
Memento: How to Reconstruct your Secrets
from a Single Password in a Hostile Environment

Jan Camenisch1, Anja Lehmann1, Anna Lysyanskaya2, and Gregory Neven1

1 IBM Research – Zurich
2 Brown University

Abstract. Passwords are inherently vulnerable to dictionary attacks, but are quite
secure if guessing attempts can be slowed down, for example by an online server.
If this server gets compromised, however, the attacker can again perform an off-
line attack. The obvious remedy is to distribute the password verification process
over multiple servers, so that the password remains secure as long as no more
than a threshold of the servers are compromised. By letting these servers addi-
tionally host shares of a strong secret that the user can recover upon entering
the correct password, the user can perform further cryptographic tasks using this
strong secret as a key such as encrypting data in the cloud. Threshold password-
authenticated secret sharing (TPASS) protocols provide exactly this functionality.
Unfortunately, the two only known schemes by Bagherzandi et al. (CCS 2011)
and Camenisch et al. (CCS 2012) leak the password if a user mistakenly exe-
cutes the protocol with malicious servers. Authenticating to the wrong servers
is a common scenario when users are tricked in phishing attacks. We propose
the first t-out-of-n TPASS protocol for any n > t that does not suffer from
this shortcoming. We prove our protocol secure in the UC framework, which
for the particular case of password-based protocols offers important advantages
over property-based definitions, e.g., by correctly modeling typos in password
attempts.

1 Introduction

You wake up in a motel room. Where are you? How did you get here? You can’t remem-
ber anything. Or perhaps you can. One word, a password, is engraved in your mind. You
go outside and walk into the street. The first person you meet doesn’t know you. The
second seems to recognize you, or at least pretends to do so. He says he’s your friend.
He introduces you to other people who claim they are also your friends. They say they
can help you reconstruct your memory—if you give the correct password. But why
would you trust them? What if they are not your friends? What if they’re trying to plant
false memories into your brain? What if they’re trying to learn your password, so they
can retrieve your real memories from your real friends? How can you tell?

The above scenario, inspired by the movie “Memento” in which the main character
suffers from short-term memory loss, leads to an interesting cryptographic problem that
is also very relevant in practice. Namely, can a user securely recover his secrets from a
set of servers, if all the user can or wants to remember is a single password and all of
the servers may be adversarial? In particular, can he protect his precious password when



accidentally trying to run the recovery with all-malicious servers? A solution for this
problem can act as a natural bridge from human-memorizable passwords to strong keys
for cryptographic tasks, all while avoiding offline dictionary attacks on the password.
Practical applications include secure password managers (where the shared secret is a
list of strongly random website passwords) and encrypting data in the cloud (where the
shared secret is the encryption key) based on a single master password.

A single master password may seem a bad idea given that over the past few years,
hundreds of millions of passwords have been stolen through server compromises, with
major data breaches being reported at popular websites such as LinkedIn, Adobe, Ya-
hoo!, and Twitter. Storing passwords in hashed form offers hardly any protection due to
the efficiency of brute-force offline attacks using dictionaries. According to NIST [8],
sixteen-character human-memorizable passwords have only 30 bits of entropy on av-
erage. With current graphical processors testing more than three hundred billion pass-
words per second [33], security must be considered lost as soon as an offline attack
against the password data can be performed. Indeed, more than ninety percent of the
6.5 million password hashes pilfered from LinkedIn were cracked within six days [32].
Dedicated password hashes such as bcrypt [43] or PBKDF2 [37] only give a linear
security improvement: a factor x more effort to verify passwords for an honest server
makes offline dictionary attacks at a factor x harder.

However, as poorly as passwords stand their ground against offline attacks, they are
actually fairly secure against online attacks, as long as attempts are slowed down or
throttled by an honest server, e.g., by blocking accounts, presenting CAPTCHAs, or
introducing time delays. The problem is that if a single server can check the correctness
of a password, then that server—or any adversary breaking into it—must have access
to some information that can be used for an offline attack. The obvious solution is to
verify passwords through a distributed protocol involving multiple servers, in such a
way that no single server, or no collusion up to a certain threshold, stores or obtains any
information that can enable an offline attack.

Scenario. Recall our original goal that we don’t just want to authenticate to a set of
servers, we also want to store a (strong) secret that the user can later reconstruct from a
subset of the servers using a single password, in such a way that the servers don’t learn
anything about the secret or the password. The secret can be used as a key for any other
cryptographic purpose, for example, to encrypt and store a file in the cloud containing
strong passwords and other credentials required for websites or online services. Those
services thereby do not have to change their standard authentication mechanisms, en-
suring a smooth deployment path. A commercial product along these lines called RSA
Distributed Credential Protection [44] is already available.

When the user sets up his account, he carefully selects a list of names of servers that
he will use in the protocol. He may make his selection based on the servers’ reputation,
perceived trust, or other criteria; the selection is important, because if too many of the
selected servers are malicious, his password and secret are already compromised from
the beginning. It is also clear that at setup the user must be able to authenticate the
servers that he selected. In previous password-based schemes, setup is often assumed to
take place out-of-band. Given the importance of the setup phase, we follow Camenisch



et al. [13] by explicitly modeling account setup and assuming that a public-key infras-
tructure (PKI) is in place to link server names to public keys.

