

Definition 3 (NIMPC: Robustness). For a subset T ⊆ [n], we say that
an NIMPC protocol Π for H is T -robust if there exists a randomized func-
tion SimT (a “simulator”) such that, for every h ∈ H and xT ∈ XT , we have
SimT (h|T ,xT

) ≡ (MT , RT ), where R and M are the joint randomness and mes-

sages defined by R← Gen(h) and Mi ← Enci(xi, Ri).
For an integer 0 ≤ t ≤ n, we say that Π is t-robust if it is T -robust for every

T ⊆ [n] of size |T | ≤ t. We say that Π is fully robust (or simply refer to Π as an
NIMPC for H) if Π is n-robust. Finally, given a concrete function h : X → Ω,
we say that Π is a (t-robust) NIMPC protocol for h if it is a (t-robust) NIMPC
for H = {h}.

As the same simulator SimT is used for every h ∈ H and the simulator has
only access to h|T ,xT

, NIMPC hides both h and the inputs of T (to the extent

possible).

Remark 4. An NIMPC protocol Π is 0-robust if it is ∅-robust. In this case, the
only requirement is that the messages (M1, . . . ,Mn) reveal h(x) and nothing
else. A 0-robust NIMPC for h corresponds to a private simultaneous messages
(PSM) protocol in the model of [10, 21]. Note that in a 0-robust NIMPC one
can assume, without loss of generality, that the n outputs of Gen are identical.
In contrast, it is easy to see that in a 1-robust NIMPC of a nontrivial h more
general correlations are required.

While the above definitions treat functions h as finite objects and do not re-
fer to computational complexity, our constructions are computationally efficient
in the sense that the total computational complexity is polynomial in the com-
munication complexity. Furthermore, with the exception of the protocol from
Lemma 9, the same holds for the efficiency of the simulator SimT (viewing the



latter as an algorithm having oracle access to h|T ,xT
). When taking computa-

tional complexity into account, the function Gen should be allowed to depend
not only on h itself but also on its specific representation (such as a branching
program computing h).

Remark 5. (Statistical and computational variants.) In this work, we con-
sider NIMPC protocols with perfect security, as captured by Definition 3. How-
ever, one could easily adapt the above definitions to capture statistical security
and computational security. In the statistical case, we let Gen receive a secu-
rity parameter κ as an additional input, and require that the two distributions
in Definition 3 be (2−κ)-close in statistical distance, rather than identical. In
the computational case, we have two main variants corresponding to the two
main notions of obfuscation from the literature. In both cases, we require that
the two distributions in Definition 3 be computationally indistinguishable. The
difference is in the power of the simulator. If the simulator is unbounded, we
get an indistinguishability-based NIMPC for which a general construction is im-
plied by indistinguishability obfuscation [11, 13]. If the simulator is restricted to
probabilistic polynomial time, we get the stronger “virtual black-box” variant
to which the impossibility results from [3] apply and one can only hope to get
general positive results in a generic model [7, 2] or using tamper-proof hard-
ware [19]. We note, however, that the latter impossibility results only apply to
function classes that are rich enough to implement pseudo-random functions. In
particular, they do not apply to efficiently learnable classes for which obfuscation
is trivial. NIMPC is meaningful and nontrivial even in the latter case.

As a simple example, we present an NIMPC protocol for summation in an
abelian group.

Example 6. LetG be an abelian group, and define h : Gn → G by h(x1, . . . , xn) =
x1 + · · · + xn (where the sum is in G). We next define a fully robust NIMPC
for h. Algorithm Gen chooses n − 1 random elements r1, . . . , rn−1 in G, where
each element is chosen independently with uniform distribution, and computes
rn = −

∑n−1
i=1 ri. The output of Gen is (r1, . . . , rn). Algorithm Enc computes

Enci(xi, ri) = xi + ri , mi. Algorithm Dec simply sums the n outputs of Enc,
that is, computes

∑n
i=1mi.

