
Polynomial Spaces: A New Framework for
Composite-to-Prime-Order Transformations

Gottfried Herold1, Julia Hesse2, Dennis Hofheinz2,
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Abstract. At Eurocrypt 2010, Freeman presented a framework to con-
vert cryptosystems based on composite-order groups into ones that use
prime-order groups. Such a transformation is interesting not only from
a conceptual point of view, but also since for relevant parameters, oper-
ations in prime-order groups are faster than composite-order operations
by an order of magnitude. Since Freeman’s work, several other works
have shown improvements, but also lower bounds on the efficiency of
such conversions.
In this work, we present a new framework for composite-to-prime-order
conversions. Our framework is in the spirit of Freeman’s work; how-
ever, we develop a different, “polynomial” view of his approach, and
revisit several of his design decisions. This eventually leads to signif-
icant efficiency improvements, and enables us to circumvent previous
lower bounds. Specifically, we show how to verify Groth-Sahai proofs in
a prime-order environment (with a symmetric pairing) almost twice as
efficiently as the state of the art.
We also show that our new conversions are optimal in a very broad sense.
Besides, our conversions also apply in settings with a multilinear map,
and can be instantiated from a variety of computational assumptions
(including, e.g., the k-linear assumption).
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1 Introduction

Motivation. Cyclic groups are a very popular platform for cryptographic con-
structions. Starting with Diffie and Hellman’s seminal work [4], there are count-
less examples of cryptographic schemes that work in any finite, cyclic group G,
and whose security can be reduced to a well-defined computational problem in
G. In many cases, the order of the group G should be prime (or is even irrel-
evant). However, some constructions (e.g., [2, 10, 17, 13]) explicitly require a
group G of composite order.

In particular in combination with a pairing (i.e., a bilinear map) e, groups of
composite order exhibit several interesting properties. (For instance, e(g1, g2) = 1



for elements g1, g2 of coprime order. Or, somewhat more generally, the pairing op-
eration operates on the different prime-order components of G independently.)
This enables interesting technical applications (e.g., [17, 13]), but also comes
at a price. Namely, to accommodate suitably hard computational problems,
composite-order groups have to be chosen substantially larger than prime-order
groups. Specifically, it should be hard to factor the group order. This leads to
significantly slower operations in composite-order groups: [6] suggests that for
realistic parameters, Tate pairings in composite-order groups are by a factor of
about 50 less efficient than in prime-order groups.

Freeman’s composite-order-to-prime-order transformation. It is thus
interesting to try to find substitutes for the technical features offered by compo-
site-order groups in prime-order settings. In fact, Freeman [6] has offered a frame-
work and tools to semi-generically convert cryptographic constructions from a
composite-order to a prime-order setting. Similar transformations have also been
implicit in previous works [8, 17]. The premise of Freeman’s approach is that
composite-order group elements “behave as” vectors over a prime field. In this
interpretation, subgroups correspond to linear subspaces.

Moreover, we can think of the vector components as exponents of prime-order
group elements; we can then associate, e.g., a composite-order subgroup indistin-
guishability problem with the problem of distinguishing vectors (chosen either
from a subspace or the whole space) “in the exponent.” More specifically, Free-
man showed that the composite-order subgroup indistinguishability assumption
can be implemented in a prime-order group with the Decisional Diffie-Hellman
(or with the k-linear) assumption. A pairing operation over the composite-order
group then translates into a suitable “multiplication of vectors,” which can mean
different things, depending on the desired properties. For instance, Freeman con-
siders both an inner product and a Kronecker product as “vector multiplication”
operations (of course with different effects).

Limitations of Freeman’s approach. Freeman’s work has spawned a number
of follow-up results that investigate more general or more efficient conversions
of this type [13, 15, 14, 11, 12]. We note that all of these works follow Freeman’s
interpretation of vectors, and even his possible interpretations of a vector mul-
tiplication. Unfortunately, during these investigations, certain lower bounds for
the efficiency of these transformations became apparent. For example, Seo [14]
proves lower bounds both for the computational cost and the dimension of the re-
sulting vector space of arbitrary transformations in Freeman’s framework. More
specifically, Seo reports a concrete bound on the number of required prime-order
pairing operations necessary to simulate a composite-order pairing.

However, of course, these lower bounds crucially use the vector-space inter-
pretation of Freeman’s framework. Specifically, it is conceivable that a (perhaps
completely different) more efficient composite-order-to-prime-order transforma-
tion exists outside of Freeman’s framework. Such a more efficient transformation
could also provide a way to implement, e.g., the widely used Groth-Sahai proof
system [8] more efficiently.
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Our contribution: a different view on composite-order-to-prime-order
conversions. In this work, we take a step back and question several assump-
tions that are implicitly made in Freeman’s framework. We exhibit a different
composite-order-to-prime-order conversion outside of his model, and show that
it circumvents previous lower bounds. In particular, our construction leads to
more efficient verification of Groth-Sahai proofs in the symmetric setting (i.e.,
with a symmetric pairing). Moreover, our construction can be implemented from
any matrix assumption [5] (including the k-linear assumption) and scales better
to multilinear settings than previous approaches. In the following, we give more
details on our construction and its properties.

A technical perspective: a polynomial interpretation of linear sub-
spaces. To explain our approach, recall that Freeman identifies a composite-
order group with a vector space over a prime field. Moreover, in his work, sub-
groups of the composite-order group always correspond to uniformly chosen
subspaces of a certain dimension. Of course, such “unstructured” subspaces only
allow for rather generic interpretations of composite-order pairings (as generic
“vector multiplications” as above).

Instead, we interpret the composite-order group as a very structured vec-
tor space. More concretely, we interpret a composite-order group element as
(the coefficient vector of) a polynomial f(X) over a prime field. In this view,
a composite-order subgroup corresponds to the set of all polynomials with a
common zero s (for a fixed and hidden s). Composite-order group operation and
pairing correspond to polynomial addition and multiplication. Moreover, the hid-
den common zero s can be used as a trapdoor to decide subgroup membership,
and thus to implement a “projection” in the sense of Freeman.