When later the user wants to retrieve his secret, ideally, he should not need anything
else than his username and password. In particular, he should not even have to remember
the names of the servers he selected at setup. The list may be too long for the user to
remember, and he can certainly not be expected to, at every retrieval, spend the same
amount of thought on composing the list of names of the servers as during setup. Also,
the user may retrieve his secret with a different device than the one that he used to create
the account. For example, he may be logging in from his phone instead of his laptop, he
may be installing a new device, or he may be borrowing a friend’s tablet PC. Of course,
we do have to assume that the device on which the user enters his single password is
“clean”, i.e., is not infected with malware, doesn’t have a key-logger attached, etc. We
make the minimal requirement that the user has a clean operating system and a clean
web browser to work with, containing hardcoded keys of root certification authorities
(CAs) and an implementation of our protocol. We explicitly do not want any user-
specific state information from the setup phase to be needed on the device at the time of
retrieval. Different users may select different server names, so the names of the selected
servers cannot be hardcoded in the browser either. The list of servers that is used at
retrieval may be different from the list used at setup: the user may forget some servers
when authenticating, involve some servers that were not present at setup, mistype server
URLs, or even be tricked into running the protocol with a set of all-malicious servers
through a sort of phishing attack. Note that a PKI doesn’t prevent this: malicious servers
also have certified keys. Also note that users cannot rely on the servers to store user-
specific state information that they later send back signed to the user, because the servers
during retrieval may be malicious and lie about the content or wrongly pretend to have
been part of the trusted setup set.

Existing Solutions. Threshold password-authenticated secret sharing (TPASS) schemes
are the best fit for our problem: they allow a user to secret-share a secret K among n
servers and protect it with a password p, so that the user can later recover K from any
subset of t + 1 of the servers using p, but so that no coalition smaller than t learns
anything about K or can mount an offline attack on p. Unfortunately, the two currently
known TPASS protocols by Bagherzandi et al. [3] and Camenisch et al. [13] break
down when the user tries to retrieve his secret from a set of all-malicious servers. In
the former, the password is exposed to offline attacks, in the latter it is plainly leaked.
We outline the attacks on both protocols in our full paper [12]. These attacks are of
course quite devastating, as once the password is compromised, the malicious servers
can recover the user’s secret from the correct servers.

Our Contribution. We provide the first t-out-of-n TPASS protocol for any n > t that
does not require trusted, user-specific state information to be carried over from the setup
phase. Our protocol requires the user to only remember a username and a password,
assuming that a PKI is available; if he misremembers his list of servers and tries to
retrieve his secret from corrupt servers, our protocol prevents the servers from learning
anything about the password or secret, as well as from planting a different secret into
the user’s mind than the secret that he stored earlier.



Our construction is inspired by the protocol of Bagherzandi et al. [3] by relying
on a homomorphic threshold cryptosystem, but the crucial difference is that in our re-
trieve protocol, the user never sends out an encryption of his password attempt. Instead,
the user derives an encryption of the (randomized) quotient of the password used at
setup and the password attempt. The servers then jointly decrypt the quotient and verify
whether it yields “1”, indicating that both passwords matched. In case the passwords
were not the same, all the servers learn is a random value.

The Case for Universal Composability. We prove our protocol is secure in the universal
composability (UC) framework [16]. The particular advantages of UC security notions
for the special case of password-based protocols have been pointed out before [18, 13];
we recall the main arguments here. First, all property-based security notions for thresh-
old password-based protocols in the literature [40, 47, 38, 3] assume that honest users
choose their passwords from known, fixed, independent distributions. In reality, users
share, reuse, and leak information related to their passwords outside of the protocol.
Second, all known property-based notions allow the adversary to observe or even in-
teract with honest users with their correct passwords, but not on incorrect yet related
passwords—which is exactly what happens when a user makes a typo while entering
his password. In the UC framework, this is modeled more naturally by letting the en-
vironment provide the passwords, so no assumptions need to be made regarding their
distributions, dependencies, or leakages. Finally, property-based definitions consider
the protocol in isolation, while the composition theorem of the UC framework guaran-
tees secure composition with itself as well as with other protocols. Composition with
other protocols is of particular importance in the considered TPASS setting, where a
user shares and reconstructs a strong key K with multiple servers, and should be able
to securely use that key in a different protocol, for instance to decrypt data kept in
the cloud. Modeling secure composition of password-based protocols is particularly
delicate given the inherent non-negligible success probability of the adversary when
guessing the password. Following previous work [18, 13], our UC notion absorbs the
inherent guessing attacks into the ideal functionality itself. A secure protocol guarantees
that the real world and ideal world are indistinguishable, thus the composition theorem
continues to hold.

Building a UC secure protocol requires many additional tools, such as simulation-
sound non-interactive zero-knowledge proofs with online witness extraction (which
can be efficiently realized for discrete-logarithm based relations in the random-oracle
model) and CCA2-secure encryption. It is all the more surprising that our final protocol
is efficient enough for use in practice: It requires only 5n+15 and 14t+24 exponenti-
ations from the user during setup and retrieval, respectively. Each server has to perform
n+ 18 and 7t+ 28 exponentiations in these respective protocols.

Related Work. In spite of their practical relevance, TPASS protocols only started to
appear in the literature very recently. The t-out-of-n TPASS protocol by Bagherzandi et
al. [3] was proved secure under a property-based security notion. As mentioned above, it
relies on untamperable user memory and breaks down when the user retrieves its secret
from all-corrupt servers. Our protocol can be seen as a strengthened version of the
Bagherzandi et al. protocol; we refer to Section 4 for a detailed comparison. The 1-out-
of-2 TPASS protocol by Camenisch et al. [13] was proved secure in the UC framework,



but, by construction, leaks the password and secret if a user tries to retrieve his secret
from all-corrupt servers.

Constructing TPASS protocols from generic multi-party computation (MPC) is pos-
sible but yields inefficient protocols. Our strong security requirements require public-
key operations to be encoded in the to-be-evaluated circuit, while the state-of-the-art
MPC protocols [23, 24, 22] require an expensive joint key-generation step to be per-
formed at each retrieval. We refer to the full paper [12] for details.

The closely related primitive of threshold password-authenticated key exchange
(TPAKE) lets the user agree on a fresh session key with each of the servers, but doesn’t
allow the user to store and recover a secret. Depending on the desired security proper-
ties, one can build a TPASS scheme from a TPAKE scheme by using the agreed-upon
session keys to transmit the stored secret shares over secure channels [3].