As
∑n
i=1mi =

∑n
i=1 xi +

∑n
i=1 ri, and

∑n
i=1 ri = 0, correctness follows. We

next show that this construction is fully robust. Fix a set T ⊆ [n] and define
the simulator SimT for T . On inputs xT , it queries h|T ,xT

(0|T |) and gets sum =∑
i∈T xi. The simulator then chooses n− 1 random elements ρ1, . . . , ρn−1 in G,

each element is chosen independently with uniform distribution, and computes
ρn = sum−

∑n−1
i=1 ρi. The output of the simulator is ((ρi)i∈T , (ρi)i∈T ).

The following easily verifiable claim states that for functions outputting more
than one bit, we can compute each output bit separately. Thus, from now on we
will mainly focus on boolean functions.

Claim 7. Let X , X1 × · · · × Xn, where X1, . . . ,Xn are some finite domains.
Fix an integer m > 1. Suppose H is a family of boolean functions h : X →



{0, 1} admitting an NIMPC protocol with communication complexity S. Then,
the family of functions Hm = {h : X → {0, 1}m |h = h1 ◦ . . . ◦ hm, hi ∈ H}
admits an NIMPC protocol with communication complexity S ·m.

2.1 NIMPC with an output server

While an NIMPC protocol Π as defined above can be viewed as an abstract
primitive, in the following it will be convenient to describe our constructions in
the language of protocols. Such a protocol involves n players P1, . . . , Pn, each
holding an input xi ∈ Xi, and an external “output server,” a player P0 with no
input. The protocol may have an additional input, a function h ∈ H. We will let
P(Π) denote a protocol that proceeds as follows.

Protocol P(Π)(h)

– Offline preprocessing: Each player Pi, 1 ≤ i ≤ n, receives the random
input Ri , Gen(h)i ∈ Ri.

– Online messages: On input Ri, each player Pi, 1 ≤ i ≤ n, sends the
message Mi , Enci(xi, Ri) ∈Mi to P0.

– Output: P0 computes and outputs Dec(M1, . . . ,Mn).

We informally note the relevant properties of protocol P(Π):

– For any h ∈ H and x ∈ X , the output server P0 outputs, with probability 1,
the value h(x1, . . . , xn).

– Fix T ⊆ [n]. Then, Π is T -robust if in P(Π) the set of players {Pi}i∈T ∪{P0}
can simulate their view of the protocol (i.e., the random inputs {Ri}i∈T and
the messages {Mi}i∈T ) given oracle access to the function h restricted by
the other inputs (i.e., h|T ,xT

).

– Π is 0-robust if and only if in P(Π) the output server P0 learns nothing but
h(x1, . . . , xn).

In Appendix A we give a more general treatment of non-interactive MPC,
including security definitions and extensions to the case where multiple parties
may have different outputs and to the case of security against malicious parties.

3 An inefficient NIMPC for arbitrary functions

The main purpose of this section is to present an NIMPC protocol for the set
of all functions (though with exponential communication complexity). It will be
useful to first present such a protocol for indicator functions. For reasons to be
clarified later on, it will be convenient to include the zero-function.

Definition 8. Let X be a finite domain. For n-tuple a = (a1, . . . , an) ∈ X , let
ha : X → {0, 1} be the function defined by ha(a) = 1, and ha(x) = 0 for all
a 6= x ∈ X . Let h0 : X → {0, 1} be the function that is identically zero on X . Let
Hind , {ha}a∈X ∪ {h0} be the set of all indicator functions together with h0.



Note that every function h : X ← {0, 1} can be expressed as the sum of
indicator functions, namely, h =

∑
a∈X ,h(a)=1 ha.

Lemma 9. Fix finite domains X1, . . . ,Xn such that |Xi| ≤ d for all 1 ≤ i ≤ n
and let X , X1 × · · · × Xn. Then, there is an NIMPC protocol Πind for Hind

with communication complexity at most d2 · n.

