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Abstract. A self-bilinear map is a bilinear map where the domain and
target groups are identical. In this paper, we introduce a self-bilinear map
with auxiliary information which is a weaker variant of a self-bilinear
map, construct it based on indistinguishability obfuscation and prove
that a useful hardness assumption holds with respect to our construc-
tion under the factoring assumption. From our construction, we obtain a
multilinear map with interesting properties: the level of multilinearity is
not bounded in the setup phase, and representations of group elements
are compact, i.e., their size is independent of the level of multilinearity.
This is the first construction of a multilinear map with these properties.
Note, however, that to evaluate the multilinear map, auxiliary informa-
tion is required. As applications of our multilinear map, we construct
multiparty non-interactive key-exchange and distributed broadcast en-
cryption schemes where the maximum number of users is not fixed in
the setup phase. Besides direct applications of our self-bilinear map, we
show that our technique can also be used for constructing somewhat ho-
momorphic encryption based on indistinguishability obfuscation and the
Φ-hiding assumption.

Keywords: self-bilinear map, indistinguishability obfuscation, multilin-
ear map

1 Introduction

1.1 Background

Bilinear maps are an important tool in the construction of many cryptographic
primitives, such as identity-based encryption (IBE) [2], attribute-based encryp-
tion (ABE) [22], non-interactive zero-knowledge (NIZK) proof systems [16] etc.
The bilinear maps which are mainly used in cryptography, are constructed on
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elliptic curve groups. In these constructions, the target group is different from
the domain groups.

This leads to the natural question: is it possible to construct a bilinear map
where the domain and target groups are identical? Such a bilinear map is called
a self-bilinear map, and has previously been studied by Cheon and Lee [5]. They
showed that a self-bilinear map is useful to construct cryptographic primitives by
highlighting that it can be used for constructing a multilinear map [3]. However,
in contrast to this useful property, they also proved an impossibility result: the
computational Diffie-Hellman (CDH) assumption cannot hold in a group G of
known prime order if there exists an efficiently computable self-bilinear map on
G. This is undesirable for cryptographic applications. The overview of the proof
is as follows. Let e : G × G → G be a self-bilinear map and g be a generator
of G, then we have e(gx, gy) = e(g, g)xy = gcxy where c is an integer such that
e(g, g) = gc. Then we can compute gxy by computing c-th root of e(gx, gy) since
G is a prime and known order group.1 However, their impossibility result cannot
be applied for the case that G is a composite and unknown order group. This is
the setting we focus on in this paper.

1.2 Our Contribution

In this paper, we consider a group of composite and unknown order and con-
struct a self-bilinear map with auxiliary information which is a weaker variant
of a self-bilinear map, by using indistinguishability obfuscation [10]. Though our
self-bilinear map with auxiliary information has a limited functionality com-
pared with a self-bilinear map, we show that it is still useful to construct various
cryptographic primitives. Especially, it is sufficient to instantiate some multilin-
ear map-based cryptographic primitives such as multiparty non-interactive key
exchange (NIKE), broadcast encryption and attribute-based encryption for cir-
cuits. Our multiparty NIKE and distributed broadcast encryption schemes are
the first schemes where all algorithms can be run independent of the number of
users. We also show that our technique can be used for constructing a somewhat
homomorphic encryption scheme for NC1 circuits.

Applications of our self-bilinear map with auxiliary information. As
applications of our self-bilinear map with auxiliary information, we construct a
multilinear map. From our construction, we obtain multiparty NIKE, distributed
broadcast encryption and ABE for circuits schemes. The details follow.

– Multilinear map. We can construct a multilinear map by iterated usage
of a self-bilinear map. Since our variant of a self-bilinear map in this paper
requires auxiliary information to compute the map, the resulting multilin-
ear map also inherits this property. However, we show that it is sufficient
to replace existing multilinear maps in some applications which are given

1 Here, we consider only the case in which c is known. However, [5] proved that the
CDH assumption does not hold even if c is unknown as long as G is a group of known
prime order.



below. Moreover, our multilinear map has an interesting property that ex-
isting multilinear maps do not have: the level of multilinearity is not bounded
at the instance generation phase and representations of group elements are
compact, i.e., their sizes are independent of the level of multilinearity.

– Multiparty NIKE. We construct a multiparty NIKE scheme where the
maximum number of users is not fixed in the setup phase. In particular,
the size of both the public parameters and a public key generated by a
user are independent of the number of users. The construction is a natural
extension of the Diffie-Hellman key exchange by using our multilinear map
[7, 3]. We note that [4] also constructed multiparty NIKE schemes based
on indistinguishability obfuscation. However, in their schemes, the setup
algorithm or key generation algorithm have to take the number of users
as input unlike ours.

– Distributed broadcast encryption. Distributed broadcast encryption is
broadcast encryption where a user can join the system by himself with-
out the assistance of a (semi) trusted third party holding a master key. We
construct a distributed broadcast encryption scheme where the maximum
number of users is not fixed in the setup phase based on our multiparty
NIKE scheme. In particular, the size of both the public parameters and a
ciphertext overhead are independent of the number of users. We note that
[4] also constructed a distributed broadcast encryption scheme based on in-
distinguishability obfuscation. However, in their scheme, the setup algorithm
have to take the number of users as input unlike ours.

– ABE for circuits. We construct an ABE scheme for general circuits by
using our multilinear map. The construction is an analogue of the scheme
in [11]. Note that this is not the first ABE scheme for general circuits based
on indistinguishability obfuscation since a indistinguishability obfuscation
implies witness encryption [10], and [12] constructed ABE for circuits based
on witness encryption. We also note that Gorbunov et al. [15] constructed
attribute based encryption for circuit based on the standard learning with
errors (LWE) assumption.

The above results can be interpreted as evidence that our multilinear map can
replace existing multilinear maps in some applications based on the multilinear
CDH assumption since all of the above constructions are simple analogue of
multilinear map-based constructions.

Besides direct applications of our self-bilinear map with auxiliary informa-
tion, we construct a somewhat homomorphic encryption scheme by using a sim-
ilar technique. Our somewhat homomorphic encryption scheme is chosen plain-
text (CPA) secure, NC1 homomorphic and compact.

Note that all known candidate constructions of indistinguishability obfusca-
tion are far from practical, and hence, the above constructions are mostly of
theoretical interest.

Technical overview. Here, we give a technical overview of our result. Our basic
idea is to avoid the impossibility result of self-bilinear maps which is explained



above by considering a group of composite and unknown order. Note that even
if we consider such a group, many decisional assumptions such as the decisional
Diffie-Hellman (DDH) assumption cannot hold if there exists an efficiently com-
putable self-bilinear map on the group. Therefore we consider only computational
assumptions such as the CDH assumption. For a Blum integer N , we consider
the group QR+

N of signed quadratic residues [17]. On this group, we consider a
self-bilinear map e : QR+

N ×QR+
N → QR+

N which is defined as e(gx, gy) := g2xy.
The reason why we define it in this manner is that we want to ensure that the
CDH assumption holds in QR+

N , even if e is efficiently computable. That is, even
if we can compute e(gx, gy) = g2xy, it is difficult to compute gxy from it since the
Rabin function is hard to invert under the factoring assumption. However, given
only the group elements gx and gy, we do not know how to compute e(gx, gy) ef-
ficiently. To address this, we introduce auxiliary information τy for each element
gy ∈ QR+

N which enables us to compute a map e(·, gy) efficiently. This leads to
the notion of self-bilinear map with auxiliary information which we introduce in
this paper.

The problem is how to define auxiliary information τy which enables us to
compute e(·, gy) efficiently. The most direct approach is to define τy as a circuit
that computes the 2y-th power. However, if we define τy as a “natural” circuit
that computes the 2y-th power, then we can extract 2y from τy, and thus we
can compute y. This clearly enables us to compute gxy, which breaks the CDH
assumption.

A more clever way is to define τy as a circuit that computes the ty-th power
where ty = 2y±ord(QR+

N ).2 In this way, it seems that τy does not reveal y since
ty is a “masked” value of 2y by ord(QR+

N ) which is an unknown odd number.
This idea is already used by Seurin [25] to construct a trapdoor DDH group.
Actually, he proved that even if ty is given in addition to gx and gy, it is still
difficult to compute gxy. In this way, it seems that we can construct a self-bilinear
map with auxiliary information. However, this creates a problem: we do not have
an efficient algorithm to compute ty from y without knowing the factorization of
N . If such an algorithm does not exist, then we cannot instantiate many bilinear
map-based primitives using the resulting map such as the 3-party Diffie-Hellman
key exchange [19].

To overcome the above difficulty, we use indistinguishability obfuscation. An
indistinguishability obfuscator (iO) is an efficient randomized algorithm that
makes circuits C0 and C1 computationally indistinguishable if they have exactly
the same functionality.

We observe that a circuit that computes the 2y-th power and a circuit that
computes the ty-th power for an element of QR+

N have exactly the same function-
ality since we have ty = 2y± ord(QR+

N ). Therefore if we obfuscate these circuits
by iO, then the resulting circuits are computationally indistinguishable. Then
we define auxiliary information τy as an obfuscation of a circuit that computes
the 2y-th power. With this definition, it is clear that τy can be computed from y
efficiently, and the above mentioned problem is solved. Moreover, τy is compu-

2 In the definition of ty, whether + or − is used depends on y. See [25] for more details.



tationally indistinguishable from an obfuscation of a circuit that computes the
ty-th power. Therefore it must still be difficult to compute gxy even if τy is given
in addition to gx and gy.

Thus we obtain a self-bilinear map with auxiliary information on QR+
N while

ensuring that the auxiliary information does not allow the CDH assumption
to be broken. Moreover, by extending this, we can prove that an analogue of
multilinear CDH assumption holds with respect to a multilinear map which is
constructed from our self-bilinear map with auxiliary information based on iO
and the factoring assumption.

1.3 Related Work

In cryptography, bilinear maps on elliptic curves were first used for breaking
the discrete logarithm problem on certain curves [21]. The first constructive
cryptographic applications of a bilinear map are given in [19, 24, 2]. Since then,
many constructions of cryptographic primitives based on a bilinear map have
been proposed.

Boneh and Silverberg [3] considered a multilinear map which is an exten-
sion of a bilinear map, and showed its usefulness for constructing cryptographic
primitives though they did not give a concrete construction of multilinear maps.
Garg et al. [8] proposed a candidate construction of multilinear maps based on
ideal lattices. Coron et al. [6] proposed another construction over the integers.

The notion of indistinguishability obfuscation was first proposed by Barak et
al. [1]. The first candidate construction of indistinguishability obfuscation was
proposed by Garg et al. [10]. Since then, many applications of indistinguishability
obfuscation have been proposed [23, 9, 18, 14, 4].

2 Preliminaries

2.1 Notations

We use N to denote the set of all natural numbers, and [n] to denote the set

{1, . . . n} for n ∈ N. If S is a finite set, then we use x
$← S to denote that x is

chosen uniformly at random from S. If A is an algorithm, we use x ← A(y; r)
to denote that x is output by A whose input is y and randomness is r. We often
omit r. We say that a function f(·) : N → [0, 1] is negligible if for all positive
polynomials p(·) and all sufficiently large λ ∈ N, we have f(λ) < 1/p(λ). We say
f is overwhelming if 1−f is negligible. We say that an algorithm A is efficient if
there exists a polynomial p such that the running time of A with input length λ
is less than p(λ). For two integers x 6= 0 and y, we say that x and y are negligibly
close if |x−y|/x is negligible. For a set S and a random variable x over S, we say
that x is almost random on S if the statistical distance between the distribution
of x and the uniform distribution on S is negligible. For a circuit C, we denote
the size of C by |C|. For a wire w which is an output wire of a gate, we denote



the first input incoming wire of the gate by A(w) and the second incoming wire
of the gate by B(w). We use λ to denote the security parameter.

2.2 Indistinguishability Obfuscator

Here, we recall the definition of an indistinguishability obfuscator [10, 23].

Definition 1 (Indistinguishability Obfuscator.) Let Cλ be the class of circuits
of size at most λ. An efficient randomized algorithm iO is called an indistin-
guishability obfuscator for P/poly if the following conditions are satisfied:

– For all security parameters λ ∈ N, for all C ∈ Cλ, we have that

Pr[∀x C ′(x) = C(x) : C ′ ← iO(λ,C)] = 1.

– For any (not necessarily uniform) efficient algorithm A = (A1,A2), there
exists a negligible function α such that the following holds: if A1(1λ) always
outputs (C0, C1, σ) such that we have C0, C1 ∈ Cλ and ∀x C0(x) = C1(x),
then we have

|Pr[A2(σ, iO(λ,C0)) = 1 : (C0, C1, σ)← A1(1λ)]

−Pr[A2(σ, iO(λ,C1)) = 1 : (C0, C1, σ)← A1(1λ)]| ≤ α(λ)

Note that a candidate construction of iO that satisfies the above definition is
given in [10].

2.3 Group of Signed Quadratic Residues

Here, we recall the definition and some properties of a group of signed quadratic
residues [17] that we mainly work with in this paper. An integer N = PQ is
called a Blum integer if P and Q are distinct primes and P ≡ Q ≡ 3 mod 4
holds. Let RSAGen(1λ) be an efficient algorithm which outputs a random `N (λ)-
bit Blum integer N = PQ and its factorization (P,Q) so that the length of P
and Q are the same and we have gcd(P − 1, Q− 1) = 1. For simplicity, we often
omit λ and simply denote `N (λ) as `N . We say that the factoring assumption
holds with respect to RSAGen if for any efficient adversary A, Pr[x ∈ {P,Q} :
(N,P,Q) ← RSAGen(1λ), x ← A(1λ, N)] is negligible. We define the group of
quadratic residues as QRN := {u2 : u ∈ ZN ∗}. Note that QRN is a cyclic group
of order (P − 1)(Q− 1)/4 if N is output by RSAGen(1λ).

For any subgroup H ∈ Z∗N , we define its signed group as H+ := {|x| : x ∈ H}
where |x| is the absolute value of x when it is represented as an element of {−(N−
1)/2, . . . , (N−1)/2}. This is certainly a group by defining a multiplication as x◦
y := |(xy mod N)| for x, y ∈ H+. For simplicity, we often denote multiplications
on H+ as usual multiplication when it is clear that we are considering a signed
group. If H is a subgroup of QRN , then H

∼
= H+ by the natural projection since

−1 /∈ QRN . In particular, QR+
N is a cyclic group of order (P − 1)(Q− 1)/4. We

call QR+
N a group of signed quadratic residues. A remarkable property of QR+

N

is that it is efficiently recognizable. That is, there exists an efficient algorithm
that determines whether a given string is an element of QR+

N or not [17].



3 Self-bilinear Maps

In this section, we recall the definition of a self-bilinear map [5]. Next, we in-
troduce the notion of self-bilinear map with auxiliary information which is a
weaker variant of a self-bilinear map. Finally we define hardness assumptions
with respect to a multilinear map which is constructed from a self-bilinear map.

3.1 Definition of a Self-bilinear Map

First, we recall the definition of a self-bilinear map. A self-bilinear map is a
bilinear map where the domain and target groups are identical. The formal
definition is as follows.

Definition 2 (Self-bilinear Map [5]) For a cyclic group G, a self-bilinear map
e : G×G→ G has the following properties.

– For all g1, g2 ∈ G and α ∈ Z, it holds that

e(gα1 , g2) = e(g1, g
α
2 ) = e(g1, g2)α.

– The map e is non-degenerate, i.e, if g1, g2 ∈ G are generators of G, then
e(g1, g2) is a generator of G.

In addition to the above, we usually require that e is efficiently computable.
As shown in [5], we can construct an n-multilinear map for any integer n ≥ 2
from a self-bilinear map e. This can be seen by easy induction: suppose that an
n-multilinear map en can be constructed from a self-bilinear map e, then we can
construct an (n+ 1)-multilinear map en+1 by defining

en+1(g1, . . . , gn, gn+1) := e(en(g1, . . . , gn), gn+1).

3.2 Self-bilinear Map with Auxiliary Information

Instead of constructing a self-bilinear map, we construct a self-bilinear map with
auxiliary information which is a weaker variant of a self-bilinear map. In a self-
bilinear map with auxiliary information, the map is efficiently computable only
if “auxiliary information” is given. That is, when we compute e(gx, gy), we re-
quire auxiliary information τx for gx or τy for gy. This is the difference from
an“ideal” self-bilinear map in which e(gx, gy) can be computed only from gx

and gy. We formalize a self-bilinear map with auxiliary information as a set of
algorithms SBP = (InstGen,Sample,AIGen,Map,AIMult) and a set R of integers.

InstGen(1λ)→ params : InstGen takes the security parameter 1λ as input and
outputs the public parameters params which specifies an efficiently recogniz-
able cyclic group G on which the group operation is efficiently computable.
We require that an approximation Approx(G) of ord(G) can be computed
efficiently from params and that Approx(G) is negligibly close to ord(G).
Additionally, params specifies sets T `x of auxiliary information for all integers
x and ` ∈ N.



Sample(params)→ g : Sample takes params as input and outputs an almost ran-
dom element g of G. The self-bilinear map e : G × G → G is defined with
respect to the element g.

AIGen(params, `, x)→ τx : AIGen takes params, level ` and an integer x ∈ R as
input, and outputs corresponding auxiliary information τx ∈ T `x.

Map(params, gx, τy)→ e(gx, gy) : Map takes params, gx ∈ G and τy ∈ ∪`∈NT `y
as input and outputs e(gx, gy). By using this algorithm iteratively, we can
compute en(gx1

1 , . . . , gxn
n ) if we are given gx1 , . . . , gxn

n and τx1
, . . . , τxn

. (Note
that not all of these elements are required to evaluate the map.)

AIMult(params, `, τx, τy)→ τx+y : AIMult takes params, `, τx ∈ T `1x , τy ∈ T `2y
such that ` > max{`1, `2} as input and outputs τx+y ∈ T `x+y.

In addition to the above algorithms, we require for SBP to satisfy the following
property.

Indistinguishability of auxiliary information. We require that any efficient
algorithm which is given auxiliary information cannot tell whether it is generated
by AIGen or AIMult. More formally, for any params← InstGen(1λ), ` ∈ N (which
does not depend on λ), natural numbers `1, `2 < `, integers x, y and z (which
are polynomially bounded in λ), such that z ∈ R and z ≡ x + y mod ord(G),
and auxiliary information τx ∈ T `1x and τy ∈ T `2y , the following two distributions
are computationally indistinguishable:

D1 = {τz : τz ← AIGen(params, `, z)}

D2 = {τx+y : τx+y ← AIMult(params, `, τx, τy)}.

Remark 1 A level ` of auxiliary information grows by at least 1 when AIMult
is applied. One can think of it as an analogue of a noise level in the GGH graded
encoding [11]. In our construction, the size of auxiliary information grows expo-
nentially in a level `. Therefore an efficient algorithm can only handle auxiliary
information of a constant level. Actually, in our applications in this paper, ` is
set at most 2.

3.3 Hardness Assumptions

For cryptographic use, we introduce some hardness assumptions. We use SBP
to construct a multilinear map, and thus our hardness assumptions are associ-
ated with a multilinear map which is constructed from SBP. In the following,
we let SBP = (InstGen,Sample,AIGen,Map,AIMult) be self-bilinear map proce-
dures. First, we define the multilinear computational Diffie-Hellman with auxil-
iary information (MCDHAI) assumption which is an analogue of the multilinear
computational Diffie-Hellman (MCDH) assumption.

Definition 3 (MCDHAI assumption) We say that the n-MCDHAI assumption
holds with respect to SBP if for any efficient algorithm A,

Pr[en(g, . . . , g)sΠ
n
i=1xi ← A(params, g, gs, gx1 , . . . , gxn , τs, τx1 . . . , τxn)]



is negligible, where params← InstGen(1λ), g ← Sample(params), s, x1, . . . , xn ←
[Approx(G)], τs ← AIGen(params, 1, s), τxi

← AIGen(params, 1, xi) for all i ∈ [n].
We say that the MCDHAI assumption holds with respect to SBP if the n-

MCDHAI assumption holds with respect to SBP for any integer n which is poly-
nomially bounded in λ.

We also define the multilinear hashed Diffie-Hellman with auxiliary information
(MHDHAI) assumption which is an analogue of the multilinear hashed Diffie-
Hellman (MHDH) assumption.

Definition 4 (MHDHAI assumption) We say that the n-MHDHAI assumption
holds with respect to SBP and a family of hash functions H = {H : G→ {0, 1}k}
if for any efficient algorithm D,

|Pr[1← D(params, g, gs, gx1 , . . . , gxn , τs, τx1
. . . , τxn

, H, T )|β = 1]

−Pr[1← D(params, g, gs, gx1 , . . . , gxn , τs, τx1
. . . , τxn

, H, T )|β = 0]|

is negligible, where params← InstGen(1λ), g ← Sample(params), s, x1, . . . , xn ←
[Approx(G)], τs ← AIGen(params, 1, s), τxi

← AIGen(params, 1, xi) for all i ∈ [n],

β
$← {0, 1} and T

$← {0, 1}k if β = 0, and otherwise T = H(en(g, . . . , g)sΠ
n
i=1xi).

We say that the MHDHAI assumption holds with respect to SBP and H if
the n-MHDHAI assumption holds with respect to SBP and H for any integer n
which is polynomially bounded in λ.

Note that if the MCDHAI assumption holds with respect to SBP then the MHD-
HAI assumption holds with respect to SBP and the Goldreich-Levin hardcore
bit function [13].

4 Our Construction of a Self-bilinear Map

In this section, we construct a self-bilinear map with auxiliary information by
giving a construction of self-bilinear map procedures SBP. We prove that the
MCDHAI assumption holds with respect to SBP if the factoring assumption
holds and there exists an indistinguishability obfuscator for P/poly.

4.1 Construction

First we prepare some notations for circuits on QR+
N .

Notation for circuits on QR+
N . In the following, for an `N -bit RSA modulus

N and an integer x ∈ Z, CN,x denotes a set of circuits CN,x that work as follows.
For input y ∈ {0, 1}`N , CN,x interprets y as an element of ZN and returns yx

where the exponentiation is done on QR+
N if y ∈ QR+

N and otherwise returns

0`N (which is interpreted as ⊥). We define the canonical circuit C̃N,x in CN,x in
a natural way 3. For circuits C1, C2 whose output can be interpreted as elements

3 There is flexibility to define the canonical circuit. However, any definition works if
the size of C̃N,x is polynomially bounded in λ and |x|.



of QR+
N , Mult(C1, C2) denotes a circuit that computes Cmult(C1(x), C2(y)) for

input (x, y) where Cmult is a circuit that computes a multiplication for elements
of QR+

N . If an input of Cmult is not a pair of two elements in QR+
N , then it outputs

0`N .
Now we are ready to describe our construction. The construction of SBP is

as follows.

InstGen(1λ)→ params : Run RSAGen(1λ) to obtain (N,P,Q), and outputs params =
N . params defines the underlying group G = QR+

N and Approx(G) = (N −
1)/4. For an integer x and ` ∈ N, the set T `x is defined as T `x = {iO(M`, CN,2x; r) :
CN,2x ∈ CN,2x such that |CN,2x| ≤ M`, r ∈ {0, 1}∗}, where M` is defined
later.

Sample(params)→ g : Choose a random element g ∈ Z∗N , computes g2 in Z∗N and
outputs |g2| where the absolute value is taken when it is represented as an
element of {−(N −1)/2, . . . , (N −1)/2}. When params = N and a generator
g ∈ QR+

N are fixed, the self-bilinear map e is defined as e(gx, gy) = g2xy.
AIGen(params, `, x)→ τx : Define the range of x as R := [(N − 1)/2]. Take the

canonical circuit C̃N,2x ∈ CN,2x, set τx ← iO(M`, C̃N,2x) and output τx.
Map(params, gx, τy)→ e(gx, gy) : Compute τy(gx) and output it. (Recall that τy

is a circuit that computes the 2y-th power for an element of QR+
N .)

AIMult(params, `, τx, τy)→ τx+y : Compute τx+y ← iO(M`,Mult(τx, τy)) and
output it.

Definition of M`. M` represents an upper bound of the size of a circuit which
is obfuscated by iO when auxiliary information with level ` is generated. To
define it, we consider another integer M ′` which represents an upper bound of
the size of auxiliary information with level `. We define M` and M ′` recursively.

We define M ′0 as an integer which is larger than maxx∈[(N+1)/2]{|C̃N,x|}. For
` ≥ 1, we define M` := 2M ′`−1 + |CMult| and M ′` := poly(M`, λ) where poly is a
polynomial that satisfies |iO(M,C)| < poly(M,λ) for any integer M and circuit
C such that |C| < M .

Indistinguishability of auxiliary information. If z ≡ x+ y mod ord(QR+
N )

holds, then CN,2z and Mult(τx, τy) have exactly the same functionality. Therefore
if we obfuscate these circuits by iO, then the resulting circuits are computation-
ally indistinguishable.

4.2 Hardness Assumptions

We prove that the MCDHAI assumption holds with respect to our construction
of a self-bilinear map if iO is an indistinguishability obfuscator for P/poly and
the factoring assumption holds. From that, we can immediately see that the
MHDHAI assumption also holds with respect to our construction if we use the
Goldreich-Levin hardcore bit function [13] as H.

First, we prove that the MCDHAI assumption holds if iO is an indistin-
guishability obfuscator for P/poly and the factoring assumption holds.



Theorem 1 The MCDHAI assumption holds with respect to SBPOurs if the fac-
toring assumption holds with respect to RSAGen and iO is an indistinguishability
obfuscator for P/poly.

Proof. For an algorithm A and an integer n (which is polynomially bounded by
the security parameter), we consider the following games.

Game 1. This game is the original n-MCDHAI game. More precisely, it is as
follows.

(N,P,Q)← RSAGen(1λ)

g
$← QR+

N

s, x1, . . . , xn
$← [(N − 1)/4]

τs ← iO(M1, C̃N,2s), τxi ← iO(M1, C̃N,2xi) for i ∈ [n]
U ← A(N, g, gs, gx1 , . . . , gxn , τs, τx1 . . . , τxn)

Game 1′ This game is the same as Game 1 except that s, x1, . . . , xn are chosen
from [ord(QR+

N )].
Game 2′ This game is the same as Game 1′ except that g, s, x1, . . . , xn, τs, τx1

, . . . , τxn

are set differently. More precisely, it is as follows.

(N,P,Q)← RSAGen(1λ)

h
$← QR+

N

g := h2

s′, x′1, . . . , x
′
n

$← [ord(QR+
N )]

gs := gs
′
h, gxi := gx

′
ih for i ∈ [n]

(This implicitly defines s ≡ s′ + 1/2 mod ord(QR+
N ) and xi ≡ x′i + 1/2 mod

ord(QR+
N )).

τs ← iO(M1, C̃N,2s′+1), τxi ← iO(M1, C̃N,2x′i+1) for i ∈ [n]
U ← A(N, g, gs, gx1 , . . . , gxn , τs, τx1 . . . , τxn)

Game 2 This game is the same as Game 2′ except that s, x1, . . . , xn are chosen
from [(N − 1)/4].

We say that A wins if it outputs U = en(g, . . . , g)sΠ
n
i=1xi . For i = 1, 2, we let Ti

and T ′i be the events that A wins in Game i and Game i′, respectively. What we
want to prove is that Pr[T1] is negligible. We prove it by the following lemmas.

Lemma 1 |Pr[Ti]− Pr[T ′i ]| is negligible for i = 1, 2

Proof. This follows since (N − 1)/4 is negligibly close to ord(QR+
N ).

Lemma 2 |Pr[T ′1] − Pr[T ′2]| is negligible if iO is an indistinguishability obfus-
cator for P/poly.

Proof. We consider hybrid games H0, . . . Hn+1. A hybrid game Hi is the same
as Game 1′ except that the first i auxiliary information (i.e, τs, τx1

, . . . , τxi−1
)

are generated as in Game 2′. It is clear that H0 is identical to Game 1′ and



Hn+1 is identical to Game 2′. Let Si be the event that A wins in Game Hi.
It suffices to show that |Pr[Si] − Pr[Si−1]| is negligible by the standard hybrid
argument. We construct an algorithm B = (B1,B2) that breaks the security of
iO for the security parameter M1 by using A that distinguishes Hi and Hi−1.
In the following, we use x0 to mean s for notational convenience.

B1(1λ): B1 runs (N,P,Q) ← RSAGen(1λ), chooses h
$← QR+

N and x0, . . . ,

xn
$← [ord(QR+

N )] and sets g := h2. B1 computes x′0, . . . , x
′
n ∈ ord(QR+

N )
such that xj ≡ x′j + 1/2 mod ord(QR+

N ) for j = 0, . . . , n. (This can be com-

puted since B1 knows the factorization of N .) Then B1 sets C0 := C̃N,2xi−1
,

C1 := C̃N,2x′i−1+1 and σ := (N,P,Q, h, g, x0, . . . , xn, x
′
0, . . . , x

′
n) and outputs

(C0, C1, σ).
B2(σ,C∗): B2 sets

τxj
←


iO(M1, C̃N,2x′j+1) if j = 0, . . . , i− 2

C∗ if j = i− 1

iO(M1, C̃N,2xj
) if j = i, . . . , n.

Then B2 runs A(N, g, gx0 , . . . , gxn , τx0
, . . . , τxn

) to obtain U . If we have U =
en(g, . . . , g)Π

n
i=0xi , then B2 outputs 1, and otherwise outputs 0.

The above completes the description of B. First, we note that each of gj (j =
0, . . . , n) is distributed in QR+

N independently of each other in all hybrid games
Hi for i = 0, . . . , n+ 1. Therefore B generates them in exactly the same way as
those are generated in the hybrids Hi−1 and Hi. Then we can see that B perfectly
simulates Hi−1 if C∗ ← iO(M1, C0) and Hi if C∗ ← iO(M1, C1) from the view
of A. If the difference between the probability that A wins in Hi−1 and that
in Hi is non-negligible, then B succeeds in distinguish whether C∗ is computed
as C∗ ← iO(M1, C0) or C∗ ← iO(M1, C1), with non-negligible advantage, and
thus breaks the security of iO.

Lemma 3 Pr[T2] is negligible if the factoring assumption holds.

Proof. Assuming that A wins in Game 2 with non-negligible probability, we
construct an algorithm B that computes h1/2 given an RSA modulus N and
a random element h ∈ QR+

N with non-negligible probability. This yields the
factoring algorithm [17]. The construction of B is as follows.

B(N,h) : B sets g := h2 and chooses s′, x′1, . . . , x
′
n

$← [(N − 1)/4]. Then B
sets gs := gs

′
h, gxi := gx

′
ih for all i ∈ [n], τs ← iO(M1, C̃N,2s′+1) and

τxi ← iO(M1, C̃N,2x′i+1) for all i ∈ [n]. Then B runs A(N, g, gs, gx1 , . . . ,
gxn , τs, τx1

. . . , τxn
). Let U be the output of A. Then B computes X :=

Πn
i=1(2x′i+1) and outputs Ug−(s

′X+(X−1)/2). (Note that X is odd and there-
fore (X − 1)/2 is an integer.)

Since B perfectly simulates Game 2 from the view ofA,A outputs en(g, . . . , g)sΠ
n
i=1xi

with non-negligible probability. If it occurs, then we have

U = en(g, . . . , g)sΠ
n
i=1xi = g2

n−1sΠn
i=1xi = h2

nsΠn
i=1xi = hsΠ

n
i=12xi

= h(s
′+1/2)Πn

i=1(2x
′
i+1) = hs

′X+X/2 = hs
′X+(X−1)/2+1/2



and therefore we have Ug−(s
′X+(X−1)/2) = h1/2.

Theorem 1 is proven by the above lemmas. ut

The following is immediate from Theorem 1 and the Goldreich-Levin theorem.

Theorem 2 The MHDHAI assumption holds with respect to SBPOurs and the
Goldreich-Levin hardcore bit function if the factoring assumption holds with re-
spect to RSAGen and iO is an indistinguishability obfuscator for P/poly.

5 Applications of Our Self-bilinear Map

In Sec. 4, we constructed a self-bilinear map with auxiliary information. In this
section, we construct a multilinear map, multiparty NIKE, distributed broadcast
encryption and ABE for circuits by using it.

Multilinear map. Here, we consider a multilinear map which is constructed
from a self-bilinear map with auxiliary information. As shown in Sec. 3.1 we can
construct a multilinear map by iterated usage of a self-bilinear map. However, if
we use a self-bilinear map with auxiliary information as a building block, then
the resulting multilinear map has a restricted functionality: we need auxiliary
information to compute the map. The concrete formulation is as follows.

Similarly to self-bilinear map procedures in Sec. 3.2, we formalize a multilin-
ear map with auxiliary information as a set of algorithms SBP = (InstGenmult,
Samplemult,AIGenmult,Mapmult,AIMultmult) and a set R of integers. InstGenmult

takes the security parameter as input and outputs the public parameters params
which specify an underlying group G and a multilinear map e on it. Samplemult

takes params as input and outputs an almost random element of G. AIGenmult

takes params, `, and x ∈ R as input and outputs auxiliary information τx of
level ` with respect to x. Mapmult takes params, gx1 , . . . , gxn , τx1

, . . . , τxn−1
and a

level of multilinearity n as input, and outputs en(gx1 , . . . , gxn). AIMultmult takes
params, an integer ` and auxiliary information τx and τy whose levels are less
than ` as input and outputs auxiliary information τx+y of level ` with respect
to x+ y. A more precise definition is given in the full version.

In spite of the limitation that it requires auxiliary information to compute
the map, a multilinear map with auxiliary information is sufficient to replace
existing multilinear maps in some applications. Moreover, our multilinear map
has interesting properties that existing multilinear maps do not have: the level
of multilinearity is not bounded at the instance generation phase and represen-
tations of group elements are compact, i.e., their sizes are independent of the
level of multilinearity. By this property, cryptographic primitives which are con-
structed from our multilinear map inherit these properties too.

Multiparty NIKE. By extending the Diffie-Hellman key exchange [7] to a
multilinear setting as in [3], we obtain a multiparty NIKE scheme. By using
our multilinear map (with auxiliary information) as a building block, we obtain



a multiparty NIKE scheme where the maximum number of users is not fixed
in the setup phase. In particular, the size of both the public parameters and a
public key generated by a user are independent of the number of users. Note
that [4] also constructed multiparty NIKE schemes based on indistinguishability
obfuscation. However, in their schemes, the setup algorithm or key generation
algorithm have to take the number of users as input unlike ours.

Distributed broadcast encryption. It is known that a multiparty NIKE
scheme can be converted to a distributed broadcast encryption [3, 4], where a
user can join the system by himself without the assistance of a (semi) trusted
third party holding a master key. The conversion is very simple: The setup al-
gorithm runs SetupNIKE(1λ) to obtain PP and publishes it. A user who wants
to join the system runs PublishNIKE(PP) to obtain (pk, sk), publishes pk as his
public key and keeps sk as his secret key. A sender who wants to send a message
M to a set S of users plays the role of a user of the underlying NIKE, shares a
derived key K with users in S and encrypts M to obtain a ciphertext Ψ by a
symmetric key encryption scheme using the key K. A ciphertext consists of S,
the sender’s public key and Ψ . It is easy to prove that the resulting broadcast
encryption scheme is CPA secure if the underlying multiparty NIKE scheme is
statically secure. In our scheme, as in the multiparty NIKE scheme, all algo-
rithms can be run independently of the number of users. In particular, the size
of both the public parameters and a ciphertext overhead are independent of the
number of users. This is the first distributed broadcast encryption scheme with
this property. Note that [4] also constructed distributed broadcast encryption
schemes based on indistinguishability obfuscation. However, in their schemes,
the setup algorithm or key generation algorithm have to take the number of
users as input unlike ours.

Attribute based encryption for circuits. We can construct ABE for cir-
cuits based on our self-bilinear map almost similarly to the scheme in [11]. The
concrete construction can be found in the full version.

6 Homomorphic Encryption

In this section, we construct a somewhat homomorphic encryption scheme by
using an indistinguishability obfuscator. This is not a direct application of our
self-bilinear map. However, the idea behind the construction is similar.

6.1 Definition of Homomorphic Encryption

Here, we recall some definitions for homomorphic encryption. A homomorphic
encryption scheme HE consists of the four algorithms (KeyGen,Enc,Eval,Dec).
KeyGen takes the security parameter 1λ as input and outputs a public key pk and
a secret key sk. Enc takes a public key pk and a massage m ∈ {0, 1} as input, and
outputs a ciphertext c. Eval takes a public key pk, a circuit f with input length



` and a set of ` ciphertexts c1, . . . , c` as input, and outputs a ciphertext cf . Dec
takes a secret key sk and a ciphertext c as input, and outputs a message m. For
correctness of the scheme, we require that for all (pk, sk)← KeyGen(1λ) and all
m ∈ {0, 1}, we have Dec(sk,Enc(pk,m)) = m with overwhelming probability.

Next, we define some properties of homomorphic encryption such as the CPA
security, C-homomorphism, and compactness.

Definition 5 (CPA security) We say that a scheme HE is CPA secure if for
any efficient adversary A,

|Pr[1← A(pk,Enc(pk, 0))]− Pr[1← A(pk,Enc(pk, 1))]|

is negligible, where (pk, sk)← KeyGen(1λ).

Definition 6 (C-homomorphism) Let C = {Cλ}λ∈N be a class of circuits. A
scheme HE is C-homomorphic if for any family of circuits {fλ}λ∈N such that
fλ ∈ C whose input length is ` and any messages m1, . . . ,m` ∈ {0, 1},

Pr[Dec(sk,Eval(pk,C, c1, . . . , c`)) 6= C(m1, . . . ,m`)]

is negligible, where (pk, sk)← KeyGen(1λ) and ci ← Enc(pk,mi).

Remark 2 We can also consider the additional property that an output of Eval
can be used as input of another homomorphic evaluation. This is called “multi-
hop” homomorphism, and many fully homomorphic encryption schemes have
this property. However, our scheme does not.

Definition 7 (Compactness) A homomorphic encryption scheme HE is compact
if there exists a polynomial poly such that the output length of Eval is at most
poly(λ)-bit.

6.2 Φ-hiding Assumption

Here, we give the definition of the Φ-hiding assumption [20] as follows. Let
RSA[p ≡ 1 mod e] be an efficient algorithm which takes the security parame-
ter 1λ as input and outputs (N,P,Q) where N = PQ is an `N -bit Blum integer
such that P ≡ 1 mod e and QR+

N is cyclic. Let P` be the set of all `-bit primes.

Definition 8 For a constant c, we consider the following distributions.

R = {(e,N) : e, e′
R← Pc`N ;N ← RSA[p ≡ 1 mod e′](1λ)}

L = {(e,N) : e
R← Pc`N ;N ← RSA[p ≡ 1 mod e](1λ)}

We say that the Φ-hiding assumption holds with respect to RSA if for any efficient
adversary A, |Pr[1← A(L)]− Pr[1← A(R)]| is negligible.

Parameters. According to [20], N can be factorized in time O(N ε) where e
R←

Pc`N ;N ← RSA[p ≡ 1 mod e](1k) and c = 1/4− ε. In our scheme, we set c to be
the value such that c`N = λ. This setting avoids the above mentioned attack in
a usual parameter setting (e.g., `N = 1024 for 80-bit security).



6.3 Our Construction

Here, we construct a somewhat homomorphic encryption scheme by using in-
distinguishability obfuscation. We use the notation for circuits on QR+

N which
is given in Sec. 4. In addition to that, here, we use the following notation. For
circuits C1 and C2 such that an output of C1 can be interpreted as input for C2,
C1 ◦C2 denotes the composition of C1 and C2, i.e, C1 ◦C2 is a circuit that com-
putes C2(C1(x)) for input x. The construction of our homomorphic encryption
HEOurs = (KeyGen,Enc,Eval,Dec) is as follows.

KeyGen(1λ): Choose e
$← Pλ and (N,P,Q) ← RSA[p ≡ 1 mod e](1λ). Choose

g
$← QR+

N and compute an integer ρ such that ρ ≡ 0 mod ord(QR+
N )/e

and ρ ≡ 1 mod e. It outputs a public key pk = (N, e, g) and a secret key
sk = (ρ, pk).

Enc(pk,m ∈ {0, 1}): Choose r
$← [(N − 1)/4], set c ← iO(Max, C̃N,m+re) and

output c, where Max is defined as an integer larger than
maxm∈{0,1},r∈[(N−1)/4]{|C̃N,m+re|}.

Eval(pk, f, c1, . . . , c`): Work only if c1, . . . , c` are circuits (i.e., generated by Enc).
Convert f into an arithmetic circuit f ′ on Ze. (That is, each gate of f ′ is
addition, multiplication or negation on Ze.)4 Compute as follows for all wires
of f ′ from wires with lower depth.

– Input: Let w be the i-th input wire. Then ci is assigned to this wire.
– Addition: Let w be an output wire of an addition gate. Set cw :=

Mult(cA(w), cB(w)).
– Multiplication: Let w be an output wire of a multiplication gate. Set
cw := cA(w) ◦ cB(w).

– Negation: Let w be an output wire of a negation gate. Set cw := CN,inv ◦
cA(w) where CN,inv is a circuit that computes an inverse on QR+

N .

Let v be the output wire. Compute ceval = cv(g) and output it. Note that it
is a group element and not a circuit. Therefore we cannot evaluate it again.

Dec(sk, c): Work differently depending on whether c is an output of Enc or Eval.
If c is an output of Enc, then compute M = c(g). If Mρ = 1, then output 0,
and otherwise output 1. If c is an output of Eval, then output 0 if cρ = 1,
and otherwise output 1.

First, we prove the correctness of the scheme. We have e|ord(QR+
N ) by the choice

of N . Therefore, there exists a subgroup G+
e of order e of QR+

N . We can see that
for any element h ∈ QR+

N , hρ is the G+
e component of h. In the decryption, we

have M = iO(Max, CN,m+re)(g) = gm+re. Therefore Mρ is the G+
e component of

gm. We can see that G+
e component of g is not 1 with overwhelming probability

since e is a λ-bit prime. Therefore Mρ = 1 is equivalent to m = 0 and Mρ 6= 1 is
equivalent to m = 1 with overwhelming probability. Thus the correctness follows.

The security of HEOurs relies on the Φ-hiding assumption.

4 This can be done since we have a ∧ b = a · b mod e and a ∨ b = a+ b− a · b mod e if
a, b ∈ {0, 1}.



Theorem 3 HEOurs is NC1-homomorphic, compact and CPA secure if the Φ-
hiding assumption holds with respect to RSA and iO is an indistinguishability
obfuscator for P/poly.

Here, we give only an intuitive explanation. The full proof can be found in the
full version. The compactness is clear since an output of Eval consists of one
group element of QR+

N . It is easy to see that evaluated ciphertexts are decrypted
correctly. The problem is whether Eval works in polynomial time. To see this, we
observe that the size of a circuit assigned to a wire of depth i is O(2ipoly(λ)).
Thus if the depth of an evaluated circuit is O(log λ), then the size of the circuit
assigned to an output wire is O(poly(λ)) and thus Eval works in polynomial time.
The CPA security is reduced to the φ-hiding assumption: by the assumption, if N
is replaced withN ′ such that e does not divide ord(QR+

N ′), any efficient adversary
cannot tell the difference. We can see that (re mod ord(QR+

N ′)) is distributed

almost uniformly where r
$← [(N ′ − 1)/4] since gcd(e, ord(QR+

N )) = 1 holds.
Thus ((m+ re) mod ord(QR+

N ′)) is uniformly distributed regardless of the value
of m and the ciphertexts of 0 and 1 are distributed almost identically.
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