The first TPAKE protocols due to Ford and Kaliski [29] and Jablon [36] were not
proved secure. The first provably secure TPAKE protocol, a t-out-of-n protocol, was
proposed by MacKenzie et al. [40]. The 1-out-of-2 protocol of Brainard et al. [9, 47]
is implemented in EMC’s RSA Distributed Credential Protection [44]. Both protocols
either leak the password or allow an offline attack when the retrieval is performed with
corrupt servers (see the full paper [12]). The t-out-of-n TPAKE protocols by Di Rai-
mondo and Gennaro [26] and the 1-out-of-2 protocol by Katz et al. [38] are proved
secure under property-based (i.e., non-UC) notions. These protocols actually remain
secure when executed with all-corrupt servers, but are restricted to the cases where
n > 3t and (t, n) = (1, 2), respectively.

Boyen [7] presented a protocol related to TPASS, where a user can store a random
value under a password with a single server. While being very efficient, this protocol
fails to provide most of the security properties we require, i.e., the server can set up the
user with a wrong secret, throttling is not possible, and no UC security is offered.

2 Definition of Security

Recall the goal of a TPASS scheme: at setup, a user secret-shares his data amongst n
servers protected by a password p; at retrieval, he can recover his data from a subset of
t + 1 of these n servers, assuming that at most t of them are corrupt. For the sake of
simplicity, we assume that the user’s data is a symmetric key K; the user can then al-
ways useK to encrypt and authenticate his actual data and store the resulting ciphertext
in the cloud.

We want the user to be able to retrieve his data remembering only his username uid
and his password, and perhaps the name of one or a couple of his trusted servers. The
user has access to the PKI but cannot be assumed to store any additional information,
cryptographic or other. In particular, the user does not have to remember the names or
public keys of all of the servers among which he shared his key. Rather, in a step pre-
ceding the retrieval (that we don’t model here), he can ask some servers to remind him
of his full list of servers. Of course, these servers may lie if they are malicious, tricking
the into retrieving his key from servers that weren’t part of the original setup. We want
to protect the user in this case and prevent the servers from learning the password.



Certain attacks are inherent and cannot be protected against. For example, a corrupt
user can always perform an online attack on another user’s password p by doing sev-
eral retrieval attempts. It is therefore crucial that honest servers detect failed retrieval
attempts, so that they can apply throttling mechanisms to stop or slow down the attack,
such as blocking the user’s account or asking the user to solve a CAPTCHA. The throt-
tling mechanism should count retrieval attempts that remain pending for too long as
failed attempts, since the adversary can always cut the communication before some of
the servers were able to conclude.

A second inherent attack is that if at least t+1 of the n servers at setup are corrupt,
then these servers can mount an offline dictionary attack on the user’s password p.
Given the low entropy in human-memorizable passwords and the efficiency of offline
dictionary attacks on modern hardware, one may conservatively assume that in this case
the adversary simply learns p and K—which is how we model it here.

A somewhat subtle but equally unavoidable attack is that when an honest user makes
a retrieval attempt with a set of all-corrupt servers, the servers can try to plant any key
K∗ of their choice into the user’s output. This attack is unavoidable, because the corrupt
servers can always pretend that they participated in a setup protocol for a “planted”
password p∗ and a “planted” key K∗, and then execute the retrieve protocol with the
honest user using the information from this make-believe setup. If the planted password
p∗ matches the password p′ the user is retrieving with, the user will retrieve the planted
key K∗ instead of his real key. Note that in the process, the adversary learns whether
p∗ = p′, thus he gets a guess at the password p′. This planting attack is even more
critical if the user previously set up his account with at least t + 1 corrupted servers,
because in that case the adversary already knows the real password p, which most likely
is equal to the password p′ with which the user runs the retrieval.

Finally, in our model, all participants are communicating over an adversarial net-
work, which means that protocol failures are unavoidable: the adversary may block
communication between honest servers and the user. As a result, we cannot guarantee
that the user always succeeds in retrieving his data. In view of this, we chose to restrict
the retrieval protocol to t+ 1 servers: although this choice causes the retrieve protocol
to fail if just one server refuses to (being adversarial), adversarial failures are already
unavoidable in our network model. We could still try to guarantee some limited form
of robustness (recall that, in the threshold cryptography literature, a protocol is robust
if it can successfully complete its task despite malicious behavior from a fraction of
participants) by requiring that, when t + 1 or more honest servers participate and the
network does not fail, the user successfully recovers his data. However, while it seems
not hard to add robustness to our protocols by applying the usual mechanisms found in
the literature, it turns out that modeling robustness would considerably complicate our
(already rather involved) ideal functionality.

2.1 Ideal Functionality

Assuming the reader is familiar with the UC framework [16], we now describe the ideal
functionalityFTPASS(t,n) of t-out-of-n TPASS. For simplicity, we refer toFTPASS(t,n)

as F from now on. It interacts with a set of users {U}, a set of servers {Si} and an



adversary A. We consider static corruptions and assume that F knows which of the
servers in {Si} are corrupt.

The UC framework allows us to focus our analysis on a single protocol instance
with a globally unique session identifier sid . Security for multiple sessions follows
through the composition theorem [16] or, if different sessions are to share state, through
the joint-state universal composition (JUC) theorem [19]. Here, we use the username
uid as the session identifier sid , and let each setup and retrieve query be assigned a
unique sub-session identifier ssid and rsid within the single-session functionality for
sid = uid . When those sub-session identifiers are established through the functionality
by Barak et al. [4], they have the form ssid = (ssid ′,S) and rsid = (rsid ′,S′), re-
spectively, i.e., they consist of a globally unique string and the identifiers of the servers
S = (S1, . . . ,Sn) that agreed on that identifier. We will later motivate these choices;
for now, it suffices to know that a session identifier sid = uid corresponds to a single
user account, and that the sub-session identifiers ssid and rsid refer to individual setup
and retrieve queries for that account.

The functionality F has two main groups of interfaces, for setup and retrieve. For
the sake of readability, we describe the behavior of those interfaces in a somewhat
informal way here and provide their formal specification in the full paper [12].