Proof. For i ∈ [n], denote |Xi| = di. Let s =
∑n
i=1 di. We describe a non-

interactive protocol, in the output-server model. Fix a function h ∈ H that we
want to compute. The protocol P(Πind)(h) is as follows.

Preprocessing: If h = h0, then choose s linearly independent random vectors
{mi,b}i∈[n],b∈Xi

in Fs2. If h = ha for some a = (a1, . . . , an) ∈ X , choose s ran-
dom vectors {mi,b}i∈[n],b∈Xi

in Fs2 under the constraint that
∑n
i=1mi,ai = 0,

and that there are no other linear relations between them (that is, choose all
the vectors mi,b, except mn,an , as random linear independent vectors and set

mn,an = −
∑n−1
i=1 mi,ai). For i ∈ [n], we send the vectors {mi,b}b∈Xi to Pi as the

correlated randomness.

Sending messages: For i ∈ [n], player Pi (on input xi) sends to P0 the message
Mi , mi,xi .

Computing h(x1, . . . , xn): P0 outputs 1 if
∑n
i=1Mi = 0 and 0 otherwise.

For the correctness, note that
∑n
i=1Mi =

∑n
i=1mi,xi

. If h = ha, for a ∈ X ,
this sum equals 0 if and only if x = a. If h = h0, this sum is never zero, as all
vectors were chosen to be linearly independent in this case.

To prove robustness, fix a subset T ( [n] and xT ∈ XT . The messages MT of
T consist of the vectors {mi,xi

}i∈T . The randomness RT consists of the vectors
{mi,b}i∈T,b∈Xi

. If h|T ,xT
≡ 0, then these vectors are uniformly distributed in

Fs2 under the constraint that they are linearly independent. If h|T ,xT
(xT ) = 1,

for some xT ∈ XT , then
∑n
i=1mi,xi

= 0 and there are no other linear relations
between them. Formally, to prove robustness, we describe a simulator SimT :
the simulator queries h|T ,xT

on all possible inputs in XT . If all answers are

zero, the simulator generates random independent vectors. Otherwise, there is
an xT ∈ XT such that h|T ,xT

(xT ) = 1, and the simulator outputs random vectors

under the constrains described above, that is, all vectors are independent with
the exception that

∑n
i=1mi,xi

= 0.
As for communication complexity, each party Pi receives di ≤ d binary vec-

tors of length s ≤ dn in the preprocessing stage and sends one of them as a
message. Hence, at most d2n bits. ut

We next present an NIMPC for all boolean functions with domain X =
X1 × · · · × Xn. The idea is to express any h : X → {0, 1} as a sum of indicator
functions, that is, h =

∑
a∈X ,h(a)=1 ha, and construct an NIMPC for h by using

the NIMPC protocols for each ha. A naive implementation of this idea has two
problems. First, it will disclose information on how many 1’s the function h has.
To overcome this problem, we define h′a = ha if h(a) = 1 and h′a = h0 otherwise
(this was the motivation of including h0 in Hind). Thus, h =

∑
a∈X h

′
a. The



second problem is that if, for example, h(x) = 1 and a coalition learns that
h′a(x) = 1, then the coalition learns that x = a. To overcome this problem, in
the preprocessing stage, we permute the domain X .

Theorem 10. Fix finite domains X1, . . . ,Xn such that |Xi| ≤ d for all 1 ≤ i ≤ n
and let X , X1×· · ·×Xn. Let H be the set of all functions h : X → {0, 1}m. There
exists an NIMPC protocol Π for H with communication complexity |X |·m ·d2 ·n.

Proof. LetΠind = (Gen,Enc,Dec) be the NIMPC forHind, described in Lemma 9.
Fix h ∈ H. Assume for simplicity that m = 1 (see Claim 7). Protocol P(Π)(h)
is as follows.

