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1 Information Security Group, Royal Holloway, University of London, UK
2 Infineon AG, Neubiberg, Germany
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Abstract. The linear layer is a core component in any substitution-
permutation network block cipher. Its design significantly influences both
the security and the efficiency of the resulting block cipher. Surprisingly,
not many general constructions are known that allow to choose trade-offs
between security and efficiency. Especially, when compared to Sboxes, it
seems that the linear layer is crucially understudied. In this paper, we
propose a general methodology to construct good, sometimes optimal,
linear layers allowing for a large variety of trade-offs. We give several
instances of our construction and on top underline its value by presenting
a new block cipher. PRIDE is optimized for 8-bit micro-controllers and
significantly outperforms all academic solutions both in terms of code
size and cycle count.
Keywords: block cipher, linear layer, wide-trail, embedded processors.

1 Introduction

Block ciphers are one of the most prominently used cryptographic primitives
and probably account for the largest portion of data encrypted today. This was
facilitated by the introduction of Rijndael as the Advanced Encryption Standard
(AES) [1], which was a major step forward in the field of block cipher design. Not
only does AES offer strong security, but its structure also inspired many cipher
designs ever since. One of the merits of AES (and its predecessor SQUARE [20])
was demonstrating that a well-chosen linear layer is not only crucial for the
security (and efficiency) of a block cipher, but also allows to argue in a simple
and thereby convincing way about its security.
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There are two main design strategies that can be identified for block ciphers:
Sbox-based constructions and constructions without Sboxes, most prominently
those using addition, rotation, and XORs (ARX designs). Furthermore, Sbox-
based designs can be split into Feistel-ciphers and substitution-permutation net-
works (SPN). Both concepts have been successfully used in practice, the most
prominent example of an SPN cipher being AES and the most prominent Feistel-
cipher being the former Data Encryption Standard (DES) [22].

It is also worth mentioning that the concept of SPN has not only been used
in the design of block ciphers but also for designing cryptographic permutations,
most prominently for the design of several sponge-based hash functions including
SHA-3 [11]. In SP networks, the round function consists of a non-linear layer
composed of small Sboxes working in parallel on small chunks of the state and
a linear layer that mixes those chunks. Thus, designing an SPN block cipher
essentially reduces to choosing one (or several) Sboxes and a linear layer.

A lot of research has been devoted to the study of Sboxes. All Sboxes of
size up to 4 bits have been classified (indeed, more than once – cf. [14,36,46]).
Moreover, Sboxes with optimal resistance against differential and linear attacks
have been classified up to dimension 5 [17]. In general, several constructions are
known for good and optimal Sboxes in arbitrary dimensions. Starting with the
work of Nyberg [43], this has evolved into its own field of research in which those
functions are studied in great detail. A nice survey of the main results of this
line of study is provided by Carlet [18].

The situation for the other main design part, the linear layer, is less clear.

1.1 The Linear Layer

For the design of the linear layer, two general approaches can be identified.
One still widely-used method is to design the linear layer in a rather ad-hoc
fashion, without following general design guidelines. While this might lead to
very secure and efficient algorithms (cf. Serpent [3] and SHA-3 as prominent
examples), it is not very satisfactory from a scientific point-of-view. The second
general design strategy is the wide-trail strategy introduced by Daemen in [19]
(see also [21]). Especially for the security against linear [41] and differential [12]
attacks, the wide-trail strategy usually results in simple and strong security
arguments. It is therefore not surprising that this concept has found its way in
many recent designs (e.g. Khazad [9], Anubis [8], Grøstl [25], PHOTON [29],
LED [30], PRINCE [16], mCrypton [39] to name but a few). In a nutshell, the
main idea of the wide-trail strategy is to link the number of active Sboxes for
linear and differential cryptanalysis to the minimal distance of a certain linear
code associated with the linear layer of the cipher. In turn, choosing a good code
(with some additional constraints) results in a large number of active Sboxes.

While the wide-trail strategy does provide a powerful tool for arguing about
the security of a cipher, it does not help in actually designing an efficient linear
layer (or the corresponding linear code) with a suitable number of active Sboxes.
Here, with the exception of early designs in [19] and later PRINCE and mCryp-
ton, most ciphers following the wide-trail strategy simply choose an MDS matrix



as the core component. This might guarantee an (partially) optimal number of
active Sboxes, but usually comes at the price of a less efficient implementation.
The only exception here is that, in the case of MDS matrices, the authors of
PHOTON and LED made the observation that implementing such matrices in a
serialized fashion improves hardware-efficiency. This idea was further generalized
in [47,53], and more recently in [5].

It is our belief that, in many cases, it is advantageous to use a near-MDS
matrix (or in general a matrix with a sub-optimal branch number) for the over-
all design. Furthermore, it is, in our opinion, utmost surprising that there are
virtually no general constructions or guidelines that would allow an SPN design
to benefit from security vs. efficiency trade-offs. This is in particular important
when it comes to ciphers where specific performance characteristics are crucial,
e.g. in lightweight cryptography.