Setup Interfaces: The SETUP-related interfaces allow a user U to instruct F to store
the a key K , protected under a password p, among n servers S = (S1, . . . ,Sn) of the
user’s choice.

1. A (SETUP, sid , ssid , p,K ) message from a user U initiates the functionality for
user name uid = sid . The sub-session identifier ssid contains a list of n differ-
ent server identities S = (S1, . . . ,Sn) among which U wants to share his key K
protected by the password p. If at least t + 1 servers in S are corrupt, F sends the
password and the key to the adversary, otherwise it merely informs A that a setup
sub-session is taking place.F also creates a record swhere it stores s.ssid , s.p, s.K
and sets s.R ← U .

2. A (JOIN, sid , ssid ,Si) message from the adversaryA instructs F to let a server Si
join the setup. If Si is honest, this means that Si registers the setup and will not join
any further setups for the same username uid = sid . The user is informed that Si
joined the setup.

3. A (STEAL, sid , ssid , p̂, K̂ ) message from A models a rather benign but unavoid-
able attack where the adversary “steals” the sub-session ssid by intercepting and
replacing the network traffic generated by U , allowing A to replace the password
and the key provided by U with his own choice s.p← p̂ and s.K ← K̂ . Note that
this is not a very powerful attack, since the adversary could achieve essentially the
same effect by letting a corrupt user initiate a separate setup session for p̂, K̂ . Thus,
the only difference is that here the adversary uses the ssid generated by an honest
user, and not a fresh one. Servers are unaware when such an attack takes place,
but the user U cannot be made to believe that an honest server Si has accepted his
inputs. This is modeled by setting the recipient of server confirmations s.R ← A.



Retrieve Interfaces: The RETRIEVE-related interfaces allow U ′ to retrieve the key from
t + 1 servers S′ if S′ ⊆ S and U ′ furnishes the correct password; it also models the
planting attack described earlier.

4. A (RETRIEVE, sid , rsid , p′) message from a user U ′ instructs F to initiate a re-
trieval for username uid = sid with password p′ from the set S′ = S1, . . . ,St+1

of t+1 servers included in the sub-session identifier rsid . F then creates a retrieve
record r, where it stores r.rsid , r.p′, sets r.R ← U ′, and initially sets r.ssid ← ⊥
and r.K ← ⊥. If there was a setup sub-session ssid that all honest servers in S′

have joined and where all servers in S′ also occur in S, then F links this retrieve to
ssid by setting r.ssid ← ssid . F notifies the adversary and (with an adversarially
determined delay) the honest servers in S′ that a new retrieval is taking place. Note
that the password attempt p′ is not leaked to the adversary, even if all servers in S′

are corrupt.
5. A (PLANT, sid , rsid , p∗,K ∗) message from the adversaryA allows him to perform

the planting attack described earlier. Namely, if all t+1 servers in the retrieval are
corrupt,A can submit a password p∗ and a key K ∗ to be planted. The functionality
F tells A whether p∗ matches the password attempt p′. If so, F also sets the key
r.K that will eventually be returned in this session to the to-be-planted key K ∗

provided by the adversary. Note that the adversary can perform only one planting
attack per retrieval. So even if all t + 1 servers are corrupt, the adversary only
obtains a single guess for the retrieval password p′.

6. A (STEAL, sid , rsid , p̂) message from A allows the adversary to “steal” the sub-
session identifier rsid , replacing the original password attempt r.p′ with p̂ of his
choice. Servers do not notice this attack taking place, but the originating user will
conclude that the protocol failed, or not receive any output at all. This is modeled
again by setting r.R ← A.

7. A (PROCEED, sid , rsid , a) message with a ∈ {allow, deny} coming from an hon-
est server Si (after having been notified that a retrieval is taking place) indicates its
(un)willingness to participate in the retrieval. This models the opportunity for an
external throttling mechanism to refuse this retrieval attempt. Only when all honest
servers have agreed to participate, the retrieval continues and the adversary learns
whether the passwords matched (i.e., whether r.p′ = s.p with s being the setup
record for ssid ). If they matched, F also sets the key to be returned r.K to the key
shared during setup s.K .

8. A (DELIVER, sid , rsid ,P, a) message from A where a = allow instructs F to
output the final result of this retrieval to party P , which can either be an honest
server Si or the user specified in r.R. If P = r.R, the user will obtain the value
r.K , where the result will signal a successful retrieval only if r.K 6= ⊥, i.e., a
key was assigned after the passwords matched. When P = Si, the server will
receive either a success or failure notification, indicating whether the passwords
matched. Note that, in both cases, A can still turn a successful result into a failed
one by passing a = deny as input. This is because in the real world, the adversary
can always make a party believe that a protocol ended unsuccessfully by simply
dropping or invalidating correct messages. However, the inverse is not possible,
i.e., the adversary can not make a mismatch of the passwords look like a match.



Session Identifiers. Our choice of (sub-)session identifiers merits some further explana-
tion. In the UC framework, all machine instances participating in a protocol execution,
including ideal functionalities, share a globally unique session identifier sid . Obviously,
our SETUP and RETRIEVE interfaces must be called with the same sid to provide the
expected functionality, because otherwise the instance cannot keep state between setup
and retrieval. However, we insisted that a user can only be expected to remember a
username and a password between setup and retrieve, but no further information such
as public keys or random nonces. The sid therefore consists only of the username uid
and thus cannot be used to uniquely identify different setup or retrieval sub-sessions for
this username. To allow the functionality to refer to multiple simultaneous setup and re-
trieve sub-sessions, the participants of each sub-session establish a unique sub-session
identifier ssid or rsid using the standard techniques mentioned earlier [4]. Therein, a
unique identifier is created by simply concatenating the identities of the communicating
parties and random nonces sent by all parties.