Preprocessing:

– Let I ⊆ X be the set of ones of h (i.e., I = h−1(1)). For each a ∈ I, let
ra = (ra1 , . . . , r

a
n)← Gen(ha). For a ∈ X \ I, let ra ← Gen(h0).

– Choose a random permutation π of X and define a matrix R, where Ri,b ,

r
π(b)
i for i ∈ [n] and b ∈ X . Send to Pi the random strings (Ri,b)b∈X (that

is, the ith row of R).

Sending messages: Define a matrix M , where Mi,b , Enci(xi, Ri,b) for every

i ∈ [n] and b ∈ X . Each Pi sends to P0 the message Mi , (Mi,b)b∈X .

Computing h: Server P0 outputs 1 if for some b ∈ X , Dec(M1,b, . . . ,Mn,b) = 1.
Otherwise, it outputs 0.

Correctness: Fix x = (x1, . . . , xn) ∈ X . The server returns 1 if and only if
Dec(M1,b, . . . ,Mn,b) = 1 for some b ∈ X , namely, if and only if Dec(Enc1(x1, R1,b),
. . . ,Encn(xn, Rn,b)) = 1. This happens if and only if Dec(Enc1(x1, R

a
1), . . . ,

Encn(xn, R
a
n)) = 1 for a = π(b). By the correctness of Πind and the proto-

col description, the above happens if and only if ha(x1, . . . , xn) = 1 for some
a ∈ I, that is, if and only if h(x1, . . . , xn) = 1.
Communication Complexity is obtained by applying Πind for |X | times.

Robustness: Fix T ⊆ [n] and xT ∈ XT . We wish to simulate the distribution
(MT , RT ) given h|T ,xT

. We can think of this distribution as being composed of

rows, where each row b is of the form (Ma
T
, raT ) for a = π(b) for some b ∈ X ,

where the permutation π is random.

Observation 11. If aT = xT and h(a) = 1 then this row was generated for the
function ha, and if aT = xT and h(a) = 0 then this row was generated for h0.
Finally, if aT 6= xT , then this row is distributed as if it was generated for h0.

We next construct a simulator SimT for the protocol P(Π) on function h.
Simulator SimT uses the simulator SimΠind

T – the simulator for set T from proto-
col P(Πind) of Lemma 9. The simulator SimT first queries h|T ,xT

(xT ) for every

xT ∈ XT . Let I ′ ⊆ XT be the set of ones of h|T ,xT
. For every xT ∈ I ′, the

simulator SimT computes SxT
= SimΠind

T (hxT
) (where hxT

: XT → {0, 1} is

such that hxT
(x) = 1 if and only if x = xT ). Finally, SimT samples SimΠind

T (h0)



for |X | − |I ′| times (where h0 : XT → {0, 1} such that h0(x) = 0 for every
x ∈ XT ). Altogether, it obtains |X | outputs of the simulator SimΠind

T . It ran-
domly permutes the order of these outputs, and returns the permuted outputs.
The T -robustness of SimT follows from the T -robustness of SimΠind

T and Obser-
vation 11. ut

Remark 12. In the above proof, instead of looking at the set of all functions,
we could have looked at the set of functions that are OR’s of a fixed subset
H′ ⊂ Hind of indicator functions. For this set of functions, we would get an
NIMPC with communication complexity |H′| · m · poly(d, n) (rather than the
|X | ·m · poly(d, n) communication complexity above). We could also look at a
particular function of this form. Take, for example, X = {0, 1}n and H′ to be
the set of indicator functions of vectors of weight w. Then, we get an NIMPC
for the w-out-of-n threshold function with communication complexity nO(w).

4 A t-robust NIMPC for abelian programs

In this section, we present an NIMPC protocol for symmetric functions. In fact,
this result is a corollary of a more general result on NIMPC for abelian group
programs. We next define abelian programs and symmetric functions and for-
mally state our results. The proofs of these results appear in the full version of
this paper.