Specifically, our “vector multiplication” is very structured and natural, and
there are several ways to implement it efficiently. For instance, we can apply a
convolution on the coefficient vectors, or, more efficiently, we can represent f as
a vector of evaluations f(i) at sufficiently many fixed values i, and multiply these
evaluation vectors component-wise. In particular, we circumvent the mentioned
lower bound of Seo [14] by our different interpretation of composite-order group
elements as vectors.

Another interesting property of our construction is that it scales better to
the multilinear setting than previous approaches. For instance, while it seems
possible to generalize at least Freeman’s construction of a “projecting pairing”
to a setting with a k-linear map (instead of a pairing), the corresponding generic
vector multiplication would lead to exponentially (in k) large vectors in the
target group. In our case, a k-linear map corresponds to the multiplication of
k polynomials, and only requires a quadratic number of group elements in the
target group.3

In the description above, f is always a univariate polynomial. With this
interpretation, we can show that the SCasc assumption from Escala et al. [5]

3 We multiply k polynomials, and each polynomial should be of degree at least k, in
order to allow for suitable subgroup indistinguishability problems that are plausible
even in face of a k-linear map.
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implies subgroup indistinguishability. However, we also provide a “multivariate”
variant of our approach (with polynomials f in several variables) that can be
implemented with any matrix assumption (such as the k-linear and even weaker
assumptions). Furthermore, in the terminology of Freeman, we provide both a
“projecting” and a “projecting and canceling” pairing construction (although
the security of the “projecting and canceling” construction requires additional
complexity assumptions).

Applications. The performance improvements of our approach are perhaps
best demonstrated by the case of Groth-Sahai proofs. Compared to the most
efficient previous implementations of Groth-Sahai proofs in prime-order groups
with symmetric pairing [15, 5], we almost halve the number of required prime-
order pairing operations (cf. Table 1). As a bonus, we also improve on the number
of prime-order group elements in the target group, while retaining the small
common reference string from [5]. Additionally, in the full version [9] of our
paper, we show how to implement a variant of the Boneh-Goh-Nissim encryption
scheme [2] in prime-order groups with a k-linear map. As already sketched, this
is possible with Freeman’s approach only for logarithmically small k.

Structural results. Of course, a natural question is whether our results are
optimal, and if so, in what sense exactly. We can settle this question in the
following sense: we show that the construction sketched above is optimal in our
generalized framework. We also prove a similar result for our construction from
general matrix assumptions.

Open problems. In this work, we focus on settings with a symmetric pairing
(resp. multilinear map). It is an interesting open problem to extend our approach
to asymmetric settings. Furthermore, the conversion that leads to a canceling
and projecting map (in the terminology of Freeman) requires a nonstandard
complexity assumption (that however holds generically, as we prove). It would
be interesting to find constructions from more standard assumptions.

Outline. After recalling some preliminaries in Section 2, we describe our frame-
work in Section 3. Our conversions follow in Section 4. We discuss the optimality
of our conversions in Section 5, and compare them to previous conversions in
Section 6. Finally, we discuss in Section 7 how our results imply more efficient
Groth-Sahai proofs. We refer to the full version [9] for more detailed explanations
and proofs.

2 Preliminaries

Notation. Throughout the paper we will use additive notation for all groups G.
Nevertheless, we still talk about an exponentiation with exponent a considering
a scalar multiplication aP for P ∈ G and a ∈ Z|G|. Let G be a cyclic group of
order p generated by P. Then by [a] := aP we denote the implicit representation
of a ∈ Zp in G. To distinguish between implicit representations in the domain
G and the target group GT of a multilinear map we use [·] and [·]T , respectively.

More generally, we also define such representations for vectors ~f ∈ Znp by [~f ] :=
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([fi])i ∈ Gn, for matrices A = (ai,j)i,j ∈ Zn×mp by [A] := ([ai,j ])i,j ∈ Gn×m, and

for sets H ⊂ Znp by [H] := {[a] | a ∈ H} ⊂ Gn. We will often identify ~f ∈ Znp with
the coefficients of a polynomial f in some space V with respect to a (fixed) basis

q0, . . . , qn−1 of V , i.e., f =
∑n−1
i=0 fiqi (e.g., V = {f | f ∈ Zp[X],deg(f) < n}

and qi = Xi). In this case we may also write [f ] := [~f ].

Symmetric prime-order k-linear group generators. We use the following
formal definition of a k-linear prime-order group generator as the foundation for
our constructions. In the scope of these constructions, we will refer to the output
of such a generator as a basic (or, prime-order) k-linear map.

Definition 1 (symmetric prime-order k-linear group generator). A sym-
metric prime-order k-linear group generator is a PPT algorithm Gk that on input
of a security parameter 1λ outputs a tuple of the form

MGk := (k,G,GT , e, p,P,PT )← Gk(1λ)

where G,GT are descriptions of cyclic groups of prime order p, log p = Θ(λ),
P is a generator of G, and e : G × . . . × G → GT is a map which satisfies the
following properties:

– k-linearity: For all Q1, . . . , Qk ∈ G, α ∈ Zp, and i ∈ {1, . . . , k} we have
e(Q1, . . . , αQi, . . . , Qk) = αe(Q1, . . . , Qk).

– Non-Degeneracy: PT = e(P, . . . ,P) generates GT .

In our paper, one should think of Gk as either a generator of a bilinear group
setting (for k = 2) defined over some group of points of an elliptic curve and the
multiplicative group of a finite field or, for k > 2, as generator of an abstract
ideal multilinear map, approximated by the recent candidate constructions [7, 3].

Matrix assumptions. Our constructions are based on matrix assumptions as
introduced in [5].

Definition 2 (Matrix Distributions and Assumptions [5]). Let n, ` ∈ N,
n > `. We call Dn,` a matrix distribution if it outputs (in probabilistic polynomial
time, with overwhelming probability) matrices A ∈ Zn×`p of full rank `. Dn,`
is called polynomially induced if it is defined by picking ~s ∈ Zdp uniformly at
random and setting ai,j := pi,j(~s) for some polynomials pi,j ∈ Zp[X1, . . . , Xd]
whose degrees do not depend on the security parameter. We define D` := D`+1,`.
Furthermore, we say that the Dn,`-Matrix Diffie-Hellman assumption or just
Dn,` assumption for short holds relative to the k-linear group generator Gk if
for all PPT adversaries D we have AdvDn,`,Gk(D) = Pr[D(MGk, [A], [A~w]) =
1]−Pr[D(MGk, [A], [~u]) = 1] = negl(λ), where the probability is taken over the
output MGk = (k,G,GT , e, p,P,PT ) ← Gk(1λ), A ← Dn,`, ~w ← Z`p, ~u ← Znp

and the coin tosses of the adversary D.