3 Preliminaries

In this section we introduce the building blocks for our protocols. These are three kinds
of public-key encryption schemes, a signature scheme, and zero-knowledge proof pro-
tocols. We require two of the encryption schemes to be compatible, i.e., the message
space to be the same algebraic group. To this end we make use of a probabilistic
polynomial-time algorithm GGen that on input the security parameter 1τ outputs the
description of a multiplicative cyclic group G, its prime order q, and a generator g, and
require the key generation algorithms of the compatible encryption schemes to take G
as input instead of the security parameter.

CPA-Secure Public-Key Encryption Scheme. Such a scheme consists of three algo-
rithms (KGen,Enc,Dec). The key generation algorithm KGen on input (G, q, g) out-
puts a key pair (epk, esk). The encryption algorithm Enc, on input a public key epk
and a message m ∈ G, outputs a ciphertext C, i.e., C ← Encepk(m). The decryp-
tion algorithm Dec, on input the secret key esk and a ciphertext C, outputs a message
m ← Decesk(C). We require this scheme to satisfy the standard CPA-security proper-
ties, with key generation defined as KGen(GGen(1τ )).

CCA2-Secure Labeled Public-Key Encryption Scheme. Any standard CCA2-secure
scheme (KGen2,Enc2,Dec2) that supports labels [14] is sufficient fir our protocols.
Therein, (epk, esk) ← KGen2(1τ ) denotes the key generation algorithm. The encryp-
tion algorithm takes as input the public key epk, a message m, a label l ∈ {0, 1}∗ and
outputs a ciphertextC ← Enc2epk(m, l). The decryption Dec2esk(C, l) ofC will either
output a message m or a failure symbol ⊥. The label l can be seen as context informa-
tion which is non-malleably attached to a ciphertext C and restricts the decryption of C
to that context, i.e., decryption with a label different from the one used for encryption
will fail.

Semantically Secure (t, n)-Threshold Homomorphic Cryptosystem. Such a scheme
consists of five algorithms (TKGen,TEnc,PDec,VfDec,TDec). The key generation



algorithm TKGen, on input (G, q, g, t, n), outputs a public key tpk and n partial key
pairs (tpk1, tsk1), . . . , (tpkn, tskn).

The encryption algorithm TEnc, on input a public key tpk and a message m ∈ G,
outputs a ciphertext C. The partial decryption algorithm PDec, on input (tski, C), out-
puts a decryption share di and a proof πdi . The decryption share verification algo-
rithm VfDec, on input (tpki, C, di, πdi), verifies that di is correct w.r.t. C and tpki.
The threshold decryption algorithm TDec, on input C and k ≥ t+ 1 decryption shares
di1 , . . . , dik , outputs a plaintext m or ⊥.

Our protocol will require that the threshold scheme has an appropriate homomorphic
property, namely that there is an efficient operation � on ciphertexts such that, if C1 ∈
TEnctpk(m1) and C2 ∈ TEnctpk(m2), then C1 � C2 ∈ TEnctpk(m1 ·m2). We will
also use exponents to denote the repeated application of �, e.g., C2

1 to denote C1�C1.
Further, the scheme needs to be sound and semantically secure. In a nutshell, the

former means that for a certain set of public keys tpk, tpk1, . . . , tpkn a ciphertext C
can be opened only in an unambiguous way. The latter property of semantic security
can be seen as an adaptation of the normal semantic security definition to the threshold
context, where the adversary can now have up to t of the partial secret keys. In our full
paper [12], we provide a detailed description of those properties, which are an adaption
of the definitions by Cramer, Damgård, and Nielsen [20] for semantically secure thresh-
old homomorphic encryption. The full paper further contains a construction based on
the ElGamal cryptosystem that achieves our security notion.

Existentially Unforgeable Signature Scheme. By (SKGen,Sign,Vf) we denote such
schemes, with (spk, ssk)← SKGen(1τ ) being the key generation algorithm. For sign-
ing of a message m ∈ {0, 1}∗, we write σ ← Signssk(m), and for verification we write
b← Vfspk(m,σ), where the output b will be either 1 or 0, indicating success or failure.

Simulation-Sound Zero-Knowledge Proof System. We require a non-interactive zero-
knowledge (NIZK) proof system to prove relations among different ciphertexts. We use
an informal notation for this proof system, e.g., π ← NIZK{(m) : C1 = TEnctpk(m)∧
C2 = Encepk(m)} (ctxt) denotes the generation of a non-interactive zero-knowledge
proof that is bound to a certain context ctxt and proves that C1 and C2 are both proper
encryptions of the same messagem under the public key tpk and epk for the encryption
scheme TEnc and Enc, respectively. We require the proof system to be simulation-
sound [45] and zero-knowledge. In the full paper [12], we give concrete realizations of
the NIZK proofs that we require in our protocols assuming specific instantiations of the
encryption schemes.

4 Our TPASS Protocol

The core of our construction bears a lot in common with that of Bagherzandi et al. [3],
which however does rely on trusted user storage and is not proven to be UC secure.
We first summarize the idea of their construction and then explain the changes and
extensions we made to remove the trusted storage assumption and achieve UC security
according to our TPASS functionality.

The high-level idea of Bagherzandi et al. [3] is depicted in Figure 1 and works
as follows: In the setup protocol, the user generates keys for a threshold encryption



Setup : U(p,K ,S) with public parameters G, q, g, t, n
User generates threshold keys (tpk, (tpki, tski)i=1,...,n)← TKGen(G, q, g, t, n),
encrypts p and K : Cp ← TEnctpk(p) , CK ← TEnctpk(K ), and
sends (Cp, CK , tpk, tski) to each server Si in S.