Definition 13. Let G be an abelian group, S1, . . . , Sn be subsets of G, and
HGS1,...,Sn

be the set of functions h : S1×· · ·×Sn → {0, 1} of the form h(x1, . . . , xn) =

f(
∑n
i=1 xi), for some f : G→ {0, 1}.

Definition 14. A function h : [d]n → {0, 1} is symmetric if for every (x1, . . . , xn) ∈
[d]n and every permutation π : [n]→ [n] the following equality holds h(x1, . . . , xn) =
h(xπ(1), . . . , xπ(n)).

The main positive result in this section is an efficient t-robust NIMPC for
HGS1,...,Sn

whenever G is abelian of poly(n)-size and t is constant.

Theorem 15. Let t be a positive integer and G an abelian group of size m.
Let S1, . . . , Sn be subsets of G. Let d , maxi∈[n] |Si|. Then, there is a t-robust
NIMPC protocol for HGS1,...,Sn

with communication complexity O(dt+2 ·nt+2 ·m3).

Corollary 16. Let d, t and n be positive integers. Let H be the set of symmetric
functions h : [d]n → {0, 1}. There is a t-robust NIMPC protocol for H with
communication complexity O(dt+2 · nt+3d−1). In particular, for the case of a
boolean h : {0, 1}n → {0, 1}, the communication complexity is O(2t · nt+5).

In the rest of this section, we give a high level overview of the construction,
focusing for simplicity on the case t = 1.



4.1 Group extension

Recall that a boolean function h : {0, 1}n → {0, 1} is symmetric if and only
if there exists a function f : {0, . . . , n} → {0, 1} such that h(x1, . . . , xn) =
f(
∑n
i=1 xi). We start by considering a relaxation of the problem where the play-

ers are allowed to choose their inputs from a larger domain, which is a group:
namely, instead of having an input xi ∈ {0, 1}, we allow each player Pi to
have an input xi ∈ {0, . . . , n}, which can be thought of as an element of the
group G , Zn+1. Given a boolean symmetric function h : {0, 1}n → {0, 1},
where h(x1, . . . , xn) = f(

∑n
i=1 xi), we extend h in the natural way to a function

h : Gn → {0, 1}, that is, h(x1, . . . , xn) = f(
∑n
i=1 xi), where the sum is of ele-

ments of G. The first step of our construction is a fully robust NIMPC protocol
for the set H of all functions h as above, namely the group extensions of all
symmetric functions. Note that here it is crucial to hide both the function h and
the inputs xi to the extent possible.

To obtain the NIMPC protocol for H, we would like to use the PSM proto-
col from [21] which provides an efficient solution for symmetric functions. This
protocol is defined using a branching program representation of h. While this
protocol is secure when only P0 is corrupted, it fails miserably when even a sin-
gle other party is corrupted. Luckily, there is a simple characterization of the
information available to an adversary corrupting P0 and a set T of other parties
Pi: these players learn no more than the graph of the branching program re-
stricted to the inputs xT̄ . That is, the adversary can learn the labels of all edges
it owns (e.g., that such an edge is labeled by the literal x̄i or the constant 1), as
well as the values of edges it does not own (e.g., that such an edge evaluates to 1)
but not their labels. If we apply the protocol to a standard branching program
for h, this information will typically reveal to the adversary both the function h
and the inputs xT̄ .

The key idea for realizing H is to randomize the branching program before
applying the protocol from [21]. That is, we start with a standard layered branch-
ing program for the symmetric function h, and then (during preprocessing) we
randomize it by applying a random cyclic shift to the nodes in each layer. The
protocol from [21] is applied to the randomized branching program. With this
randomization in place, revealing the branching program restricted by xT̄ leaks
nothing about (h, xT̄ ) except what must be learned.