1.2 The Current State of Lightweight Cryptography

In recent years, the field of lightweight cryptography has attracted a lot of at-
tention from the cryptographic community. In particular, designing lightweight
block ciphers has been a very active field for several years now. The dominant
metric according to which the vast majority of lightweight ciphers have been op-
timized was and still is the chip area. While this is certainly a valid optimization
objective, its relevance to real-world applications is limited. Nowadays, there are
several interesting and strong proposals available that feature a very small area
but simultaneously neglect other, important real-world constraints. Moreover,
recent proposals achieve the goal of a small chip area by sacrificing execution
speed to such an extent that even in applications where speed is supposedly
uncritical, the ciphers are getting too slow1.

Note that software solutions, i.e. low-end embedded processors, actually dom-
inate the world of embedded systems and dedicated hardware is a comparably
small fraction. Considering this fact, it is quite puzzling that efficiency on low-
cost processors was disregarded for so long. Certainly, there were a few ex-
ceptions: Several theoretical and practical studies have already been done in
this field. Practical examples include several proposals for instruction set ex-
tensions [38,42,48,37]. Among these, the Intel AES instruction set [31] is the
most well-known and practically relevant one. There have also been attempts
to come up with ciphers that are (partially) tailored for low-cost processors
[51,50,54,26,10,32]. Of these, execution times of both SEA and ITUbee are rather
high, mostly due to the high number of rounds. Furthermore, ITUbee uses 8-bit
Sboxes, which occupy a vast amount of program memory storage. SPECK, on
the other hand, seems to be an excellent lightweight software cipher in terms of
both speed and program memory.

It is obvious that there are quite some challenges to be overcome in this
relatively untouched area of lightweight software cryptography. The software
cipher for embedded devices of the future should not only be compact in terms

1 See also [35] asking “Is lightweight = light + wait?”



of program memory, but also be relatively fast in execution time. It should clearly
be secure and, preferably, its security should be easily analysed and verified. The
latter can possibly be achieved by building on conservative structures, which are
conventionally costly in software implementation, thereby posing even harder
challenges.

One major component influencing all or at least most of those criteria out-
lined above is the linear layer. Thus, it is important to have general constructions
for linear layers that allow to explore and make optimal use of the possible trade-
offs.

1.3 Our Contribution

In this paper, we take steps towards a better understanding of possible trade-offs
for linear layers. After introducing necessary concepts and notation in Section 2,
we give a general construction that allows to combine several strong linear map-
pings on a few number of bits into a strong linear layer for a larger number of
bits (cf. Section 3). From a coding theory perspective, this construction corre-
sponds to a construction known as block-interleaving (see [40], pages 131-132).
While this idea is rather simple, its applicability is powerful. Implicitly, a spe-
cific instance of our construction is already implemented in AES. Furthermore,
special instances of this construction are recently used in [7] and [28].

We illustrate our approach by providing several linear layers with an optimal
or almost optimal trade-off between hardware-efficiency and number of active
Sboxes in Section 4. Along similar lines, we present a classification of all linear
layers fulfilling the criteria of the block cipher PRINCE in [2], Appendix C. Those
examples show in particular that the construction given in Section 3 allows
the construction of non-equivalent codes even when starting from equivalent
ones. Secondly, we show that our construction also leads to very strong linear
layers with respect to efficiency on embedded 8-bit micro-controllers. For this, we
adopt a search strategy from [52] to find the most efficient linear layer possible
within our constraints. We implemented this search on an FPGA platform to
overcome the big computational effort involved and to have the advantage of
reconfigurability. Details are described in Section 5.1.

With this, and as a second main contribution of our paper, we make use of
our construction to design a new block cipher named PRIDE that significantly
outperforms all existing block ciphers of similar key-sizes, with the exception of
SIMON and SPECK [10]. One of the key-points here is that our construction of
strong linear layers is nicely in line with a bit-sliced implementation of the Sbox
layer. Our cipher is comparable, both in speed and memory size, to the new
NSA block ciphers SIMON and SPECK, dedicated for the same platform. We
conclude the paper in Section 6 with some open problems and pressing topics for
further investigation. Finally, we note that while in this paper we focus on SPN
ciphers, most of the results translate to the design of Feistel ciphers as well.



2 Notation and Preliminaries

In this section, we fix the basic notation and furthermore recall the ideas of the
wide-trail strategy.

We deal with SPN block ciphers where the Sbox layer consist of n Sboxes of
size b each. Thus the block size of the cipher is n × b. The linear layer will be
implemented by applying k binary matrices in parallel.

We denote by F2 the field with two elements and by Fn
2 the n-dimensional

vector space over F2. Note that any finite extension field F2b over F2 can be
viewed as the vector space Fb

2 of dimension b. Along these lines, the vector space
(F2b)n can be viewed as the (nested) vector space

(
Fb
2

)n
.

Given a vector x = (x1, . . . , xn) ∈
(
Fb
2

)n
where each xi ∈ Fb

2 we define its
weight2 as

wtb(x) = |{1 ≤ i ≤ n | xi 6= 0}|.