Retrieve : U(p′,S, tpk) 
 (S1(Cp, CK , tpk, tsk1), . . . ,Sn(Cp, CK , tpk, tskn))

User U : Cp′ ← TEnctpk(p
′), send Cp′ to each server in S

Server Si: compute Ctest,i ← (Cp � (Cp′)−1)ri for random ri, send Ctest,i to U
User U : compute Ctest ←

⊙n
i=1 Ctest,i, send Ctest to each server in S

Server Si: compute di ← PDectski(Ctest � CK), send di to U
User U : output K′ ← TDec(Ctest � CK , d1, . . . , dn)

Fig. 1. Construction outline of the Bagherzandi et al. protocol. For the sake of simplicity, we
slightly deviate from the notation introduced in Section 3 and omit the additional output of πdi

of PDec.

scheme, encrypts both the password p and the key K using the generated public key,
and sends these encryptions and generated decryption key shares to all n servers in S. In
addition to his username and password, the user here needs to remember the main public
key tpk of the threshold scheme and the servers he ran the setup with. In the retrieve
protocol, the user encrypts his password attempt p′ under tpk and sends the ciphertext
to all the servers in S. The servers now compute an encryption of the password quotient
p/p′ and combine it with the encryption of the key K . With their help, the user decrypts
this combined encryption. If p = p′, this will decrypt to 1 the original key K , otherwise
it will decrypt to a random value.

It is easy to see that the user must correctly remember tpk and the exact set of
servers, as he sends out an encryption of his password attempt p′ under tpk. If tpk can
be tampered with and changed so that the adversary knows the decryption key, then
the adversary can decrypt p′. (Bagherzandi et al. [3] actually encrypt gp

′
, so that the

malicious servers must still perform an offline attack to obtain p′ itself. However, given
the typical low entropy of passwords, the password p′ can be considered as leaked.)

Retrieve : U(p′,S′) 
 (S1(Cp, CK , tpk, tsk1), . . . ,Sn(Cp, CK , tpk, tskn))

User U : request ciphertexts and threshold public key from all servers in S′

Server Si: send (Cp, CK , tpk)i to U
User U : if all servers sent the same (Cp, CK , tpk), compute Ctest ← (Cp � TEnctpk(1/p

′))r

for random r and send Ctest to each server in S′

Server Si: compute Ctest,i ← (Ctest)
ri for random ri, send Ctest,i to U

User U : compute C′test ←
⊙n

i=1 Ctest,i, send C′test to each server in S′

Server Si: compute di ← PDectski(C
′
test), send di to U

User U : if TDec(C′test, d1, . . . , dn) = 1, send d1, . . . , dn to each server in S′

Server Si: if TDec(C′test, d1, . . . , dn) = 1, compute d′i ← PDectski(CK), send d′i to U
User U : output K′ ← TDec(CK , d

′
1, . . . , d

′
n)

Fig. 2. Construction outline of our retrieval protocol (setup idea as in Figure 1).



Removing the Trusted User-Storage Requirement. Roughly, we change the retrieval
protocol such that the user never sends out an encryption of his password attempt p′,
but instead sends an encryption of the randomized quotient p/p′. Thus, if the user
mistakenly talks to adversarial servers instead of his true friends, these servers can try
a guess at p′, but will not be able to learn anything more. Our retrieval protocol begins
with the user requesting the servers in S′ (which may or may not be a subset of S)
to send him the ciphertexts and threshold public key he allegedly used in setup. If all
servers respond with the same information, the user takes the received encryption of p
and uses the homomorphism to generate a randomized encryption of p/p′. The servers
then jointly decrypt this ciphertext. If it decrypts to 1, i.e., the two passwords match,
then the servers send the user their decryption shares for the ciphertext encrypting the
key K . By separating the password check and the decryption of K , the user can actually
double-check whether his password was correct and whether he reconstructed his real
key K .

Making the Protocol UC-Secure. The second main difference of our protocol is its UC
security, which requires further mechanisms and steps added to the construction out-
lined in Figure 2. We briefly summarize the additional changes, the detailed description
of our protocol follows later. First, in the security proof we need to extract p, p′, and
K from the protocol messages. This is achieved through a common reference string
(CRS) that contains the public key PK of a semantically secure encryption scheme and
the parameters for a non-interactive zero-knowledge (NIZK) proof system. Values that
need be extractable are encrypted under PK and NIZK proofs are added to ensure that
the correct value is encrypted. Further, all t+ 1 servers explicitly express their consent
with previous steps by signing all messages. The user collects, verifies, and forwards
these signatures, so that all servers can verify the consent of all other servers. Some of
these ideas were discussed by Bagherzandi et al., but only for a specific instantiation
of ElGamal encryption and without aiming for full-blown UC security. Our protocol,
on the other hand, is based on generic building blocks and securely implements the UC
functionality presented in Section 2.

How to Remember the Servers. For the retrieve protocol, we assume that the input of
the user contains t+1 server names. In practice, however, the user might not remember
these names. This is an orthogonal issue and there are a number of ways to deal with it.
For instance, if the user remembers a single server name, he can contact that server and
ask to be reminded of the names of all n servers. The user can then decide with which
t+ 1 of these servers to run the retrieve protocol. The user could even query more than
one server and see whether they agree on the full server list. Again, the crucial point is
that the security of our protocol does not rely on remembering the t + 1 server names
correctly, as the security of the password p′ is not harmed, even when the user runs the
retrieve protocol with t+ 1 malicious servers.

A Note on Robustness. As discussed in Section 2, the restriction to run the retrieve
protocol with exactly t + 1 servers rather stems from the complexity that robustness
would add to our ideal functionality, than from an actual protocol limitation. With asyn-
chronous communication channels, one can achieve only a very limited form of robust-
ness where the protocol succeeds if there are enough honest players and the adversary,



who controls the network, lets the honest players communicate. Conceptually, one could
add such limited robustness by running the retrieve protocol with all n servers and in
each step continue the protocol only with the first k servers that sent valid response,
where t + 1 ≤ k ≤ n. Bagherzandi et al. [3] handle robustness similarly by running
the protocol with all n servers, mark servers that cause the protocol to fail as corrupt,
and restart the protocol with at least t + 1 servers that appear to be good. To obtain
better robustness guarantees, one must impose stronger requirements on the network
such as assuming synchronous and broadcast channels, as is often done in the threshold
cryptography literature [1, 2, 20]. With synchronous channels, protocols can achieve a
more meaningful version of robustness, where it is ensured that inputs of all honest
parties will be included in the computation and termination of the protocol is guaran-
teed when sufficient honest parties are present [39]. However, in practice, networks are
rarely synchronous, and it is known that the properties guaranteed in a synchronous
world cannot simultaneously be ensured in an asynchronous environment [21, 6]. Thus,
given the practical setting of our protocol, we prefer the more realistic assumptions over
modeling stronger (but unrealistic) robustness properties.