4.2 Limiting the inputs of one player

The previous subsection gives an NIMPC for the class of (extended) symmetric
functions h, with the caveat that the players may use any input in G = Zn+1,
rather than just {0, 1}. Let us call this protocol Π0(h).6

As mentioned, we need to limit the parties to inputs from {0, 1}. Note that for
NIMPC this is relevant also in the honest-but-curious model since the robustness

6 An important point is that only the preprocessing stage of protocol Π0 actually
depends on h, but we ignore these subtleties here.



requirement for the extended function allows an adversary, controlling a set T ,
to compute h|T ,xT

on the domain G|T |, while for the original function we only

allow the adversary to compute h|T ,xT
on the domain {0, 1}|T |. In this section,

as an intermediate step, we construct a protocol where a specific player, say
P1, is limited to inputs in {0, 1}. The other players, P2, . . . , Pn, can still choose
any inputs in G. Let h0 and h1 denote the function h where the first input is
fixed to 0 and 1, respectively, that is, hi(X2, . . . , Xn) , h(i,X2, . . . , Xn), for
i ∈ {0, 1}. Consider the following protocol: P2, . . . , Pn run the protocols Π0(h0)
and Π0(h1). At the end of this protocol, the coalition {P0, P1} – seeing the
messages of Π0(h0) and Π0(h1) – knows exactly what it is supposed to know:
the values h(0, x2, . . . , xn) and h(1, x2, . . . , xn). However, there are two evident
problems.

1. On one hand, P0 alone knows “too much”: the same two values h(0, x2, . . . , xn)
and h(1, x2, . . . , xn).

2. On the other hand, P0 does not know which of these two values is the correct
one, i.e., h(x1, . . . , xn).

A possible “solution” to the second problem is for P1 to send its input x1 to
P0. This is, of course, insecure. Instead, we run Π0(h0) and Π0(h1) in a random
order, known only to P1 and given to it in the preprocessing stage (note that
P2, . . . , Pn need not know which of the two protocols is running to participate).
Party P1 will then send a message stating which one corresponds to its input.

A solution to the first problem is as follows: The (symmetric) functions
h0 and h1 (which can be though of as (n + 1)-bit strings representing their
truth tables) are “masked” by ((n+ 1)-bit) random functions α0 and α1 (where
αb : G → {0, 1}). Let us call these masked versions g0 and g1. Specifically,
gj(X2, . . . , Xn) , hj(X2, . . . , Xn) ⊕ αj(

∑n
i=2Xi), for j ∈ {0, 1}. In the prepro-

cessing stage, we give the masking functions α0 and α1 to P1. Now P0, P2, . . . , Pn
run Π0(g0) and Π0(g1) (in a random order). Then, P1 sends to P0 only the mask-
ing αi corresponding to its input. In terms of security, the problem has been
solved: the protocol not corresponding to P1’s input, i.e. Π0(g1−x1

), does not re-
veal any information to P0, as g1−x1

is a masked version of h, where the mask has
not been revealed. However, can P0 now compute h(x1, . . . , xn)? From seeing the
messages of Π0(gx1), it knows gx1(x2, . . . , xn) = h(x1, . . . , xn) ⊕ αx1(

∑n
i=2 xi).

It also knows αx1
, which was sent by P1. So now, to “unmask” h(x1, . . . , xn)

using αx1
it needs the value

∑n
i=2 xi, which is more information than we want

to give it. Further randomization techniques are needed to solve this problem,
and combine the solutions to the two problems above.

4.3 A secret sharing composition

The previous section described a protocol where, for a certain fixed j ∈ [n],
the coalition {P0, Pj} does not learn “too much” – specifically, it could evaluate
the function h only on inputs in {0, 1} (while a coalition of P0 with one of
the other players is still not restricted to inputs in {0, 1}). Call this protocol