Following [21], given a linear mapping L : (Fb
2)n → (Fb

2)n its differential
branch number is defined as

Bd(L) := min{wtb(x) + wtb(L(x)) | x ∈
(
Fb
2

)n
, x 6= 0}.

The cryptographic significance of the branch number is that the branch number
corresponds to the minimal number of active Sboxes in any two consecutive
rounds. Here an Sbox is called active if it gets a non-zero input difference in its
input.

Given an upper bound p on the differential probability for a single Sbox
along with a lower bound of active Sboxes immediately allows to deduce an
upper bound for any differential characteristic3 using

average probability for any non-trivial characteristic ≤ p#active Sboxes.

For linear cryptanalysis, the linear branch number is defined as

Bl(L) := min{wtb(x) + wtb(L
∗(x)) | x ∈

(
Fb
2

)n
, x 6= 0}

where L∗ is the adjoint linear mapping. That is, with respect to the standard
inner product, L∗ corresponds to the transposed matrix of L.

In terms of correlation (cf., for example, [19]), an upper bound c on the
absolute value of the correlation for a single Sbox results in a bound for any
linear trail (or linear characteristic, linear path) via

absolute correlation for a trail ≤ c#active Sboxes.

The differential branch number corresponds to the minimal distance of the
F2-linear code C over Fb

2 with generator matrix

G = [I | LT ]

2 Of course
(
Fb
2

)n
is isomorphic to Fnb

2 , but the weight is defined differently on each.
3 Averaging over all keys, assuming independent round keys.



where I is the n × n identity matrix. The length of the code is 2n and its
dimension is n (here dimension corresponds to log2b(|C|) as it is not necessarily
a linear code). Thus, C is a (2n, 2n) additive code over Fb

2 with minimal distance
d = Bd(L).

The linear branch number corresponds in the same way to the minimal dis-
tance of the F2-linear code C⊥ with generator matrix

G∗ = [L | I].

Note that C⊥ is the dual code of C and in general the minimal distances of C⊥

and C do not need to be identical.
Finally, given linear maps L1 and L2, we denote by L1 × L2 the direct sum

of the mappings, i.e.

(L1 × L2)(x, y) := (L1(x), L2(y)).

3 The Interleaving Construction

Following the wide-trail strategy, we construct linear layers by constructing a
(2n, 2n) additive codes with minimal distance d over Fb

2. The code needs to have
a generator matrix G in standard form, i.e.

G = [I | LT ]

where the submatrix L is invertible, and corresponds to the linear layer we are
using.

Hence, the main question is how to construct “efficient” matrices L with a
given branch number. Our construction allows to combine small matrices into
bigger ones. We hereby drastically reduce the search-space of possible linear
layers. This in turn makes it possible to construct efficient linear layers for various
trade-offs, as demonstrated in the following sections.

As mentioned above, the construction described in [21] can be seen as a
special case of our construction. The main difference (except the generalization)
is that we shift the focus of the construction in [21] from the 4 round super-box
view to a 2 round-view. While Daemen and Rijmen focused on the bounds for 4
rounds, we make use of their ideas to actually construct linear layers. Moreover, a
particular instance of the general construction we elaborate on here, was already
used in the linear layer of the hash function Whirlwind [7]. There, several small
MDS matrices are used to construct a larger one.

We give a simple illustrative example of our approach in [2], Appendix A.

3.1 The General Construction

We are now ready to give a formal description of our approach. First define the
following isomorphism

Pn
b1,...bk

:
(
Fb1
2 × Fb2

2 × · · · × Fbk
2

)n
→
(
Fb1
2

)n
×
(
Fb2
2

)n
× · · · ×

(
Fbk
2

)n
(x1, . . . , xn) 7→

((
x
(1)
1 , . . . , x(1)

n

)
, . . . ,

(
x
(k)
1 , . . . , x(k)

n

))



where xi =
(
x
(1)
i , . . . , x

(k)
i

)
with x

(j)
i ∈ Fbj

2 .

This isomorphism performs the transformation of mapping Sbox outputs to our
small linear layers Li. For example, in Appendix A of [2], we considered individ-
ual bits (i.e. b1, . . . , bk = 1) from 4 (i.e., k = 4) 4-bit Sboxes (i.e n = 4).

Note that, for our purpose, there are in fact many possible choices for P . In
particular, we may permute the entries within (Fbi

2 )n. Given this isomorphism
we can now state our main theorem. The construction of P follows the idea of a
diffusion-optimal mapping as defined in [21, Definition 5].

Theorem 1. Let Gi = [I | LT
i ] be the generator matrix for an F2-linear (2n, 2n)

code with minimal distance di over Fbi
2 for 0 ≤ i < k. Then the matrix G =

[I | LT ] with

L =
(
Pn
b1,...bk

)−1 ◦ (L0 × L1 × · · · × Lk−1) ◦ Pn
b1,...bk

is the generator matrix of an F2-linear (2n, 2n) code with minimal distance d
over Fb

2 where

d = min
i

di and b =
∑
i

bi.