4.1 Detailed Description of our TPASS Protocol

In our protocol description, when we say that a party sends a message m as part of the
setup or retrieve protocol, the party actually sends a message (SETUP, sid , ssid , i,m) or
(RETRIEVE, sid , rsid , i,m), respectively, where i is a sequence number corresponding
to the step number in the respective part of the protocol. Each party will only accept the
first message that it receives for a specific (sub-)session identifier and sequence number.
All subsequent messages from the same party for the same step of the protocol will be
ignored.

Each party locally maintains state information throughout the different steps of one
protocol execution; servers Si additionally maintain a persistent state variable sti[sid ]
associated with the username sid = uid that is common to all executions. Before start-
ing a new execution of the setup or retrieve protocol, we assume that the parties use
standard techniques [16, 4] to agree on a fresh and unique sub-session identifier ssid ′

and rsid ′, respectively, that is given as an input to the protocol. Each party then only
accepts messages that include a previously established sub-session identifier, messages
with unknown identifiers will be ignored. We also assume that the sub-session identi-
fiers ssid and rsid explicitly contain the identities of the communicating servers S and
S′, respectively. Using the techniques described in [4], the sub-session identifier would
actually also contain the identifier of the user. However, as we do not assume that users
have persistent public keys, we could not verify whether a certain user indeed belongs
to a claimed identifier, and thus we discard that part of the output.

Setup Protocol. We assume that the system parameters contain a group G = 〈g〉 of
order q that is a τ -bit prime, and that the password p and the key K can be mapped
into G. In the following we assume that p and K are indeed elements of G. We further
assume that each server Si has a public key (epki, spki), where epki is a public en-
cryption key for the CCA2-secure encryption scheme generated by KGen2 and spki is



a signature verification key generated by SKGen. We also assume a public-key infras-
tructure where servers can register their public keys, modeled by the ideal functionality
FCA by Canetti [17]. Moreover, we require a common reference string, retrievable via
functionality FCRS , containing a public key PK ∈ G of the CPA-secure public-key en-
cryption scheme, distributed as if generated through KGen, but to which no party knows
the corresponding secret key.

The user U , on input (SETUP, sid , ssid , p,K ) with ssid = (ssid ′,S), runs the fol-
lowing protocol with all servers in S. Whenever a check fails for a party (either the user
or one of the servers), the party aborts the protocol without any output.

Step S1. The user U sets up secret key shares and note:
(a) Query functionalityFCRS to obtain PK and, for each Si occurring in S, queryFCA

to obtain Si’s public keys (epki, spki).
(b) Run (tpk, tpk1, . . . , tpkn, tsk1, . . . , tskn)← TKGen(G, q, g, t, n) and encrypt the

password p and the key K under both tpk and PK , i.e., compute

Cp ← TEnctpk(p) , CK ← TEnctpk(K ) , C̃p ← EncPK (p) , C̃K ← EncPK (K ).

(c) Generate a non-interactive zero-knowledge proof π0 that the ciphertexts encrypt the
same password and key, bound to ctxt = (sid , ssid , tpk, tpk, Cp, CK , C̃p, C̃K),
where tpk = (tpk1, . . . , tpkn):

π0 ← NIZK{(p,K ) : Cp = TEnctpk(p) ∧ CK = TEnctpk(K ) ∧

C̃p = EncPK (p) ∧ C̃K = EncPK (K ) } (ctxt) .

(d) Set note = (ssid , tpk, tpk, Cp, CK , C̃p, C̃K , π0).
(e) Compute CS,i ← Enc2epki(tski, (sid ,note)) and send a message (note, CS,i) to

server Si for i = 1, . . . , n.

Step S2. Each server Si checks & confirms user message:
(a) Receive (note, CS,i) with note = (ssid , tpk, tpk, Cp, CK , C̃p, C̃K , π0). Check

that the variable sti[sid ] has not been initiated yet. Check that the note is valid, i.e.,
that the proof π0 is correct and that the sets tpk and S have the same cardinality
(recall that S is included in ssid ). Further, check that Dec2eski(CS,i, (sid ,note))
decrypts to a valid threshold decryption key tski w.r.t. the received public keys.

(b) Sign sid and note as σ1,i ← Signsski(sid ,note) and send the signature σ1,i to U .

Step S3. The user U verifies & forwards server signatures:
(a) When valid signatures (σ1,1, . . . , σ1,n) are received from all servers Si in S, for-

ward them to all servers in S.

Step S4. Each server Si verifies & confirms server consent:
(a) Upon receiving a message (σ1,1, . . . , σ1,n) from U , check that all signatures σ1,i

for i = 1, . . . , n are valid w.r.t. the local note .
(b) Store necessary information in the state sti[sid ]← (note, tski).
(c) Compute σ2,i ← Signsski((sid ,note), success), send σ2,i to U , and output the

tuple (SETUP, sid , ssid).

Step S5. The user U outputs the servers’ acknowledgments:
(a) Whenever receiving a valid signature σ2,i from a server Si in S, output (SETUP, sid ,

ssid ,Si).



Retrieval Protocol. The user U ′ on input (RETRIEVE, sid , rsid , p′) where rsid =
(rsid ′,S′) runs the following retrieval protocol with the list of t+1 servers specified in
S′. Whenever a check fails for a party, the party sends a message (RETRIEVE, sid , rsid ,
fail) to all other parties and aborts with output (DELIVER2S, sid , rsid , fail) if the
party is a server, or with output (DELIVER2U, sid , rsid ,⊥) if it is the user. Further,
whenever a party receives a message (RETRIEVE, sid , rsid , fail), it aborts with the
same respective outputs.