Π1. Note that h is of the form h(X1, . . . , Xn) = f(
∑n
i=1Xi) for a function

f : G→ {0, 1}. It is easy to see that Π1 can work for any function h′(X1, . . . , Xn)
of this form. We now bootstrap the protocol Π1 to create one in which all players
can evaluate h only on inputs in {0, 1}. For this, we use an additive secret sharing
of f . Namely, we choose n random functions f1, . . . , fn : G → {0, 1}, such that∑n
i=1 fi = f , where the sum is a xor of |G|-bit vectors. For 1 ≤ i ≤ n, define

hi(X1, . . . , Xn) , fi(
∑n
j=1Xj). Note that for any x1, . . . , xn ∈ G, we have

h(x1, . . . , xn) =
∑n
i=1 hi(x1, . . . , xn). For 1 ≤ i ≤ n, we run Π1 on the function

hi with Pi chosen to be the player that can only use inputs in {0, 1}. After these
protocols are run we have that, on the one hand, P0 knows h1(x1, . . . , xn), . . . ,
hn(x1, . . . , xn) and can compute h(x1, . . . , xn) =

∑n
i=1 hi(x1, . . . , xn). On the

other hand, for any i ∈ [n] and a ∈ G \ {0, 1}, parties P0 and Pi have no
information on hi(x1, . . . , xi−1, a, xi+1, . . . , xn) and hence no information on
h(x1, . . . , xi−1, a, xi+1, . . . , xn).
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A General non-interactive MPC

In this section we extend the treatment of NIMPC to functionalities that may
deliver different outputs to different parties as well as to the case of security
against malicious parties.

We consider protocols involving n parties, P1, . . . , Pn, with a correlated ran-
domness setup. That is, we assume an offline preprocessing phase that provides
each party Pi with a random input ri. (This preprocessing can be implemented
either using a trusted dealer, by an interactive offline protocol involving the par-
ties themselves, or by an interactive MPC protocol involving a smaller number
of specialized servers.) In the online phase, each party Pi, on input (xi, ri), may



send a single message mi,j to each party Pj . (There is no need to assume secure
or authenticated channels, as these can be easily implemented using a correlated
randomness setup.)

Let f be a deterministic functionality mapping inputs (x1, . . . , xn) to outputs
(y1, . . . , yn). We define security of an NIMPC protocol for such f using the
standard “real vs. ideal” paradigm (cf. [8, 12]), except that the ideal model is
relaxed to capture the best achievable security in the non-interactive setting.

Concretely, for NIMPC in the semi-honest security model we relax the stan-
dard ideal model for evaluating f by first requiring all parties to send their
inputs to the functionality f , then having f deliver the outputs to the honest
parties, and finally allowing the adversary to make repeated oracle queries to f
with the same fixed honest inputs. (Similar relaxations of the ideal model were
previously considered in other contexts, such as fairness and concurrent or re-
settable security.) In the malicious security model, one should further relax the
ideal model in order to additionally take into account the adversary’s capability
of rushing7 (namely, correlating its messages with the messages obtained from
honest parties). In the relaxed ideal model, first the honest parties send their
inputs to f , then the adversary can repeatedly make oracle calls as above, and
finally the adversary can decide on the actual inputs to f that determine the
outputs of honest parties.

Given a t-robust NIMPC protocol (according to Definition 2) for each of the
n outputs of f , a t-secure protocol for f can be obtained in a straightforward
way. In the honest-but-curious model, it suffices to run n independent instances
of the protocol described in Section 2.1, where in the i-th instance Pi acts both
as a standard party and as the external server P0. In the malicious model, the
correlated randomness setup uses an unconditional one-time MAC to authen-
ticate each of the possible messages sent from Pi to Pj . This is feasible when
the input domain of each party is small. In the general case, we can make use
of an NIMPC protocol for a functionality f ′ with a bigger number of parties
which is identical to f except for taking a single input bit from each party. Such
a functionality f ′ can be securely realized by a protocol Π ′ as described above,
and then f can be realized by a protocol Π in which each party emulates the
corresponding parties in Π ′.

7 If some mechanism is available for ensuring that the adversary’s messages are inde-
pendent of the honest parties’ messages, this relaxation is not needed.