Proof. Since Pn
b1,...bk

and
(
Pn
b1,...bk

)−1
are permutation matrices, by construction

L has full rank. To see that wtb(w) + wtb(v) ≥ mini di for any v ∈ Fb
2 \ {0} and

w = L · v, observe that wtb(w) + wtb(v) is minimal when all entries in v are zero
except those mapped to the positions acted on by Lj where Lj is the matrix
with the minimal branch number. ut

Remark 1. The interleaving construction allows to construct non-equivalent codes
even when starting with equivalent Li’s. This is shown in a particular case in
Appendix C of [2], where different choices of (equivalent) Li’s lead to different
numbers of minimum-weight codewords.

A special case of the construction above is implicitly already used in AES.
In the case of AES, it is used to construct a [8, 4, 5] code over F32

2 from 4 copies
of the [8, 4, 5] code over F8

2 given by the MixColumn operation. In the Superbox
view on AES, the ShiftRows operation plays the role of the mapping P (and its
inverse) and MixColumns corresponds to the mappings Li.

4

In the following, we use this construction to design efficient linear layers.
Besides the differential and linear branch number, we hereby focus mainly on
three criteria:

– Maximize the diffusion (cf. Section 3.3)
– Minimize the density of the matrix (cf. Section 4)

4 Note that the cipher PRINCE implicitly uses the construction twice. Once for gen-
erating the matrix M as in Appendix A of [2] and second for the improved bound
on 4 rounds, just like in AES.



– Software-efficiency (cf. Section 5)

The strategy we employ is as follows. We first find candidates for L0, i.e.,
(2n, 2n) additive codes with minimal distance d0 over F2b0 . In this stage, we
ensure that the branch number is d0 and our efficiency constraints are satisfied.
We then apply permutations to L0 to produce Li for i > 0. This stage maximizes
diffusion.

3.2 Searching for L0

The following lemma (which is a rather straightforward generalization of Theo-
rem 4 in [53]) gives a necessary and sufficient condition that a given matrix L
has branch number d over Fb

2.

Lemma 1. Let L be a bn× bn binary matrix, decomposed into b× b submatrices
Li,j.

L =


L0,0 L0,1 . . . L0,n−1
L1,0 L1,1 . . . L1,n−1

...
...

. . .
...

Ln−1,0 Ln−1,1 . . . Ln−1,n−1

 (1)

Then, L has differential branch number d over Fb
2 if and only if all i×(n−d+i+1)

block submatrices of L have full rank for 1 ≤ i < d− 1. Moreover, L has linear
branch number d if and only if all (n− d+ i+ 1)× i block submatrices of L have
full rank for 1 ≤ i < d− 1.

Based on Lemma 1 we may instantiate various search algorithms which we
will describe in Section 4 and Section 5. In our search we focus on cyclic ma-
trices, i.e. matrices where row i > 0 is constructed by cyclic shifting row 0 by
i indices. These matrices have the advantage of being efficient both in software
and hardware. Furthermore, since these matrices are symmetric, considering the
dual code C⊥ to C = [I | LT ] is straightforward.

3.3 Ensuring High Dependency

In this section, we assume we are given a matrix L0 and wish to construct

L1, . . . , Lk−1 that maximize the diffusion of the map L =
(
Pn
b1,...bk

)−1
◦ (L0 ×

L1 × · · · × Lk−1) ◦ Pn
b1,...bk

.
Given an bn × bn binary matrix L decomposed as in Eq. (1), we define its

support as the n× n binary matrix Supp(L) where

Supp(L)i,j =

{
1 if Li,j 6= 0
0 else

Now assume that Supp(L0) has a zero entry at index i′, j′. If we apply the same
Li in all k positions this means that the outputs from the i′th Sbox have no



impact on the inputs of the j′th Sbox after the linear layer. In other words, a
linear-layer following the construction of Theorem 1 ensure full dependency if
and only if  ∨

0≤i<k

Supp(Li)


i′,j′

= 1 ∀ 0 ≤ i′, j′ < n.

Hence, we want to apply different matrices Li in each of the k positions,
such that in at least one Supp(Li) has a non-zero entry at index i′, j′ for all 0 ≤
i′, j′ < n. In order to construct matrices Li for i > 0 from a matrix L0 we may
apply block-permutation matrices from the left and right to L0 as these clearly
neither impact the density nor the branch number. Hence, we focus on finding
permutation matrices Pi, Qi such that the density of

∨
0≤i<b Supp(Pi ·L0 ·Qi) is

maximized. In Appendix F of [2], we give two strategies for finding such Pi,Qi,
one is heuristic but computationally cheap, the other is guaranteed to return
an optimal solution – based on Constraint Integer Programming – but can be
computationally intensive.

We note that the difficulty of the problem depends on the size of the Sbox
and the density of Li. As MDS matrices always have density 1, the problem
of full dependency does not occur when combining such matrices. Finally, if
the construction ensures full dependency for a given k, it is always possible to
achieve full dependency for any k′ ≥ k.

In contrast with the branch number, if a linear layer ensures high dependency,
its inverse does not necessarily achieve the same dependency. Thus, it is in
general necessary to check the dependency of the inverse separately.

4 Optimizing for Hardware

In this section, we give examples of [2n, n, d] codes over Fb
2 and give algorithms

for finding such instances. First, the following lemma gives a lower bound on
the density of a matrix with branch number d. Our aim here is to find linear
layers that are efficiently implementable in hardware. More precisely, we aim
for an implementation in one cycle. PHOTON and LED demonstrated that
there is a trade-off between clock cycles and number of gate equivalence for the
linear layer. The trade-off we consider here is, complementary to PHOTON and
LED, between efficient implementation in one clock cycle and the (linear and
differential) branch number. Note that in our setting, the cost of implementation
is directly connected to the number of ones in the matrix representation of the
linear layer.

Lemma 2. Let matrix G = [I | LT ] be the generator matrix for an F2-linear
(2n, 2n) code with minimal distance d such that the dual code has minimum
distance d as well. Then L has at least d− 1 ones per row and per column.

Proof. Computing w = L · v where v is a vector with one non-zero entry 1, we
have that w must be a vector with d−1 non-zero entries if the minimum distance



of [I | LT ] is d. Hence, there must be at least d− 1 ones per row. Applying the
same argument to w = LT ·v = v ·L shows that at least d−1 entries per column
must be non-zero. ut

The main merit of the above lemma is that it allows to determine the opti-
mal solutions in terms of efficiency. This is in contrast to the case for software
implementation, where the optimal solution is unknown.

Lemmas 1 and 2 give rise to various search strategies for finding (2n, 2n)
additive codes with minimal distance d over Fb

2. We discuss those strategies in
Appendix B of [2] and present results of those strategies next.

4.1 Hardware-Optimal Examples

Below we give some examples for our construction. We hereby focus on [2n, n, d]
codes over F2, i.e. we use bi = 1.5 Note that this naturally limits the achievable
branch number. For binary linear codes the optimal minimal distance is known
for small length (cf. [27] for more information). We give a small abridgement of
the known bounds on the minimal distance for linear [2n, n] codes over F2,F4,
and F8 in Appendix E of [2]. As can be seen in this table, in order to achieve a
high branch number, it might be necessary to consider linear codes over F2m , or
(more general) additive codes over Fm

2 for some small m > 1.

The examples in Figure 1 are optimal in the sense that they achieve the best
possible branch number (both linear and differential) for the given length (with
the exception of n = 11, 13, and 14) with the least possible number of ones in
the matrix (cf. Lemma 2). The number D corresponds to the average number of
ones per row/column and Dinv to the average number of ones per row/column
of the inverse matrix. The only candidate which does not satisfy D = d − 1 is
n = 8. This candidate was found using the approach from Appendix B.3 of [2],
which guarantees to return the optimal solution. Hence, we conclude that 4 1

8 is
indeed the lowest density possible. That is, there is no 8× 8 binary matrix with
branch number 5 with only 32 ones, but the best we can do is 33 ones.

For each example we list the dimension (i.e the number of Sboxes), the
achieved branch number and the minimal k such that it is possible to achieve full
dependency with two Sbox layers interleaved with one linear layer. These values
were found using the CIP approach in Section 3.3. Note that in this case (i.e.
bi = 1) the value k actually corresponds to the minimal Sbox size that allows
full dependency. Finally, kinv is the minimum Sbox size to achieve full diffusion
for the inverse matrix. Note that for all these examples, the corresponding code
is actually equivalent to its dual. In particular this implies that the linear and
differential branch number are equal.

5 We refer to Appendix C of [2] for an exemplary comparison of the set of linear layers
constructed by Theorem 1 and the entire space with the same criteria for [8, 4, 4]
codes over F4

2.



n max(d)d DDinv k kinvTechnique Matrix

2 2 2 1 1 2 2 [2], App. B.1cyclic shift (10) to the left.

3 2 2 1 1 3 3 [2], App. B.1cyclic shift (100) to the left.

4 4 4 3 3 2 2 [2], App. B.1cyclic shift (1110) to the left.

5 4 4 3 3 2 2 [2], App. B.1cyclic shift (11100) to the left.

6 4 4 3 3 2 2 [2], App. B.1cyclic shift (110100) to the left.

7 4 4 3 4 3
7

3 2 [2], App. B.3in Figure 2

8 5 5 4 1
8

4 7
8

3 2 [2], App. B.3in [2], Appendix F.3

9 6 6 5 5 6
9

2 2 [2], App. B.3in Figure 2

10 6 6 5 5 2 2 [2], App. B.1cyclic shift (1111010000) to the left.

11 7 6 5 5 3 3 [2], App. B.1cyclic shift (11110100000) to the left.

12 8 8 7 7 2 2 [2], App. B.1cyclic shift (110111101000) to the left.

13 7 6 5 5 ≤ 4≤ 4 [2], App. B.1cyclic shift (1110110000000) to the left.

14 8 6 5 5 ≤ 4≤ 4 [2], App. B.1cyclic shift (11101010000000) to the left.

15 8 8 7 7 3 3 [2], App. B.1cyclic shift (101101110010000) to the left.

16 8 8 7 7 3 3 [2], App. B.1cyclic shift (1111011010000000) to the left.

Fig. 1. Examples of hardware efficient linear layers over F2



0110001

1000011

0100011

0001110

1001100

0110100

1011000





001110110

100101110

010010111

111101000

100110101

001111001

111010010

011001011

110001101


Fig. 2. Examples of [14, 7, 4] and [18, 9, 6] codes over F2.

5 Software-Friendly Examples and the Cipher PRIDE

In this section, we describe our new lightweight software-cipher PRIDE, a 64-bit
block cipher that uses a 128-bit key. We refer to Appendix D of [2] for a sketch
of the security analysis and to the full version for more details.

We chose to design an SPN block cipher because it seems that this structure
is better understood than e.g. ARX designs. We are, unsurprisingly, making
use of the construction given in Theorem 1. We here decided on a linear layer
with high dependency and a linear & differential branch number of 4. One key-
observation is that the construction of Theorem 1 fits naturally with a bit-sliced
implementation of the cipher, in particular with the Sbox layer. As a bit-sliced
implementation of the Sbox layer is advantageous on 8-bit micro-controllers, in
any case this is a nice match.



The target platform of PRIDE is Atmel’s AVR micro-controller [4], as it
is dominating the market along with PIC [44] (see [45]). Furthermore, many
implementations in literature are also implemented in AVR, we therefore opt for
this platform to provide a better comparison to other ciphers (including SIMON
and SPECK [10]). However, the reconfigurable nature of our search architecture
(cf. Section 5.1) to find the basic layers of the cipher allows us to extend the
search to various platforms in the future.

5.1 The Search for The Linear Layer

A natural choice in terms of Theorem 1 is to choose k = 4 and b1 = b2 = b3 =
b4 = 1. Thus, the task reduces to find four 16× 16 matrices forming one 64× 64
matrix (to permute the whole state) of the following form:

L0 0 0 0
0 L1 0 0
0 0 L2 0
0 0 0 L3


Each of these four 16×16 matrices should provide branch number 4 and together
achieve high dependency with the least possible number of instructions. Instead
of searching for an efficient implementation for a given matrix, we decided to
search for the most efficient solution fulfilling our criteria.

To find such matrices (Li) that could be implemented very efficiently given
the AVR instruction set, we performed an extensive and hardware-aided tree
search. Our search engine was optimized to look for AVR assembly code seg-
ments utilizing a limited set of instructions that would result in linear behaviour
at matrix level. These are namely CLC, EOR, MOV, MOVW, CLR, SWAP,
ASR, ROR, ROL, LSR, and LSL instructions. As we are looking for 16 × 16
matrices, the state to be multiplied with each Li is stored in two 8-bit registers,
which we call X and Y . We also allowed utilization of four temporary regis-
ters, namely T0, T1, T2, and T3. We designed and optimized our search engine
according to these registers. Our search engine checks the resulting matrix Li

after N instructions to see if it provides the desired characteristics. While trying
to reach instruction N , we try all possible instruction-register combinations in
each step. This of course comes with an impractical time complexity, especially
when N is increased further. To deal with this time complexity, we came up
with several optimizations. As a first step, we limited the utilization of certain
instruction-register combinations. For example, we excluded CLC and CLR in-
structions from the combinations for the first and last instructions. Also, EOR
is not considered in the first instruction. Again, for the first and last instruc-
tions, SWAP, ASR, ROR, ROL, LSR, and LSL instructions are only used with
X and Y . Furthermore, we did not allow temporary registers as the destination
while trying MOV and MOVW instructions in the last instruction and X − Y
registers as the destination while trying MOV and MOVW instructions in the
first instruction.



However, such optimizations were not enough to reduce the time complexity.
We therefore applied further optimizations, i.e., when the matrices of all registers
do not give full rank, we stop the search as we know that we cannot find an
invertible linear layer any more.

In the end, we found matrices that fulfil all of our criteria starting from 7
instructions.

We implemented our search architecture on a Xilinx ML605 (Virtex-6 FPGA)
evaluation board. The reconfigurable nature of the FPGA allowed us to change
easily between different parameters, i.e. the number of instructions. The details
of this search engine can be found in [33].

5.2 An Extremely Efficient Linear Layer

As a result of the search explained in Section 5.1, we achieved an extremely effi-
cient linear layer. The cheapest solution provided by our search needed 36 cycles
for the complete linear layer, which is what we opted for. The optimal matrices
forming the linear layer are given in the Appendix G of [2]. Of these four ma-
trices, L0 and L3 are involutions with the cost of 7 instructions (in turn, clock
cycles), while L1 and L2 require 11 and 13 instructions for true and inverse ma-
trices, respectively. The assembly codes are given in Appendix H of [2] to show
the claimed number of instructions.

Comparing to linear layers of other SPN-based ciphers clearly demonstrated
the benefit of our approach. Note however, that these comparisons have to be
taken with care as not all linear layers operate on the same state size and do not
offer the same security level. The linear layer of the ISO-standard lightweight
cipher PRESENT [15] costs 144 cycles (derived from the total cycle count given
in [24]). MixColumns operation of NIST-standard AES6 costs 117 instructions
(but 149 cycles because of 3-cycle data load instruction utilizations, as Mix-
Columns constants are implemented as look-up table – which means additional
256 bytes of memory, too) [6]. Note that ShiftRows operation was merged with
the look-up table of Sbox in this implementation, so we take only MixColumns
cost as the linear layer cost. The linear layer of another ISO-standard lightweight
cipher CLEFIA [49] (again 128-bit cipher) costs 146 instructions and 668 cycles.
Bit-sliced oriented design Serpent (AES finalist, 128-bit cipher) linear layer costs
155 instructions and 158 cycles. Other lightweight proposals, KLEIN [26] and
mCrypton linear layers cost 104 instructions (100 cycles) and 116 instructions
(342 cycles), respectively [23]. Finally, the linear layer cost of PRINCE is 357 in-
structions and 524 cycles7, which is even worse than AES. One of the reasons for
this high cost is the non-cyclic 4×4 matrices forming the linear layer. The other
reason is the ShiftRows operation applied on 4-bit state words, which makes
coding much more complex than that of AES on an 8-bit micro-controller.

6 It is of course not fair to compare a 128-bit cipher with a 64-bit cipher. However, we
provide AES numbers as a reference due to the fact that it is a widely-used standard
cipher and its cost is much better compared to many lightweight ciphers.

7 We implemented this cipher on AVR, as we could not find any AVR implementations
in the literature.



5.3 Sbox Selection

For our bit-sliced design, we decided to use a very simple (in terms of software-
efficiency – the formulation is given in Appendix I of [2]) 10-instruction Sbox
(which makes 10 × 2 = 20 clock cycles in total for the whole state). It is at
the same time an involution Sbox, which prevents the encryption/decryption
overhead. Besides being very efficient in terms of cycle count, this Sbox is also
optimal with respect to linear and differential attacks. The maximal probability
of a differential is 1/4 and the best correlation of any linear approximation is
1/2. The PRIDE Sbox is given below.

x 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa 0xb 0xc 0xd 0xe 0xf

S(x) 0x0 0x4 0x8 0xf 0x1 0x5 0xe 0x9 0x2 0x7 0xa 0xc 0xb 0xd 0x6 0x3

The assembly codes are given in Appendix H of [2] to show the claimed
number of instructions.

5.4 Description of PRIDE

Similar to PRINCE, the cipher makes use of the FX construction [34,13]. A
pre-whitening key k0 and post-whitening key k2 are derived from one half of k,
while the second half serves as basis k1 for the round keys, i.e.,

k = k0||k1 with k2 = k0.

Moreover, in order to allow an efficient bit-sliced implementation, the cipher
starts and ends with a bit-permutation. This clearly does not influence the se-
curity of PRIDE in any way. Note that in a bit-sliced implementation, none of
the permutations P nor P−1 used in PRIDE has to be actually implemented
explicitly. The cipher has 20 rounds, of which the first 19 are identical. Subkeys
are different for each round, i.e., the subkey for round i is given by fi(k1). We
define

fi(k1) = k10 ||g
(0)
i (k11)||k12 ||g

(1)
i (k13)||k14 ||g

(2)
i (k15)||k16 ||g

(3)
i (k17)

as the subkey derivation function with four byte-local modifiers of the key as

g
(0)
i (x) = (x + 193i) mod 256, g

(1)
i (x) = (x + 165i) mod 256,

g
(2)
i (x) = (x + 81i) mod 256, g

(3)
i (x) = (x + 197i) mod 256,

which simply add one of four constants to every other byte of k1. The overall
structure of the cipher is depicted here:



The round functionR of the cipher shows a classical substitution-permutation
network: The state is XORed with the round key, fed into 16 parallel 4-bit Sboxes
and then permuted and processed by the linear layer.

The difference between R and R′ is that in the latter no more diffusion is
necessary, therefore the last round ends after the substitution layer. With the
software-friendly matrices we have found as described above, the linear layer is
defined as follows (cf. Theorem 1 and Appendix G of [2]):

L := P−1 ◦ (L0 × L1 × L2 × L3) ◦ P where P := P 16
1,1,1,1.

The test vectors for the cipher are provided in the Appendix J of [2].

5.5 Performance Analysis

As depicted above, one round of our proposed cipher PRIDE consists of a linear
layer, a substitution layer, a key addition, and a round constant addition (key
update). In a software implementation of PRIDE on a micro-controller, we also
perform branching in each round of the cipher in addition to the previously listed
layers. Adding up all these costs gives us the total implementation cost for one
round of the cipher. The total cost can roughly be calculated by multiplying the
number of rounds with the cost of each round. Note that we should subtract
the cost of one linear layer from the overall cost, as PRIDE has no linear layer
in the last round. The software implementation cost of the round function of
PRIDE on Atmel AVR ATmega8 8-bit micro-controller [4] is presented in the
following:
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Comparing PRIDE to existing ciphers in literature, we can see that it out-
performs many of them significantly both in terms of cycle count and code size.
Note that we are not using any look-up tables in our implementation, in turn
no RAMs8. The comparison with existing implementations is given below:
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eq.r. 5/10 1/32 4/31 1/18 8/92 1/16 5/12 12/20 33/44 34/26 34/27

In the table, the first row is the time (performance) in clock cycles, the second
row is the code size in bytes, and the third row is the equivalent rounds. The
third row expresses the number of rounds for the given ciphers that would result
in a total running time similar to PRIDE.

Note that, as we did not come across to any reference implementations in
the literature, we implemented PRINCE in AVR for comparison. We also do not
list the RAM utilization for the ciphers under comparison in the table.

In the implementation of PRIDE, our target was to be fast and at the same
time compact. Note that we do not exclude data & key read and data write
back as well as the whitening steps in our results (these are omitted in SIMON
and SPECK numbers). Although the given numbers are just for encryption,
decryption overhead is also acceptable: It costs 1570 clock cycles and 282 bytes.

A cautionary note is indicated for the above comparison for several reasons.
AES, SERPENT, CLEFIA, and NOEKOEN are working on 128-bit blocks; so,
for a cycle per byte comparison, their cycle count has to be divided by a factor
of two. Moreover, the ciphers differ in the claimed security level and key-size.
PRIDE does not claim any resistance against related-key attacks (and actually
can be distinguished trivially in this setting) and also generic time-memory trade-
offs are possible against PRIDE in contrast to most other ciphers. Besides those
restrictions, the security margin in PRIDE in terms of the number of rounds is
(in our belief) sufficient.

One can see that PRIDE is comparable to SPECK-64/96 and SPECK-
64/128 (members of NSA’s software-cipher family), which are based on a Feistel
structure and use modular additions as the main source of non-linearity.

In addition to the above table, the recent work of Grosso et al. [28] presents
LS-Designs. This is a family of block ciphers that can systematically take ad-

8 Which has the additional advantage of increased resistance against cache-timing
attacks.



vantage of bit-slicing in a principled manner. In this paper, the authors make
use of look-up tables. Therefore, a direct comparison with PRIDE is not fair as
the use of look-up tables does not minimize the linear layer cost. However, to
have an idea, we can try to estimate the cost of the 64-bit case of this family.
They suggest two options: The first uses 4-bit Sbox with 16-bit Lbox, and the
second uses 8-bit Sbox with 8-bit Lbox. The first option has 8 rounds, which
results in 64 non-linear operations, 128 XORs, and 128 table look-ups in total.
The second one has 6 rounds, which takes 72 non-linear operations, 144 XORs,
and 48 table look-ups. For linear layer cost, we consider the XOR cost together
with table look-ups. Unfortunately, it is not easy to estimate the overall cost of
the given two options on AVR platform as the table look-ups take more than
one cycle compared to the non-linear and linear operations. Another important
point here to mention is that the use of look-up tables result in a huge memory
utilization.

Finally, we note that, despite its target being software implementations,
PRIDE is also efficient in hardware. It can be considered a hardware-friendly
design, due to its cheap linear and Sbox layers.

6 Conclusion

In this work, we have presented a framework for constructing linear layers for
block ciphers which allows to trade security against efficiency. For a given se-
curity level, in our case we focused on the branch number, we demonstrated
techniques to find very efficient linear layers satisfying this security level. Us-
ing this framework, we presented a family of linear layers that are efficient in
hardware. Furthermore, we presented a new cipher PRIDE dedicated for 8-bit
micro-controllers that offers competitive performance due to our new techniques
for finding linear layers.

One important question is on the optimality of a given construction for a
linear layer. In particular, in the case of our construction, the natural ques-
tion is if the reduction of the search space excludes optimal solutions and only
sub-optimal solutions remain. For the hardware-friendly examples presented in
Section 4 and Appendix C of [2], it is easy to argue that those constructions
are optimal. Thus, in this case the reduction of the search space clearly did not
have a negative influence on the results. In general, and for the linear layer con-
structed in Section 5 in particular, the situation is less clear. The main reason
is that, again, the construction of linear layers is understudied and hence we do
not have enough prior work to answer this question satisfactorily at the moment.
Instead we view the PRIDE linear layer as a strong benchmark for efficient lin-
ear layers with the given parameters and encourage researchers to try to beat
its performance.

Along these lines, we see this work as a step towards a more rigorous design
process for linear layers. Our hope is that this framework will be extended in
future. In particular, we would like to mention the following topic for further
investigations. It seems that using an Sbox with a non-trivial branch number



has the potential to significantly increase the number of active Sboxes when
combined with a linear layer based on Theorem 1. Finding ways to easily prove
such a result is worth investigating.

Finally, regarding PRIDE, we obviously encourage further cryptanalysis.
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