Step R1. The user U ′ creates ephemeral encryption key & requests notes:
(a) Query FCRS to obtain PK and, for each Si in S′, query FCA to obtain Si’s public

keys (epki, spki).
(b) Generate a key pair (epkU , eskU ) ← KGen2(1τ ) for the CCA2-secure encryption

scheme that will be used to securely obtain the shares of the keyK from the servers.
(c) Encrypt the password attempt p′ under the CRS as C̃p′ ← EncPK (p′).

(d) Request the note from each server by sending (epkU , C̃p′) to each server Si ∈ S′.

Step R2. Each server Si retrieves & sends signed note:
(a) Upon receiving a retrieve request (epkU , C̃p′), check if a record sti[sid ] = (note,

tski) exists. Parse note = (ssid , tpk, tpk, Cp, CK , C̃p, C̃K , π0) and check that all
servers in S′ also occur in S. (Recall, that sid and rsid are contained in the header
of the message, S′ is included in rsid and S in ssid .)

(b) Query FCA to obtain the public keys (epkj , spkj) of all the other servers Sj in S′.
(c) Compute σ4,i ← Signsski(sid , rsid , epkU , C̃p′ ,note) and send (note, σ4,i) back

to the user.

Step R3. The user U ′ verifies & distributes signatures:
(a) Upon receiving the first message (notei, σ4,i) from a server Si ∈ S′, verify the

validity of σ4,i w.r.t. the previously sent values, and parse notei as (ssid , tpk, tpk,
Cp, CK , C̃p, C̃K , π0). Check that all servers in S′ occur in S, that the lists tpk and
S are of equal length, and that the proof π0 is valid w.r.t. sid . If all checks succeed,
set note ← notei.

(b) Upon receiving any subsequent message (notej , σ4,j) from Sj in S′, check that σ4,j
is valid for the same note the first server had sent, i.e., verify notej = note . Proceed
only after (notej , σ4,j) messages from all servers Sj ∈ S′ have been received and
processed.

(c) Send (σ4,j)Sj∈S′ to all servers in S′.

Step R4. Each server Si proceeds or halt:
(a) Upon receiving a message (σ4,j)Sj∈S′ from the user, verify the validity of every

signature σ4,j w.r.t. to the locally stored note . Output (RETRIEVE, sid , rsid) to the
environment.

(b) Upon input (PROCEED, sid , rsid , a) from the environment, check that a = allow,
otherwise abort the protocol.

(c) Compute a signature σ5,i ← Signsski(rsid , allow) and send σ5,i to U ′.

Step R5. The user U ′ computes the encrypted password quotient:



(a) Upon receiving a message σ5,i from a server Si in S′, check that σ5,i is a valid sig-
nature on (rsid , allow). Proceed only after a valid signature σ5,i has been received
from all servers Si ∈ S′.

(b) Use the homomorphic encryption scheme to encrypt p′ and entangle it with the
ciphertextCp from note , which supposedly encrypts the password p. That is, select
a random r ←R Zq and compute Ctest ← (Cp � TEnctpk(1/p

′))r.

(c) Generate a proof that Ctest and C̃p′ are based on the same password attempt p′.
To prevent man-in-the-middle attacks, the proof is bound to ctxt = (sid , rsid ,

note, epkU , Ctest, C̃p′) which in particular includes the values epkU , Ctest, and C̃p′
provided by the user so far:

π1 ← NIZK{(p′, r) : Ctest = (Cp �TEnctpk(1/p
′))r ∧ C̃p′ = EncPK (p′)}(ctxt)

(d) Send a message (Ctest, π1, (σ5,j)Sj∈S′) to all servers in S′.

Step R6. Each server Si re-randomizes the quotient encryption:
(a) Upon receiving a message (Ctest, π1, (σ5,j)Sj∈S′), verify the proof π1 and validate

all signatures σ5,j .
(b) Choose ri ←R Zq , compute the re-randomized ciphertext C ′test,i ← (Ctest)

ri and
the proof of correctness π2,i ← NIZK{(ri) : C ′test,i = (Ctest)

ri}. Sign the cipher-
text together with the session information as σ6,i ← Signsski(sid , rsid , Ctest, C̃p′ ,
C ′test,i). Send the message (C ′test,i, π2,i, σ6,i) to U ′.

Step R7. The user U ′ verifies & distributes the re-randomized quotient encryp-
tions:
(a) Upon receiving (C ′test,j , π2,j , σ6,j) from all servers Sj in S′, where the proof π2,i

and the signature σ6,i are valid w.r.t. the previously sent Ctest, send (C ′test,j , π2,j ,
σ6,j)Sj∈S′ to all servers in S′.

Step R8. Each server Si computes combined quotient encryption & sends its de-
cryption share:
(a) Upon receiving t+1 tuples (C ′test,j , π2,j , σ6,j)Sj∈S′ from the user, verify all proofs

π2,j and all signatures σ6,j .
(b) Derive C ′test ←

⊙
Sj∈S′ C ′test,j and compute the verifiable decryption share of C ′test

as (di, πdi)← PDectski(C
′
test).

(c) Sign the share as σ7,i ← Signsski(rsid , C
′
test, di) and send (di, πdi , σ7,i) to U ′.

Step R9. The user U ′ checks if p = p′ & distributes shares:
(a) When receiving a tuple (di, πdi , σ7,i) from a server Si in S′, verify that the signature

σ7,i and the proof πdi for the decryption share are valid w.r.t. the locally computed
C ′test ←

⊙
Sj∈S′ C ′test,j .

(b) After having received correct decryption shares from all t + 1 servers in S′, check
whether the passwords match by verifying that TDec(C ′test, {dj}Sj∈S′) = 1.

(c) Send all decryption shares, proofs, and signatures, (dj , πdj , σ7,j)Sj∈S′ to all servers
Si in S′.



Step R10. Each servers Si checks if p = p′ & sends decryption share for K:

(a) