
Client-Server Concurrent Zero Knowledge with
Constant Rounds and Guaranteed Complexity?

Ran Canetti1??, Abhishek Jain2, and Omer Paneth3? ? ?

1 Boston University and Tel-Aviv University, canetti@bu.edu
2 Boston University and MIT, abhishek@csail.mit.edu

3 Boston University, omer@bu.edu

Abstract. The traditional setting for concurrent zero knowledge consid-
ers a server that proves a statement in zero-knowledge to multiple clients
in multiple concurrent sessions, where the server’s actions in a session
are independent of all other sessions. Persiano and Visconti [ICALP 05]
show how keeping a limited amount of global state across sessions allows
the server to significantly reduce the overall complexity while retaining
the ability to interact concurrently with an unbounded number of clients.
Specifically, they show a protocol that has only slightly super-constant
number of rounds; however the communication complexity in each ses-
sion of their protocol depends on the number of other sessions and has
no a-priori bound. This has the drawback that the client has no way
to know in advance the amount of resources required for completing a
session of the protocol up to the moment where the session is completed.
We show a protocol that does not have this drawback. Specifically, in
our protocol the client obtains a bound on the communication complex-
ity of each session at the start of the session. Additionally the protocol
is constant-rounds. Our protocols is fully concurrent, and assumes only
collision-resistant hash functions. The proof requires considerably differ-
ent techniques than those of Persiano and Visconti. Our main technical
tool is an adaptation of the “committed-simulator” technique of Deng
et. al [FOCS 09].

1 Introduction

Concurrent security of a protocol means that security is preserved even when
many copies of the protocol may be executed concurrently with each other and
with other, potentially unknown protocols. Concurrent security is essential for
protocols designed for modern networks, such as the Internet. However, it often
imposes a cost on the complexity of the protocol. For example, stand-alone
zero-knowledge protocols can be implemented in a constant number of rounds

? This paper is supported by the NSF EAGER grant, and NSF Algorithmic Founda-
tions grant no. 1218461.

?? Supported by the Check Point Institute for Information Security.
? ? ? Supported by the Simons award for graduate students in theoretical computer sci-

ence.

2 R. Canetti, A. Jain, O. Paneth

based on any one way function, while constant-round concurrent zero-knowledge
protocols are not known without relying on non-standard assumptions or trusted
setup.

Concurrent Zero Knowledge. The concurrent zero knowledge task [8] con-
siders a natural and special case of concurrent security. Here there is a server
that wants to prove theorems in zero-knowledge [9] to multiple clients (verifiers).
For that purpose, the server runs an instance (i.e., a session) of a protocol with
each client. There may be an unbounded (albeit polynomial) number of sessions,
and sessions may execute concurrently with adversarially controlled delay and
ordering of messages. Furthermore, the prover side of each session should exe-
cute without knowledge of any other session. This simplifies the design for the
server and allows the prover side to be executed on separate machines with-
out coordination. Still, for security we only consider two cases: one where all or
some provers are corrupted, and one where all or some of the verifiers are cor-
rupted. While the concurrent zero-knowledge setting is a substantial restriction
of general composition it distills an important aspect of the general challenge of
concurrent security. Indeed, this setting was extensively studied, with special at-
tention to minimizing the number of rounds [18, 13, 17, 3, 12, 6, 14]. Furthermore,
techniques developed for concurrent zero knowledge have been found useful in
the study of more general concurrent systems (see e.g., [5]).

The state of the art for protocols based on standard assumptions is Ω(log n)
rounds, where n is the security parameter. Furthermore, for protocols with black-
box simulation we know that Ω̃(log n) is the best possible.

Correlated Provers. Persiano and Visconti [16] consider a relaxed variant
of the classic concurrent zero knowledge model, where the server is allowed to
somewhat correlate its strategies in the different sessions. Here one has to make
sure that the correlation is on the one hand effectively implementable by the
server, and on the other hand preserves the overall efficiency and performance
from the point of view of the client. Specifically, they present a zero-knowledge
protocol where the server keeps track of the number of currently open sessions at
any time. It then starts off each session to have a constant number of messages
whose length depends polynomially on the number of currently open sessions. If
the number of sessions increases beyond some threshold before the session is over,
the session has to be “re-done” with longer messages. Overall, it is guaranteed
that if nc sessions are executed concurrently to a session, then the protocols of
[16] requires O(c) rounds and nO(c) communication for that session.

The global state to be kept by the server in this protocol is indeed mini-
mal and reasonable. Additionally, the number of rounds in every session grows
very slowly with the number of sessions, significantly improving the best known
“pure” concurrent zero-knowledge protocols (as long as the total number of ses-
sions is polynomial). However, this protocol has the strong disadvantage that a
client has no way of knowing, at any point during the protocol execution, how
much communication it will need in order to complete the session.