We note that all of the standard examples of matrix assumptions are polynomi-
ally induced and further, in all examples we consider in this paper, the degree
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of pi,j is 1. In particular, we will refer to the following examples of matrix dis-
tributions, all for n = `+ 1:

SC` : A =


−s 0 ... 0 0
1 −s ... 0 0
0 1 0 0
.
.
.

.
.
.

.
.
.

0 0 ... 1 −s
0 0 ... 0 1

 , L` : A =


s1 0 0 ... 0
0 s2 0 ... 0

.

.

.

.

.

.

.
.
.

.

.

.
0 0 0 ... s`
1 1 1 ... 1

 , U` : A← Z(`+1)×`
p ,

where s, si ← Zp. Up to sign, the SC` assumption, introduced in [5], is the `-
symmetric cascade assumption (`-SCasc). The L` assumption is actually the well-
known `-linear assumption (`-Lin, [1]) in matrix language (DDH equals 1-Lin),
and the U` assumption is the `-uniform assumption. More generally, we can also
define the Un,` assumption for arbitrary n > `. Note that the Un,` assumption
is the weakest matrix assumption (with the worst representation size) and im-
plied by any other Dn,` assumption [5]. In particular `-Lin implies the `-uniform
assumption as shown by Freeman. Moreover, `-SCasc, `-Lin, and the `-uniform
assumption hold in the generic group model [16] relative to a k-linear group
generator if k ≤ ` [5].

Interpolating sets. Let ~X = (X1, . . . , Xd) be a vector of variables. Let W ⊂
Zp[ ~X] be a subspace of polynomials of finite dimension m. Given a set of polyno-
mials {r0, . . . , rm−1} which are a basis of W , we say that ~x1, . . . , ~xm ∈ Zdp is an
interpolating set for W if the matrix whose (i, j)th entry is defined as rj−1(~xi)
has full rank. It can be easily seen that the property of being an interpolating
set is independent of the basis. Further, when p is exponential (and m and the
degrees of ri are polynomial) in the security parameter, any m random vectors
~x1, . . . , ~xm form an interpolating set with overwhelming probability.

3 Our Framework

We now present our definitional framework for composite-to-prime-order trans-
formations. Basically, the definitions in this section will enable us to describe
how groups of prime order p with a multilinear map e can be converted into
groups of order pn for some n ∈ N with a multilinear map ẽ. These converted
groups will then “mimic” certain features of composite-order groups. Since ẽ is
just a composition of several instances of e, we will refer to e as the basic multi-
linear map. We start with an overview of the framework of Freeman, since this
is the established model for such transformations. Afterwards, we describe our
framework in terms of differences to the model of Freeman.

Freeman’s model. Freeman identifies some abstract properties of bilinear
composite order groups which are essential to construct some cryptographic
protocols, namely subgroup indistinguishability, the projecting property and the
canceling property. For Freeman, a symmetric bilinear map generator takes a
bilinear group of prime order p with a pairing e and outputs some groups H ⊂
G,GT of order pn for some n ∈ N and a symmetric bilinear map ẽ : G×G→
GT , computed via the basic pairing e. Useful instances of such generators satisfy
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the subgroup indistinguishability assumption, which means that it should be
hard to decide membership in H ⊂ G. Further, the pairing is projecting if the
bilinear map generator also outputs some maps π, πT defined respectively on
G,GT which commute with the pairing and such that kerπ = H. The pairing
is canceling if ẽ(H,H′) = 0 for some decomposition G = H⊕H′.
Instantiations. Further, Freeman gives several concrete instantiations in which
the subgroups H output by the generator are sampled uniformly. More specifi-
cally, in the language of [5], the instantiations sample subgroups according to the
Un,` distribution. Although his model is not specifically restricted to this case,
follow-up work seems to identify “Freeman’s model” with this specific matrix
distribution. For instance, the results of [13] on the impossibility of achieving
the projecting and canceling property simultaneously or the impossibility result
of Seo [14], who proves a lower bound on the size of the image of a projecting
pairing, are also in this setting.

Our model. Essentially, we recover Freeman’s original definitions for the sym-
metric setting, however with some additional precisions. First, we extend his
model to multilinear maps and, like Seo [14], distinguish between basic multilin-
ear map operations (e) and multilinear map operations (ẽ), since an important
efficiency measure is how many e-operations are required to compute ẽ. The
second and main block of differences is introduced with the goal of making the
model compatible with several families of matrix assumptions, yielding a useful
tool to prove optimality and impossibility results. For this, we extend Freeman’s
model to explicitly support different families of subgroup assumptions and state
clearly what the dependency relations between the different outputs of the mul-
tilinear group generator are. In Section 6, we explicitly discuss the advantages
of the refinement of the model.

Definition 3. Let k, `, n, r ∈ N with k > 1 and r ≥ n > `. A (k, (r, n, `)) sym-
metric multilinear map generator Gk,(r,n,`) takes as input a security parameter

1λ and a basic k-linear map generator Gk and outputs in probabilistic polynomial
time a tuple (MGk,H,G,GT , ẽ), where
– MGk := (k,G,GT , e, p,P,PT ) ← Gk(1λ) is a description of a prime order

symmetric k-linear group
– G ⊂ Gr is a subgroup of Gr with a minimal generating set of size n
– H ⊂ G is a subgroup of G with a minimal generating set of size `
– ẽ : Gk → GT is a non-degenerate k-linear map.

We assume that elements in H,G are represented as vectors in Gr. With this
representation, it is natural to identify elements in these groups with vectors in
Zrp in the usual way, via the canonical basis. Via this identification, any subgroup

H ⊂ Gr spanned by [~b1], . . . , [~b`] corresponds to the subspace H of Zrp spanned

by ~b1, . . . ,~b`, and we write H = [H]. Further, we may assume that GT = GmT
and elements of GT are represented by m-tuples of GT , for some fixed m ∈ N,
although we do not include m as a parameter of the multilinear generator.

In most constructions n = r, in which case we drop the index r from the
definition, and we simply refer to such a generator as a (k, (n, `)) generator
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Gk,(n,`). We always assume that membership in G is easy to decide.4 In the case
where n = r and G = Gr this is obviously the case, but otherwise we assume
that the description of G includes some auxiliary information which allows to
test it (like in [15] or [12]).

Definition 4 (Properties of multilinear map generators). Let Gk,(r,n,`)
be a (k, (r, n, `)) symmetric multilinear map generator as in Definition 3 with
output (MGk,H,G,GT , ẽ). We define the following properties:
– Subgroup indistinguishability. We say that Gk,(r,n,`) satisfies the sub-

group indistinguishability property if for all PPT adversaries D,

AdvGk,(r,n,`)(D) = Pr[D(MGk,H,G,GT , ẽ, x) = 1]
− Pr[D(MGk,H,G,GT , ẽ, u) = 1] = negl(λ),

where the probability is taken over (MGk,H,G,GT , ẽ)← Gk,(r,n,`)(1λ), x←
H, u← G and the coin tosses of the adversary D.

– Projecting. We say that (MGk,H,G,GT , ẽ) is projecting if there exist two
non-zero homomorphisms π : G → G, πT : GT → GT such that kerπ = H
and πT (ẽ(x1, . . . , xk)) = ẽ(π(x1), . . . , π(xk)) for any (x1, . . . , xk) ∈ Gk. For
the special case r = n = `+ 1, G := Gn, we can equivalently define the maps
π : Gn → G, πT : GT → GT such that kerπ = H and πT (ẽ(x1, . . . , xk)) =
e(π(x1), . . . , π(xk)) (matching the original definition of [8]). We say that
Gk,(r,n,`) is projecting if its output is projecting with overwhelming probability.

– Canceling. We say that (MGk,H1,G,GT , ẽ) is canceling if there exists
a decomposition G = H1⊕H2 such that for any x1 ∈ Hj1 , . . . , xk ∈ Hjk ,
ẽ(x1, . . . , xk) = 0 except for j1 = . . . = jk. We call Gk,(r,n,`) canceling if its
output is canceling with overwhelming probability.

So far, the given definitions match those of Freeman (extended to the k-linear
case) except that we explicitly define the basic k-linear group MGk which is
used in the construction. We will now introduce two aspects of our framework
that are new compared to Freeman’s model. First, we will define multilinear
generators that sample subgroups according to a specific matrix assumptions.
Then, we will define a property of the multilinear map ẽ that will be very useful
to establish impossibility results and lower bounds.

Definition 5. Let k, `, n, r ∈ N with k > 1, r ≥ n > ` and Dn,` be a ma-
trix distribution. A (k, (r, n, `),Dn,`) multilinear map generator Gk,(r,n,`),Dn,` is
a (k, (r, n, `)) multilinear map generator which outputs (MGk,H,G,GT , ẽ) such
that the distribution of the subspaces H such that H = [H] equals Dn,` for any
fixed choice of MGk.

As usual, in the case where r = n, we just drop r and refer to a (k,Dn,`)
multilinear map generator Gk,Dn,` . We conclude our framework with a definition

4 We note that with the recent approximate multilinear maps from [7, 3], not even
group membership is efficiently recognizable. This will not affect our results, but of
course hinders certain applications (such as Groth-Sahai proofs).
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Table 1: Efficiency of different symmetric projecting k-linear maps. The size of the
domain (n) and codomain (m) of ẽ is given as number of group elements of G and GT ,
respectively. Costs are stated in terms of the number of applications of the basic map e,
group operations (gop) including inversion in G/GT , and `-fold multi-exponentiations
of the form e1[a1] + · · · + e`[a`] (`-mexp) in G/GT . Note that in this paper, for the
computation of ẽ, we use an evaluate-multiply-approach.

Construction Ass. Co-/Domain Cost ẽ Cost π Cost πT
Freeman, k = 2 [6] U2 9/3 9 e 3 3-mexp 9 9-mexp

Seo, k = 2 [14] U2 6/3 9 e + 3 gop 3 3-mexp 6 6-mexp

This paper, k = 2 SC2 5/3 5 e + 22 gop 1 2-mexp 1 5-mexp

This paper, k = 2 U2 6/3 6 e + 12 3-mexp1 1 3-mexp 1 6-mexp

Freeman, k > 2 Uk (k+1)k/k+1 (k+1)k+1 e k+1 (k+1)-mexp (k+1)k (k+1)k-mexp

This paper, k > 2 Uk
(
2k
k

)
/k+1

(
2k
k

)
e +

(
2k
k

)
k (k+1)-mexp1 1 (k+1)-mexp 1

(
2k
k

)
-mexp

This paper, k > 2 SCk k2+1/k+1 (k2+1) e + (k3+k) k-mexp1 1 k-mexp 1 k2+1-mexp

1 For the construction based on SCk, the involved exponents are relatively small,

namely the biggest one is (d k
2+1
2
e)k. Also for Uk, the involved exponents can usually

be made small.

that enables us to distinguish generators where the multilinear map ẽ may or
may not depend on the choice of the subgroups.

Definition 6. We say that a (k, (r, n, `),Dn,`) multilinear map generator with
output (MGk,H,G,GT , ẽ) as in Definition 5 defines a fixed multilinear map
if the random variable H (s.t. H = [H]) conditioned on MGk and the random
variable (G,GT , ẽ) conditioned on MGk are independent.

4 Our Constructions

All of our constructions arise from the following polynomial point of view : The
key idea is to treat G = Gn as an implicit representation of some space of poly-
nomials. Polynomial multiplication will then give us a natural multilinear map.
For subspaces H(~s) that correspond to polynomials sharing a common root ~s,
this multilinear map will turn out to be projecting. We will first illustrate this
idea by means of a simple concrete example where subgroup decision for H(~s) is
equivalent to 2-SCasc (Section 4.1). Then we show that actually any polynomi-
ally induced matrix assumption gives rise to such a polynomial space and thus
allows for the construction of a k-linear projecting map (Section 4.2). Finally, by
considering G along with the multilinear map as an implicit representation of
a polynomial ring modulo some reducible polynomial, we are able to construct
a multilinear map which is both projecting and canceling (see Section 4.3 for a
summary). See Table 1 for an overview of the characteristics of our projecting
map constructions in comparison with previous work.

4.1 A Projecting Pairing based on the 2-SCasc Assumption

Let (k = 2, G,GT , e, p,P,PT ) ← G2(1λ) be the output of a symmetric prime-

order bilinear group generator. We set G := G3 and GT := G5
T . For any [~f ] =
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([f0], [f1], [f2]) ∈ G = G3, we identify ~f with the polynomial f = f0 + f1X +

f2X
2 ∈ Zp[X] of degree at most 2. Similarly, any [~f ]T ∈ GT corresponds to

a polynomial of degree at most 4. Then the canonical group operation for G
and GT corresponds to polynomial addition (in the exponent), i.e., [~f ] + [~g] =

[~f+~g] = [f+g] and [~f ]T+[~g]T = [f+g]T . Furthermore, polynomial multiplication
(in the exponent) gives a map ẽ : G×G→ GT ,

ẽ([~f ], [~g]) :=
([ ∑

i+j=0

figj

]
T
, . . . ,

[ ∑
i+j=4

figj

]
T

)
= [f · g]T

It is easy to see that (G,GT , ẽ) is again a bilinear group setting, where the group
operations and the pairing ẽ can be efficiently computed.

A subgroup decision problem. For some fixed s ∈ Zp let us consider the

subgroup H(s) ⊂ G formed by all elements [~f ] ∈ G such that ~f viewed as
polynomial f has root s, i.e., H(s) = {[f ] ∈ G | f(s) = 0}. In other words, H(s)

consists of all [f ] with f of the form

(X − s)(f ′1X + f ′0) , (1)

where f ′1, f
′
0 ∈ Zp. Thus, given [f ] and [s], the subgroup decision problem for

H(s) ⊂ G means to decide whether f is of this form or not. Viewing Eq. (1) as
matrix-vector multiplication, we see that this is equivalent to deciding whether
~f belongs to the image of the 3× 2 matrix

A(s) :=
(−s 0

1 −s
0 1

)
(2)

Hence, our subgroup decision problem corresponds to the 2-SCasc problem (cf.
Definition 2) which is hard in a generic bilinear group [5].

Projections. Given s, we can simply define projection maps π : G → G and
πT : GT → GT by polynomial evaluation at s (in the exponent), i.e., [~f ] is

mapped to [f(s)] and [~f ]T to [f(s)]T . Computing π, πT requires group oper-

ations only. Obviously, it holds that ker(π) = H(s) and e(π([~f1]), π([~f2])) =

πT (ẽ([~f1], [~f2])).

Sampling from H(s). Given [(−s, 1, 0)], [(0,−s, 1)] ∈ G, a uniform element
from H(s) can be sampled by picking (f ′0, f

′
1) ← Z2

p and, as with any matrix
assumption, computing the matrix-vector product[(−s 0

1 −s
0 1

)
·
(
f ′0
f ′1

)]
=
[
(−sf ′0, f ′0 − sf ′1, f ′1)

T
]

(3)

Again, this can be done using the group operation only.

Efficiency. Computing ẽ in our construction corresponds to polynomial mul-
tiplication. Although this multiplication happens in the exponent (and we are
“only” given implicit representations of the polynomials), we are not forced to
stick to schoolbook multiplication. Instead, we propose to follow an evaluation-
multiplication-interpolation approach (using small interpolation points) where
the actual interpolation step is postponed to the computation of πT .
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More precisely, so far we used coefficient representation for polynomials over
G and GT with respect to the standard basis. However, other (s-independent)
bases are also possible without affecting security. For efficiency, we propose to
stick to this representation for G but to use point-value representation for poly-
nomials overGT with respect to the fixed interpolating setM := {−2,−1, 0, 1, 2}
(cf. Definition 2). This means we now identify a polynomial g in the target space
with the vector (g(−2), g(−1), g(0), g(1), g(2)).

More concretely, to compute ẽ([f1], [f2]) = ([(f1f2)(x)]T )x∈M , we first eval-
uate f1 and f2 (in the exponent) with all x ∈ M , followed by a point-wise
multiplication ([f1(x)f2(x)]T )x∈M = (e([f1(x)], [f2(x)]))x∈M . This way, ẽ can be
computed more efficiently with only five pairings. Computing π is unchanged. To
apply πT , one first needs to obtain the coefficient representation by interpolation
and then evaluate the polynomial at s. However, this can be done simultaneously
and as the 1× 5 matrix describing this operation can be precomputed (given s)
it does not increase the computational cost much.

4.2 Projecting Multilinear Maps from any Matrix Assumption

In the following, we will first demonstrate that for any vector space of polyno-
mials, the natural pairing given by polynomial multiplication is projecting for
subspaces consisting of polynomials sharing a common root. We will then show
that any (polynomially induced) matrix assumption can equivalently be consid-
ered as a subspace assumption in a vector space of polynomials of this type.
This way, we obtain a natural projecting multilinear map for any polynomially
induced matrix assumption.

A projecting multilinear map on spaces of polynomials. Let MGk :=
(k,G,GT , e, p,P,PT ) ← Gk(1λ) be the output of a prime-order k-linear group

generator. Let V ⊂ Zp[ ~X] be a vector space of polynomials of dimension n for

which we fix a basis q0, . . . , qn−1. Then for any [~f ] ∈ G := Gn we can identify

the vector ~f = (f0, . . . , fn−1) with a polynomial f =
∑
fiqi ∈ V . In the 2-SCasc

example above, V corresponds to univariate polynomials of degree at most 2 and
the basis is given by 1, X,X2. On V , we have a natural k-linear map given by
polynomial multiplication: multk : V k → Zp[ ~X],multk(f1, . . . , fk) = f1 · · · fk.

Let W ⊂ Zp[ ~X] be the span of the image of multk and m its dimension. Then
we can again fix a basis r0, . . . , rm−1 of W to identify polynomials with vectors.
In the 2-SCasc example above, W consists of polynomials of degree at most 4
and we chose the basis 1, X,X2, X3, X4 of W for our initial presentation. From
polynomial multiplication, we then obtain a non-degenerate k-linear map

ẽ : Gk → GmT , ẽ([
~f1], . . . , [ ~fk]) = [f1 · · · fk]T .