Title Suppressed Due to Excessive Length 3

This work. We present a new concurrent zero-knowledge protocol where, like
the [16] protocol, the server keeps track of the number of sessions currently open.
Our protocol improves upon the protocol of [16] in two ways:

– Constant rounds. Our protocol takes six messages, regardless of the num-
ber of concurrent sessions.

– Guaranteed complexity. In our protocol, the server announces in the be-
ginning of every session the communication complexity of the session. The
server cannot dynamically increase the communication complexity of a ses-
sion to accommodate new clients that arrive during the session’s execution.

The importance of guaranteed complexity. The advantage of having guar-
anteed complexity is best explained by an analogy: Consider a customer that is
placing a call to a call center and is being put on hold. The customer’s waiting
is likely to become more endurable and efficient if the call center commits to (or
estimates) the required waiting time at the beginning of the call. In our setting,
the client’s resource is communication rather than waiting time. Clearly, clients
benefit from knowing ahead of time how much communication is required from
them to participate in the protocol. For example, a client with limited com-
munication resources would prefer to learn ahead of time that its resources are
insufficient to complete the protocol, rather than during the session after all its
resources have already been spent.

The protocol of [16]. The protocol of [16] is based on the bounded concurrent
protocol of Barak [1]. Barak’s protocol is secure as long the number of concur-
rent sessions does not exceed some bound that depends on the communication
complexity of the protocol. Very roughly, Persiano and Visconti show that it is
possible to add rounds to the protocol and increase its communication “on-the-
fly” as new occurrent sessions start. However, as a result, the round complexity
of their protocol must depend on the number of sessions, and the server cannot
guarantee the complexity of any session ahead of time.

It may seem that bounded concurrency is of no use for designing protocols
with guaranteed complexity. Indeed, when the server commits the communi-
cation complexity of, say, the first session, it has no bound on the number of
sessions that will be started concurrently to the first session.

Our protocol. Counter to the above intuition, our protocol does leverage
bounded concurrency techniques of Barak. However, our approach departs from
[16] in the following manner: we set the communication complexity of every ses-
sion only based on the order in which the sessions start. The first n sessions to
start execute a bounded concurrent protocol that is secure for n concurrent ses-
sion. The following n2−n sessions execute a bounded concurrent protocol that is
secure for n2 session, and so on. Importantly, the communication complexity of
a session is not affected by sessions that start after it. This in particular means
that the [1, 16] simulation technique is inadequate in our setting. Indeed, our
security proof differs significantly from that in [1, 16].

4 R. Canetti, A. Jain, O. Paneth

1.1 Our Techniques

We start by recalling Barak’s zero-knowledge protocol and its simulation. Barak’s
protocol starts with a preamble phase where the prover sends a commitment
c and the verifier responds with a random challenge r. Any prover that can
commit to a program that predicts r can obtain a “trapdoor” and cheat in the
proof phase. The zero-knowledge simulator will be able to obtain a trapdoor by
committing to the code of the verifier itself. Next we discuss two approaches for
extending Barak’s protocol to the concurrent setting.

Bounded concurrency. In the concurrent setting, the simulator cannot simply
commit to the code of the verifier. Indeed, the verifier’s code eventually predicts
r, but might only do so after receiving convincing proofs in other sessions. Fur-
thermore, when the simulator sends the commitment c in some session, it did not
yet compute the proofs in upcoming sessions (in fact, these proofs might depend
on c); therefore it cannot commit to such proof together with the verifier’s code.

The approach in [1] is to change the protocol as follows: to obtain a trapdoor,
the simulator must commit to a program that predicts r given some auxiliary
information z (that may be chosen after r is sent). To maintain soundness, z
must be much shorter then r. The simulator can now encode the simulated
proofs in a bounded number of other sessions into z. This results in a bounded
concurrent protocol. As argued above, this technique, on its own, is inadequate
for our setting.

Committed simulator. A different approach, that we will refer to as the “com-
mitted simulator” approach, is as follows: even if the number of concurrent ses-
sions is unbounded, the simulated proofs in all these sessions still have a short
description, which is the code of the simulator itself. Concretely, in every session,
the simulator will commit to a version of itself that simulates the interaction with
the verifier in all other sessions until the verifier sends the challenge r in that
session.

The problem with this approach is bounding the running time of the simula-
tor. If the simulator commits to itself in the preamble phase, then in the proof
phase the simulator will prove a statement on its own execution. This execution
might contain the proof phase of in some other sessions where the simulator also
proved a statement on its own execution. For some adversarial schedules, such
recursive construction of proof becomes too expensive. Nonetheless, variants of
the committed simulator approach were successfully applied in many different
settings [7, 4, 11, 15, 10, 6].

Our approach. Our simulation combines these two approaches to obtain a pro-
tocol with constant rounds and guaranteed complexity, assuming only collision
resistant hashing. In a nutshell, we leverage the bounded concurrent simulation
technique to “flatten” the recursion tree, avoiding the blowup in the simulator’s
running time. A more detailed description follows.

We start by assigning a level to each session. All sessions that execute a
bounded concurrent protocol for ni sessions, are assigned level i. Our protocol
is defined such that for every i, the total number of sessions at all levels ≤ i is

Title Suppressed Due to Excessive Length 5

at most ni. It follows that in every session at level i, the verifier’s challenge is
long enough to account for all the messages received by the verifier in sessions
at levels at most i.

To deal with the messages sent in sessions at levels larger than i, we turn
to the committed simulator approach. The main idea is that we can avoid the
exponential blowup in the running time of the simulator by committing only to
specific parts of the simulator that are in charge of simulating the sessions at
levels larger than i rather than the entire code of the simulator.

The simulator. The simulator Sim is divided into multiple components {Simi}
where the i’th component Simi is in charge of simulating sessions at level i. To
simulate a session at level i, Simi will commit to a program Πi that contains
the verifier’s code together with the code of all the simulator’s components Simj

for j > i. We can think of the program Πi as a new verifier that simulates all
sessions at levels > i internally and forwards externally the messages in sessions
at level ≤ i. Since sessions at level i execute a bounded concurrent protocol for
ni sessions, and the total number of sessions at levels < i is at most ni, we have
that Simi can encode all the messages sent to Πi as auxiliary input.

Finally, we argue that the running time of the simulator is polynomial. Using
the analysis of the bounded concurrent protocol, we have that the running time
of the component Simi is polynomial in the running time of the program Πi.
Since Πi simply emulates all the simulator components Simj for j > i, we have
that the running time of Simi is only polynomially larger than the total running
time of all the components Simj for j > i. Since the total number of concurrent
sessions started by an efficient adversary is bounded by some polynomial nc, we
get that the total number of levels is constant and therefore the running time of
all the simulator’s components is bounded by a polynomial.

Avoiding circular use of randomness. We note that by using the above
leveled simulation strategy we do not only avoid the blowup in the simulator’s
running time, but also avoid some of the technical complications that arise when
the simulator commits to its own code. For example, in [4, 10, 6], the simulator
needs to commit to its own code together with the randomness that it will use to
simulate the rest of the protocol. The aforementioned works develop additional
techniques to deal with this problem. In our setting, since every component only
commits to the randomness used by the higher level component, such circular
use of randomness is avoided, resulting in simpler protocol and analysis.

Taking advantage of terminating sessions. It is natural to require that, as
existing sessions terminate and the load on the server decreases, the complex-
ity of the protocol in new sessions decreases as well. We note that extending
our simulation strategy to satisfy this requirement is not straight-forward. The
problem is that our simulation strategy assumes that for every session at level i,
the total number of concurrent sessions at levels ≤ i is bounded by ni. However,
consider the scheduling where all sessions at levels ≤ i terminate and a new ses-
sion starts. If we choose to decrease the protocol complexity in the new session,
then the total number of sessions at levels ≤ i may exceed ni. We demonstrate a

6 R. Canetti, A. Jain, O. Paneth

slightly more complicated server strategy where the complexity of new sessions
does decrease as old sessions terminate (while preserving overall simulatability).

1.2 Related Work

Concurrent zero-knowledge in the Plain Model. Improving the round-
complexity of concurrent zero-knowledge proofs in the plain model has been
an active area of research. The round complexity of concurrent zero-knowledge
with black-box simulation was studied in [18, 13, 17], resulting in protocols with
logarithmic round-complexity (which is essentially optimal [3]). Constant-round
protocols with non-black-box simulation where constructed based on different
non-standard assumption such as interactive knowledge assumptions [12], sta-
tistically sound P-certificates [6] and differing input (or extractable) obfuscation
[14].

Optimistic concurrent zero-knowledge. The work of Rosen and Shelat [19]
also studies the round complexity of concurrent zero-knowledge proofs with a
correlated prover in the client-server setting. Their focus is on improving the
round complexity of concurrent zero-knowledge with respect to “optimistic” ad-
versarial schedules. That is, the round complexity of their protocol significantly
decreases when the scheduling of messages does not include too many nested
sessions. However, for a worst-case adversarial schedules, [19] give no improve-
ment over logarithmic round-complexity of [17] while our protocol has constant
rounds in the worst cast. However, unlike in our protocol, the communication
complexity in [19] has a fixed upper bound that is independent of the adversary.

2 The Guaranteed Complexity Model

In this section we formally define a protocol in the guaranteed complexity model.
We start by describing the general syntax and the model of communication. We
then consider the specific case of zero-knowledge proof systems in the guaranteed
complexity model and present a security definition for the same.

Let Server be interactive PPT machine that interacts with multiple clients in
concurrent sessions and let {〈S`, C`〉}`∈N be a family of protocols parameterized
by a load parameter ` where for every ` ∈ N, S` and C` are PPT machines.
A protocol in the guaranteed complexity model is defined by the tuple Π =
(Server, {〈S`, C`〉}).

(Honest) Protocol Execution. The execution of a protocol Π = (Server,
{〈S`, C`〉}) consists of a single server executing the algorithm Server while inter-
acting with multiple clients concurrently. To initiate a new session a client sends
a special session initiation message to the server. In response to the session ini-
tiation message, the server chooses a load parameter ` for the session and sends
it to the client. In the rest of the session we require that the algorithm Server
follows the strategy S` while the client follows the strategy C`.

Title Suppressed Due to Excessive Length 7

An execution of the protocol Π with p(n) sessions is defined by the ran-
domness of all the clients and the schedule of messages across all the sessions.
Even though for every fixed load parameter `, the strategies S`, C` are efficient,
the server algorithm may choose ` to be very large, increasing the running time
of the concurrent execution. Therefore we explicitly require the efficiency of a
concurrent execution.

Definition 1. A protocol (Server, {〈S`, C`〉}) in the guaranteed complexity model
is efficient if for every polynomial p there exists another polynomial q such that
the running time of Server in every execution with p(n) sessions is bounded by
q(n).

Zero Knowledge in the Guaranteed Complexity Model. Let Π = (Server,
{〈S`, C`〉}) be a protocol in the guaranteed complexity model and let L be an
NP language with witness relation RL. We say that Π is an interactive proof
system for L if for every ` ∈ N, the protocol 〈S`, C`〉 is an interactive proof for
L. Next we define the zero-knowledge property.

Let Π be an interactive proof for language L in the guaranteed complexity
model. Let n be the security parameter. Consider a concurrent adversary V ∗

that start m(n) concurrent session with the server for some polynomial m. Let
x ∈ Lm be the vector of instances used in the different session and let w be a
vector of the corresponding witnesses used by the server. We allow V ∗ to control
the scheduling of the messages across all the sessions. Let ViewV ∗(x,w, z) be
the random variable describing the output of V ∗ in the above experiment when
executed with auxiliary input z.

Definition 2 (Concurrent Zero-Knowledge in the Guaranteed Com-
plexity Model). Let Π = (Server, {〈S`, C`〉}) be an interactive proof system for
language L in the guaranteed complexity model. We say that Π is zero knowl-
edge if for every polynomial m, and for every PPT concurrent adversary V ∗

starting m(n) sessions there exists a PPT algorithm S, such that for every in-
stances vector x ∈ Lm(n), every witnesses vector w such that (xi, wi) ∈ RL
for all i ∈ [m(n)], and for every auxiliary input z ∈ {0, 1}poly(n) the following
ensembles are computationally indistinguishable,

{ViewV ∗(x,w, z)}n∈N ≈c {S(x, z)}n∈N .

3 Constant-Round Zero-Knowledge in the Guaranteed
Complexity Model

In this section we describe a constant-round ZK protocolΠzk = (Server, {〈P`, V`〉})
in the guaranteed complexity model. We start by defining a family of protocols
{〈P`, V`〉}`∈N where, roughly speaking, the protocol 〈P`, V`〉 is simply Barak’s

bounded-concurrent ZK protocol [1] with n` as the a priori bound on the number
of sessions. We then define the server algorithm Server to complete the descrip-
tion of Πzk.

8 R. Canetti, A. Jain, O. Paneth

The protocol 〈P`, V`〉. The protocol will make use of the following prim-
itives: a statistically binding commitment Com, a family H = {Hn}n∈N of
collision-resistant hash functions such that h ∈ Hn maps strings in {0, 1}∗ to
strings in {0, 1}n, and a witness-indistinguishable universal argument UA for
an NTIME(T (n))-complete language where T : N → N is a “slightly” super-
polynomial function, for example T (n) = nlog logn [2]. In the description of the
protocol, the length of the verifier’s messages will depend on a parameter m that
denotes the total length of the prover’s messages in the protocol.

Common Input: x ∈ L.
Auxiliary Input to P : A witness w for x ∈ L.

Initiation Stage:
V` samples h← Hn and sends h to P`.

Preamble Stage:
1. P` sends c = Com(h(0n)) to V`.

2. V` samples r ← {0, 1}n
`·m+n and sends r to P`.

Proof Stage:
P` and V` execute the protocol UA where P` proves that x ∈ L ∨ (h, c, r) ∈ LU .

The language LU is defines as follows: (h, c, r) ∈ LU iff there exist a program
Π ∈ {0, 1}∗, a string y ∈ {0, 1}∗, and randomness s for Com such that:

1. |y| ≤ |r| − n.
2. c = Com(h(Π); s).
3. Π(y) outputs r within T (n) steps.

Fig. 1: Protocol Family 〈P`, V`〉 for ZK in the Guaranteed Complexity Model
(Protocol 1)

Remark 1. The relation LU presented in Protocol 1 is slightly oversimplified. For
this relation, we can prove the security of Protocol 1 when H is collision-resistant
against “slightly” super-polynomial sized circuits. For simplicity of exposition,
in this manuscript, we will work with this assumption. We stress, however, that
as discussed in several prior works (see e.g., [2]), this assumption can be removed
by using an appropriate error-correcting code.

The server algorithm Server. We start by describing a simple server algorithm
that only assigns monotonically increasing values of the load parameter to new
sessions. In Section 3.2, we describe a better server algorithm that decreases the
load parameter when some of the concurrent sessions terminate.

The algorithm Server maintains a variable SessionCount that counts the num-
ber of concurrent sessions started so far. Whenever a client initiates a new ses-

Title Suppressed Due to Excessive Length 9

sion, Server increases the value of SessionCount. When a new clients sends a
session initiation message to the server, Server sets the load parameter ` for that
session such that n`−1 ≤ SessionCount ≤ n`.

In the next section we prove the following theorem:

Theorem 1. Assuming h is a hash function ensemble that is collision-resistent
against circuits of size nlogn, Com is a statistically binding commitment, and
UA is a witness-indistinguishable universal argument for NTIME(nlog logn), the
protocol Πzk = (Server, {〈P`, V`〉}) is concurrent zero-knowledge in the guaranteed
complexity model.

3.1 Proof of Theorem 1

The proof that for every ` ∈ N, the protocol 〈P`, V`〉 is complete and sound,
follows directly from the analysis of the bounded-concurrent ZK protocol in [1].
In this section we first show that for every ` ∈ N, Protocol 1 is efficient according
to Definition 1. We then show that Πzk is ZK in the guaranteed complexity
model.

Protocol 1 is efficient. Let p be a polynomial and let `max be such that for
large enough values of n, p(n) < n`max . By the definition of the server algorithm
Server, in an execution with p(n) sessions, the load parameter of every session
is at most `max. Since the running time of P` only grows with `, we have that
the running time of Server in every session is at most the running time of P`max

and therefore the total running time of Server is bounded by a polynomial that
depends only on p.

Protocol Πzk is ZK in the guaranteed complexity model. Let V ∗ be
a malicious verifier that starts at most n`max sessions for some constant `max.
By the definition of the server algorithm Server, the load parameter of every
session in an honest execution is at most `max. We construct a simulator Sim =
(Simload, {Sim`}) consisting of Simload and `max other components {Sim`}`∈[`max].
Roughly speaking, the component Simload simulates the servers responses to the
clients session initiation message in all sessions. The component Sim` simulates
all the executions of 〈P`, V`〉 in sessions with load parameter `. We now give
more details.

The component Simload. This component simulates the server’s responses to
the clients session initiation message in all sessions. This simulation involves
assigning a load parameter for every session started by V ∗. Since the honest
server Server selects the load parameter in each session based only on the (pub-
lic) adversarial scheduling, Simload can use the exact same algorithm as Server,
resulting in a perfect simulation of these messages.

The component Sim`. This component simulates the interaction of 〈P`, V`〉
in all the sessions with load parameter `. At a high-level, the simulation will
follow the simulation strategy of Barak’s bounded-concurrent ZK protocol [1].
According to this strategy, the simulator sends a commitment c to the code of

10 R. Canetti, A. Jain, O. Paneth

the verifier and then uses this code as a trapdoor witness, proving that c is
commitment to a code Π that outputs the random string r sent by the verifier.
All the messages simulated in concurrent sessions are given to Π as auxiliary
input. The main problem is that in order to guarantee that the protocol is sound,
the program Π is only allowed to get an auxiliary input of bounded length;
however, the number of concurrent sessions in our setting are not bounded.

We fix this problem in the following manner. Instead of simply committing to
the code of V ∗, Sim` will commit to a program V ∗` that includes the code of V ∗

as well as the code of the simulation components Simload and Sim`+1, . . . ,Sim`max .
Roughly speaking, the program V ∗` will simulate all the sessions with load pa-
rameter `′ > ` internally, and therefore Sim` will need to provide as auxiliary
input only the messages of concurrent sessions where the load parameter is at
most `. It follows from the description of Server that the number of concurrent
sessions where the load parameter is at most ` is bounded by some polynomial
(that depends on `). Therefore, it is possible to include all of these messages as
an auxiliary input to V ∗` .

Next we formally describe the simulator component Sim`, starting with the
definition of the program V ∗` .

The program V ∗` . V ∗` is an interactive algorithm that includes the code of V ∗

together with the code of the simulation components Simload and Sim`+1, . . . ,
Sim`max . V

∗
` uses the same randomness as Sim to execute V ∗ and all the other

simulation components. V ∗` will emulate the execution of V ∗, and will use the
mentioned simulator components to internally simulate the responses to the
session initiation messages in all sessions as well the prover messages of the
protocols 〈P`′ , V`′〉 executed in the sessions with load parameter `′ > `. In the
sessions with load parameter `′ ≤ `, V ∗` will forward the messages of the protocol
〈P`′ , V`′〉 externally.

In every session with load parameter `, Sim` will simulate the execution of
〈P`, V`〉 as follows:

1. Sim` receives the description of a hash function h from V ∗.
2. Sim` sends a commitment c to the hash of the code of a program Π that

given auxiliary input y = (m1, . . . ,mt), emulates an execution of V ∗` when
receiving the messages m1, . . . ,mt, and outputs V ∗` ’s next message.

3. Sim` receives the the random string r from V ∗.
4. Sim` sends a UA proof using a trapdoor witness that contains the code of

the program Π and an appropriate auxiliary input string y. The string y is
a list of all the prover messages that were simulated by Sim in all sessions
with load parameter at most ` and sent before V ∗ sent the random string r
in the present session.

This completes the description of the simulator. Next, we turn to its analysis.

Analysis of Sim We start by showing that Sim` constructs a valid witness for
the statement (h, c, r) ∈ LU . This amounts to proving that Π(y) outputs r and
that |y| ≤ |r| − n. We also need to show that the running time of Π(y) is at

Title Suppressed Due to Excessive Length 11

most T (n). We will show that the last statement is correct when we analyze the
running time of the simulation. Finally, we will prove the indistinguishability of
the adversary’s view in the real and ideal world.

Proof that Π(y) outputs r. The program Π(y) outputs the next message of
V ∗` given the external messages in y. V ∗` emulates V ∗ using the same randomness
as Sim. It is left to show that the messages sent to V ∗ emulated by V ∗` and by
Sim are identical. Recall that the messages sent to V ∗ in the execution emulated
by V ∗` are as follows: in sessions with load parameter larger than `, the mes-
sages are generated by the internal simulation of V ∗` , and the messages sent in
sessions with load parameter at most ` are specified in y. For sessions with load
parameter larger than `, the messages sent to V ∗ in the emulation of V ∗` and of
Sim are identical since they are generated using the same simulation algorithm
and using the same randomness (by the construction of V ∗`). For sessions with
load parameter at most `, the messages sent to V ∗ in the emulation of V ∗` and
of Sim are identical by the way the auxiliary input string y is constructed.

Proof that |y| ≤ |r| − n. The auxiliary input string y constructed by Sim`

contains only prover messages in sessions with load parameter at most `. By the
definition of the server algorithm Server there could be at most n` such sessions,
and the total length of all the prover messages in every session is bounded by the

parameter m. Therefore we have |y| ≤ n` ·m. Since V` samples r ∈ {0, 1}n`·m+n

we have that |y| ≤ |r| − n.

Proof that the simulation is polynomial time. It is enough to show that
all components of Sim are polynomial time. Since Simload just follows the honest
server algorithm, the efficiency of Simload follows from the efficiency of the pro-
tocol. For every ` ∈ [`max] we show that the running time of Sim` is bounded by
a polynomial in the security parameter (that depends on ` and on V ∗). Since
Sim` constructs the program V ∗` , commits to its code, and provides a UA proof
of its execution, the running time of Sim` is polynomial in the size and running
time of V ∗` . Additionally, since Sim` reads the entire transcript of the execution
and uses it to construct the auxiliary input y in every session it simulates, the
running time of Sim` is polynomial in the total length of the transcript. Note
that the total length of the transcript is always bounded by the running time of
V ∗ which is polynomial in the security parameter.

We start by bounding the running time of Sim`max . The program V ∗`max
only

consists of the code of V ∗ and the code of Simload and therefore, the running
time of V ∗`max

is a polynomial. It follows that the running time of Sim`max is also a
polynomial. Now, for every ` ∈ [`max], the program V ∗` only consists of the code
of V ∗, the code of Simload, and the code of Sim`′ for every ` ≤ `′ < `max. Since `max

is a constant depending only on V ∗, and assuming that for all ` ≤ `′ < `max the
running time of every Sim`′ is polynomial, the running time of V ∗` and therefore
also of Sim` must be polynomial. By induction we have that for every ` ∈ [`max]
the running time of Sim` is bounded by a polynomial, and therefore the entire
simulation is polynomial time.

12 R. Canetti, A. Jain, O. Paneth

Using the above proof, we complete the proof that Sim` constructs a valid
trapdoor witness. Sim` constructs a program Π and auxiliary input y, and we
need to show that the running time ofΠ(y) is bounded by some super-polynomial
function T (n). The running time analysis above implies that for every ` ∈ [`max],
the running time of V ∗` and the size of the auxiliary input y constructed by Sim`

are polynomial. The simulator component Sim` constructs a program Π that
simulates V ∗` sending it messages from y. It follows that the running time of
Π(y) is polynomial and therefore bounded by T (n).

Proof that the simulated view and the real view are indistinguishable.
For 0 ≤ ` ≤ `max, let Hi be the hybrid experiment that is identical to the
execution of Sim except that every session executing the the protocol 〈P`′ , V`′〉
for `′ ≤ ` follow the honest prover strategy using the valid witness wj for the
statement xj ∈ L in that session. of that session. Since Simload simulates the
responses to the sessions initiation messages perfectly we have that:

H`max = ViewV ∗(x,w, z), H0 = S(x, z) .

It is therefore sufficient to prove that for every 0 ≤ ` < `max, H` ≈c H`+1. By
the definition of the server algorithm Server, the number of sessions with load
parameter ` is at most n`. For 0 ≤ i ≤ n`, let H`,i be the hybrid experiment
that is identical to H` except that the first i sessions executing of the protocol
〈P`, V`〉 follow the honest prover strategy using a the valid witness wj for the
statement xj ∈ L in that session. It follows that:

H`,n` = H`+1, H`,0 = H` .

It is therefore sufficient to prove that for every 0 ≤ i < n`, H`,i ≈c H`,i+1.
Let H ′`,i be the hybrid experiment that is identical to the H`,i except that the

execution of the witness-indistinguishable universal argument UA in the proof
stage of the ith execution of the protocol 〈P`, V`〉 uses a valid witness wj for
the session’s statement xj ∈ L instead of the trapdoor witness. Note that in
an execution of Sim, the randomness of the component Sim` used for the UA
prover executed in the proof stage of the protocol 〈P`, V`〉 is also used by the
components Sim`′ for `′ < ` in the construction of the program V ∗`′ . However, in
the experiment H`,i, all the simulator components Sim`′ for `′ < ` are replaced
by executions of the honest prover. Since the randomness of the component Sim`

used for the simulation of the UA prover in the protocol 〈P`, V`〉 is not used in
any other part of the simulation, it follows from the indistinguishability property
of UA that H`,i ≈c H

′
`,i.

Note that the experiment H`,i+1 is identical to the experiment H ′`,i except
that in the experiment H`,i+1, the prover commitment c given in the preamble
stage of the i’th execution of the protocol 〈P`, V`〉 is a commitment to the all
zero string, following the honest prover strategy. As before, the randomness of
the component Sim` used for the simulation of c sent in the protocol 〈P`, V`〉 is
not used in any other part of the simulation and therefore it follows from the
computational-hiding property of Com that H`,i+1 ≈c H

′
`,i.

Title Suppressed Due to Excessive Length 13

Overall we have that for every 0 ≤ ` ≤ `max, 0 ≤ i ≤ n`, H`,i ≈c H`,i+1. Since
` ≤ `max is a constant, n` is a polynomial and therefore we have that for every
0 ≤ ` ≤ `max, H`+1 ≈c H` and also that H`max ≈c H0 as required.

3.2 Decreasing the Load Parameter

In this section, we describe a different server algorithm that takes into account
the termination of sessions and decreases the load parameter for new sessions
accordingly. We start by describing the new server algorithm Server′, and then
describe the required changes to the simulation.

We identify the technical condition required for the simulation to work, and
design a server algorithm Server′ that always gives new sessions the lowest pos-
sible load parameter such that the technical condition still satisfies. The validity
of our simulation relies on the validity of the following technical condition: for
a session with load parameter `i, the number of sessions concurrent to it with
load parameters at most `i is bounded by ni. Before describing the algorithm
Server′ let us first introduce some notation. Let t be the number of open sessions
at the moment a new client sends its session initiation message. For i ∈ [t], let
`i be the load parameter for the i’th open session. For i ∈ [t], let ti be the total
number of sessions with load parameters at most i that are concurrent to session
i. First note that if we set the load parameter of the new session to ` then for
every session i such that `i ≥ `, the value ti increases by 1. This will contradict
the technical condition only if the value of ti was already at its maximal allowed
value n`i .

Using the above notation, the algorithm Server′ is easy to describe: Server′

will set the load parameter of a new session to be the minimal value ` such that
for every session i with `i ≥ ` we have ti < n`i . While the behavior of the server
algorithm Server′ is not obvious, we can prove that it satisfies some natural
conditions. For example we can show that if no sessions with load parameter
` are currently active, then the load parameter assigned to the next session to
start cannot exceed `.

Modifying the simulator. Next we discuss the necessary changes to the sim-
ulator. In the current description of the simulator, every program V ∗` that Sim
commits to, internally emulates V ∗ starting from its initial state. As a result,
we must give V ∗` auxiliary input z that consists of the messages in all concur-
rent sessions with load parameter at most ` starting from the beginning of the
concurrent execution. The problem is that the definition of the server algorithm
Server′ does not guarantee that such auxiliary input z is sufficiently short. In-
stead it only gives a bound on the number sessions with load parameter at most `
that are executed concurrently to the current session. In particular, Server′ does
not guarantee anything about the number of sessions that terminated before
the current session had started. The solution is based on the observation that
providing V ∗` auxiliary input z that contains messages sent before the current

session had started is wasteful. Instead, Sim can commit the a program Ṽ ∗` that
already contains these messages hardwired into it.

14 R. Canetti, A. Jain, O. Paneth

References

1. Barak, B.: How to go beyond the black-box simulation barrier. In: FOCS. pp.
106–115 (2001)

2. Barak, B., Goldreich, O.: Universal arguments and their applications. SIAM J.
Comput. 38(5), 1661–1694 (2008)

3. Canetti, R., Kilian, J., Petrank, E., Rosen, A.: Black-box concurrent zero-
knowledge requires (almost) logarithmically many rounds. SIAM J. Comput. 32(1),
1–47 (2002)

4. Canetti, R., Lin, H., Paneth, O.: Public-coin concurrent zero-knowledge in the
global hash model. In: TCC. pp. 80–99 (2013)

5. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-
party and multi-party secure computation. In: STOC. pp. 494–503 (2002)

6. Chung, K.M., Lin, H., Pass, R.: Constant-round concurrent zero knowledge from
p-certificates. In: FOCS (2013)

7. Deng, Y., Goyal, V., Sahai, A.: Resolving the simultaneous resettability conjecture
and a new non-black-box simulation strategy. In: FOCS. pp. 251–260 (2009)

8. Dwork, C., Naor, M., Sahai, A.: Concurrent zero-knowledge. In: STOC. pp. 409–
418 (1998)

9. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

10. Goyal, V.: Non-black-box simulation in the fully concurrent setting. In: STOC. pp.
221–230 (2013)

11. Goyal, V., Jain, A., Ostrovsky, R., Richelson, S., Visconti, I.: Concurrent zero
knowledge in the bounded player model. In: TCC. pp. 60–79 (2013)

12. Gupta, D., Sahai, A.: On constant-round concurrent zero-knowledge from a knowl-
edge assumption. IACR Cryptology ePrint Archive 2012, 572 (2012)

13. Kilian, J., Petrank, E.: Concurrent and resettable zero-knowledge in poly-
loalgorithm rounds. In: STOC. pp. 560–569 (2001)

14. Pandey, O., Prabhakaran, M., Sahai, A.: Obfuscation-based non-black-box simula-
tion and four message concurrent zero knowledge for np. IACR Cryptology ePrint
Archive 2013, 754 (2013)

15. Pass, R., Rosen, A., Tseng, W.L.D.: Public-coin parallel zero-knowledge for np. J.
Cryptology 26(1), 1–10 (2013)

16. Persiano, G., Visconti, I.: Single-prover concurrent zero knowledge in almost con-
stant rounds. In: ICALP. pp. 228–240 (2005)

17. Prabhakaran, M., Rosen, A., Sahai, A.: Concurrent zero knowledge with logarith-
mic round-complexity. In: FOCS. pp. 366–375 (2002)

18. Richardson, R., Kilian, J.: On the concurrent composition of zero-knowledge proofs.
In: EUROCRYPT. pp. 415–431 (1999)

19. Rosen, A., Shelat, A.: Optimistic concurrent zero knowledge. In: ASIACRYPT.
pp. 359–376 (2010)