Now consider a subspace H(~s) ∈ G of the form H(~s) = {[f ] ∈ G | f(~s) =
0}. It is easy to see that ẽ is projecting for this subspace: A projection map

π : G → G with ker(π) = H(~s) is given by evaluation at ~s, i.e., π([~f ]) = [f(~s)].
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Similarly, πT : GmT → GT is defined by πT ([~g]T ) = [g(~s)]T and by construc-

tion we have e(π([~f1]), . . . , π([ ~fk])) = [f1(~s) · · · fk(~s)]T = [(f1 · · · fk)(~s)]T =

πT (ẽ([~f1], . . . , [ ~fk])).

From a polynomially induced matrix distribution to a space of poly-
nomials. Now, let Dn−1 be any polynomially induced matrix distribution as

defined in Definition 2 and let A( ~X) ∈ (Zp[ ~X])n×(n−1) be the polynomial matrix
describing this distribution. Then we set G := Gn and consider the subspace
[ImA(~s)] for some ~s. We now show that we can identify G with a vector space
V of polynomials, such that the subspace ImA(~s) corresponds exactly to poly-

nomials having a root at ~s. To this end, consider the determinant of (A( ~X)||~F )

as a polynomial d in indeterminates ~X and ~F . Since we assume that A(~s) has

generically5 full rank a given vector ~f ∈ Znp belongs to the image of A(~s) iff the

determinant of the extended matrix (A(~s)||~f) is zero, i.e., d(~s, ~f) = 0. To ob-
tain the desired vector space V with basis q0, . . . , qn−1, we consider the Laplace
expansion of this determinant to write d as

d( ~X, ~F ) =

n−1∑
i=0

Fiqi( ~X) . (4)

for some polynomials qi( ~X) depending only on A. For SC2, we have qi = Xi.
We note that in all cases of interest the qi are linearly independent (see [9]).

Thus, we may now identify [~f ] ∈ G with the implicit representation of the

polynomial f = d( ~X, ~f) =
∑
i fiqi. As f(~s) =

∑
i fiqi(~s) = 0 iff ~f ∈ ImA(~s),

we have H(~s) = [ImA(~s)] = {[f ] ∈ G | f(s) = 0}. Hence, we may construct
a projecting k-linear map from polynomial multiplication as described in the
previous paragraph.

Working through the construction, one can obtain explicit coordinates as
follows: let W be the span of {qi1 · · · qik | 0 ≤ ij < n} and fix a basis r0, . . . , rm−1

of W . This determines coefficients λ
(i1,...,ik)
t in qi1 · · · qik =

∑m−1
t=0 λ

(i1,...,ik)
t rt.

Recall that ẽ : (Gn)k → GmT is defined as ẽ([~f1], . . . , [ ~fk]) = [f1 · · · fk]T , ex-
pressed as an element of GmT via the basis ~r. In coordinates this reads

ẽ([~f1], . . . , [ ~fk]) =
( ∑
j1≤...≤jk

λ
(j1,...,jk)
0 ·

∑
(i1,...,ik)∈
τ(j1,...,jk)

e([f1,i1 ], . . . , [fk,ik ]), . . . ,

∑
j1≤...≤jk

λ
(j1,...,jk)
m−1 ·

∑
(i1,...,ik)∈
τ(j1,...,jk)

e([f1,i1 ], . . . , [fk,ik ])
) (5)

where [f1,i1 · · · fk,ik ]T simply denotes (f1,i1 · · · fk,ik)PT and τ(j1, . . . , jk) de-
notes the set of permutations of (j1, . . . , jk). The last optimization can be done

5 This means that A(~s) will be full rank with overwhelming probability and this is
indeed equivalent to d 6= 0. To simplify the exposition, we may assume that the
sampling algorithm is changed to exclude ~s where A(~s) does not have full rank.
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as qi1 · · · qik = qj1 · · · qjk for (i1, . . . , ik) ∈ τ(j1, . . . , jk). For the same reason,

we have m =
(
n+k−1

k

)
in the worst case. In this way, the target group in our

constructions is always smaller than the target group in Freeman’s construction
(generalized to k ≥ 2), which is of size nk.

The following theorem summarizes our construction and its properties:

Theorem 1. Let k > 1, n ∈ N, and Dn−1 be a polynomially induced matrix
distribution. Let Gk,Dn−1 be an algorithm that on input of a security parame-
ter 1λ and a symmetric prime-order k-multilinear map generator Gk outputs
(MGk,H(~s),G,GT , ẽ), where

– MGk := (k,G,GT , e, p,P,PT )← Gk(1λ),

– G := Gn, H(~s) := [ImA(~s)], A(~s)← Dn−1,

– GT := GmT , where m equals the dimension of

W :=

{ ∑
0≤i1,...,ik≤n−1

αi1,...,ikqi1 · · · qik
∣∣∣∣ αi1,...,ik ∈ Zp}

(as vector space), and q0( ~X), . . . , qn−1( ~X) ∈ Zp[ ~X] are polynomials s.t.

det(A( ~X)||~F ) =

n−1∑
i=0

Fiqi( ~X)

for the matrix A( ~X) describing Dn−1, and

– ẽ : Gk → GT is the map defined by Eq. (5) for a basis r0, . . . , rm−1 of W .

Then Gk,Dn−1
is a (k,Dn−1) multilinear map generator. It is projecting, where the

projection maps π : G→ G and πT : GT → GT defined by π(~f) :=
∑n−1
i=0 qi(~s)[fi]

and πT (~g) :=
∑m−1
i=0 ri(~s)[gi]T are efficiently computable given the trapdoor ~s.

Furthermore, if the Dn−1 assumption holds with respect to Gk, then subgroup
indistinguishability holds with respect to Gk,Dn−1 .

Example 1. We can construct a projecting k-linear map generator satisfying sub-
group indistinguishability under k-SCasc (which is hard in a k-linear generic
group model). For Gk,SCk , we would get n = k + 1 and qi(X) = Xi if k is even
and qi(X) = −Xi when k is odd, where 0 ≤ i ≤ k. Using the basis rt(X) = Xt

for W if k is even and rt(X) = −Xt if k is odd for 0 ≤ t ≤ k2, we obtain

λ
(i1,...,ik)
t = 1 for t = i1 + · · · + ik and λ

(i1,...,ik)
t = 0 else. Note that we have

m = k2 + 1.

Example 2. We can also construct a k-linear map generator from k-Lin. For
Gk,Lk , we would have n = k+1, and polynomials qk(X0, . . . , Xk−1) = X0 · · ·Xk−1
and qi(X0, . . . , Xk−1) = −

∏
j 6=iXj for 0 ≤ i ≤ k − 1. As a basis for W we can

simply take {qj1 · · · qjk | 0 ≤ j1 ≤ . . . ≤ jk ≤ k} yielding m =
(
n+k−1

k

)
.
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Example 3. Like Freeman, we could also construct a k-linear map generator from
the Uk assumption. Although the polynomials qi(X1,1, . . . , Xk,k+1), 0 ≤ i ≤ k,
associated to Gk,Uk have a much more complex description than in the k-Lin case,

the image size of the resulting map is the same, namely m =
(
n+k−1

k

)
, because

a basis of the image is also {qj1 · · · qjk | 0 ≤ j1 ≤ . . . ≤ jk ≤ k}.

Efficiency. As in our setting any change of basis is efficiently computable, the
security of our construction only depends on the vector space V (which in turn
determines W ), but not on the bases chosen. So we are free to choose bases that
improve efficiency. We propose to follow the same approach as in Section 4.1:
Select points ~x0, . . . , ~xm−1 that form an interpolating set for W and represent
f ∈ W via the vector f(~x0), . . . , f(~xm−1). This corresponds to choosing the
basis of W consisting of polynomials r0, . . . , rm−1 ∈ W such that ri(~xj) = 1 for
i = j and 0 otherwise. For the domain V , the choice is less significant and we
might simply choose the qi’s that the determinant polynomial gives us. Then
we can compute ẽ([~f1], . . . , [ ~fk]) by an evaluate-multiply approach using only m
applications of e. Note that the evaluation step can also be done pretty efficiently
if the qi’s have small coefficients (which usually is the case). For details see [9].

4.3 Canceling and Projecting k-Linear Maps From Polynomial
Spaces

By considering polynomial multiplication modulo a polynomial h, which has a
root at the secret s, we are able to construct a (k, (n = ` + 1, `)) symmetric
multilinear map generator with a non-fixed pairing that is both canceling and
projecting. Our first construction relies on a k′ := k + 1-linear prime-order map
e. The one additional multiplication in the exponent is used to perform the
reduction modulo h. Based on this construction, we propose another (k, (r =
2`, n = `+1, `)) symmetric multilinear map generator that requires only a k′ = k-
linear prime-order map. The security of our constructions is based on variants of
the `-SCasc assumption. We need to extend `-SCasc by additional given group
elements to allow for reduction in the exponent, e.g., in the simplest case hints
of the form [Xi mod h] are given. In the full version of this paper we give details,
efficiency considerations, and show that our constructions are secure for ` ≥ k′

in generic k′-linear groups. We note that, to the best of our knowledge, this is
the first construction of a projecting&canceling map that naturally generalizes
to k′ > 2.

5 Optimality and Impossibility Results

5.1 Optimality of Polynomial Multiplication

In this section we show that for any polynomially induced matrix assumption
D`+1,`, the projecting multilinear map resulting from the polynomial viewpoint
is optimal in terms of image size.
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Theorem 2. Let k > 0, and let D`+1,` be a polynomially induced matrix as-
sumption and let q0, . . . , q` be the polynomials associated to D`+1,` as defined in

Eq. (4) in Section 4.2 and let W ⊂ Zp[ ~X] be the space of polynomials spanned by
{qi1 . . . qik | 0 ≤ ij ≤ `}. Let (MGk,H, G`+1, GmT , ẽ) be the output of any other
fixed (k,D`+1,`) projecting multilinear map generator. Then, m := dimW ≤ m.

G
k Gm

T

Gk GT

ẽ

(
π(~s)

)k
π
(~s)
T

e

G
k × . . .×Gk Gm

T × . . .×Gm
T

Gk × . . .×Gk GT × . . .×GT

(ẽ, . . . , ẽ)

((
π(~s1)

)k, . . . , (π(~sm)
)k) (

π
(~s1)

T , . . . , π
(~sm)

T

)
(e, . . . , e)

Figure 1: Left: Projecting property. Right: The diagram repeated m times for an
interpolating set ~s1, . . . ~sm for W .

Proof Intuition. An intuition of the proof is given by Figure 1. The first part

of the proof shows that w.l.o.g. we can assume that π
(~s)
T ◦ ẽ is polynomial mul-

tiplication for all ~s, that is, for any [~f1], . . . , [~fk] ∈ G`+1, πT (ẽ([~f1], . . . , [~fk])) =
[(f1 . . . fk)(~s)]T . This follows from the commutative diagram on the left, i.e., the
projecting property, together with the fact that, because H has codimension 1,
the map π(~s) must (up to scalar multiples) correspond to polynomial evaluation
at ~s. The intuition for the second part of the proof is given by the diagram on
the right-hand side of Figure 1. Here we show that if ~s1, . . . ~sm is an interpolat-

ing set for W , then the span of
{(
π
(~s1)
T (~x), . . . , π

(~sm)
T (~x)

)
|~x ∈ ẽ(Gk)

}
⊂ GmT is

of dimension m. This dimension can be at most the dimension of the span of
ẽ(Gk), showing m ≤ m. A full proof is given in [9].

5.2 Optimality of our Projecting Multilinear Map from the
SCasc-Assumption

As a result of our general viewpoint, we can actually show that the projecting
multilinear map based on the SCasc-assumption is optimal among all polynomi-
ally induced matrix assumptions Dn,` that are not redundant. Non-redundancy
rules out the case where some components of ~z are no help (even information-
theoretically) in distinguishing ~z ∈ G from ~z ∈ H(s). See [9] for a formal defini-
tion.

Theorem 3. Let n = `+ 1 and Dn,` be a polynomially induced matrix distribu-
tion which is not redundant. Let (MGk,H, Gn, GmT , ẽ) be the output of some pro-
jecting (k,Dn,`) multilinear map generator with a fixed multilinear map. Then,
m ≥ `k + 1.
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Note that the projecting pairing based on the polynomial viewpoint of the
`-SCasc-assumption reaches this bound and is hence optimal.

Proof. We may identify Gn with some subspace V ⊂ Zp[ ~X] of dimension n (see
[9] for details). By Theorem 2 above, we may assume w.l.o.g. that ẽ is polynomial
multiplication, as this only makes m smaller. Hence we can also identify GmT with

some subspace W ⊂ Zp[ ~X] of dimension m. Let > be any monomial ordering

on Zp[ ~X]. Let q0, . . . , q` be a basis of V in echelon form with respect to >.
This implies that the leading monomials satisfy LM(q0) > . . . > LM(q`). Now
consider the elements

qk0 = r0 =q0 · · · q0q0
r1 =q0 · · · q1q0

...

r` =q0 · · · q0q`

r`+1 =q0 · · · q0q1q`
...

r2` =q0 · · · q0q`q`

. . .

. . .

r(k−1)`+1 =q0q` · · · q`
...

r`k =q`q` · · · q`

(the definition of ri+1 differs from that of ri in one single index being greater
by one). It holds that all ri ∈ W by construction and LM(r0) > LM(r1) >
. . . > LM(r`k) by the properties of a monomial order. Hence, the ri are linearly
independent, showing m = dimW ≥ `k + 1.

6 Review of Previous Results in our Framework

Let us consider some previous results using the language introduced in Section 3.

Projecting Pairings. Implicitly, in [8], Groth and Sahai were using the fact
that the bilinear symmetric tensor product is a projecting map. Subsequently,
Seo [14] constructed an improved symmetric projecting pairing which he claimed
to be optimal in terms of image size and operations.

Theorem 4. ([14]) Let G2,U` be any (symmetric) projecting (2,U`) bilinear map
generator with output (MG2,H,G, GmT , ẽ). Then (a) we have m ≥ (` + 1)(` +
2)/2, and (b) the map ẽ cannot be evaluated with less than (`+ 1)2 prime-order
pairing operations.

Using the polynomial point of view, we prove in [9] that polynomial multipli-
cation is optimal for any D` assumption, and thus cover Theorem 4 (a) as a
special case when D` = U`. On the other hand, the polynomial viewpoint imme-
diately suggests a method to evaluate Seo’s pairing with m (less than (`+ 1)2)
prime-order pairing operations, refuting Theorem 4 (b).6 Further, our results also
answer in the affirmative an open question raised by Seo about the existence of
more efficient pairings outside of the model. Our construction of a k-linear map
based on k-SCasc beats this lower bound and is much more efficient asymptoti-
cally in k.

6 In [9] we discuss in more detail Seo’s construction and the reason why Theorem 4
(b) is false.
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Cancelling and Projecting Pairings. In his original paper [6], Freeman gives
several constructions of bilinear pairings which are either projecting or canceling
— but not both. Subsequently, Meiklejohn et al. [13] give evidence that it might
be hard to obtain both features simultaneously:

Theorem 5. ([13]) Any symmetric (2,U`) bilinear generator with a fixed pairing
cannot be simultaneously projecting and canceling, except with negligible proba-
bility (over the output of the generator).7

In [9] we show that this result can be extended to any (2,L`) and any (2,SC2)
bilinear generator. It remains an open question if the impossibility results extend
to (2,SC`), for ` > 2.

With these impossibility results, it is not surprising that all canceling and
projecting constructions are for non-fixed pairings in the sense of Definition 6.
Indeed, in [15] Cheon and Seo construct a pairing which is both canceling and
projecting but not fixed since, implicitly, the group G depends on the hidden
subgroup H. In our language, the pairing of Seo and Cheon is a (2, (r = `2, n =

` + 1, `)) pairing, i.e., G ⊂ G`
2

of dimension n = ` + 1. Recently, Lewko and
Meiklejohn [12] simplified this construction, obtaining a (2, (r = 2`, n = `+1, `))
bilinear map generator. In [9] we also construct a (2, (r = 2`, n = `+1, `)) pairing
achieving both properties (and which generalizes to any (k, (r = 2`, n = `+1, `))
with ` ≥ k) , but using completely different techniques. A direct comparison of
[15], [12] with our pairing is not straightforward, since in fact they use dual
vector spaces techniques and their pairing is not really symmetric.

7 A Direct Application: More Efficient Groth-Sahai
Proofs

Using our projecting pairing from Section 4.1, we can improve the performance
of Groth-Sahai proofs by almost halving the number of required prime-order
pairing operations for verification (cf. Table 1). Additionally, in [9], we show how
to implement a k-linear variant of the Boneh-Goh-Nissim encryption scheme [2]
using the projecting multilinear map generator Gk,SCk .

Groth-Sahai proofs [8] are the most natural application of projecting bilinear
maps. They admit various instantiations in the prime-order setting. It follows
easily from the original formulation of Groth and Sahai that their proofs can
be instantiated based on any Dn,` assumption and any fixed projecting map.
Details are given in [5] but only for the projecting pairing corresponding to the
symmetric bilinear tensor product. The generalization to any projecting pairing
is straightforward.

The important parameters for efficiency of NIZK proofs are the size of the
common reference string, the proof size and the verification cost. The proof size

7 Their claim is that it is impossible to achieve both properties under what they call a
“natural use” of the `-Lin assumption, although, they are actually using the uniform
assumption.
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(for a given equation) depends only on the size of the matrix assumption, i.e., on
n, `, so it is omitted in our comparison. The size of the common reference string
depends essentially on the size of the commitment key, which is n+ ReG(Dn,`),
where ReG(Dn,`) is the representation size of the matrix assumption Dn,`, which
is 1 for `-SCasc, ` for `-Lin and (`+1)` for U`. Therefore, the `-SCasc instantiation
is the most advantageous from the point of view of the size of the common
reference string (regardless of the pairing used), as pointed out in [5].

On the other hand, the choice of the pairing affects only the cost of verifica-
tion8. Except for some restricted type of linear equations, verification involves
several evaluations of ẽ. In our most efficient construction, for each pairing evalu-
ation ẽ, we save, according to Table 1, at least 4 prime-order pairing evaluations.
For instance, this leads to a saving of 12 pairing evaluations for proving that a
committed value is a bit b ∈ {0, 1}.
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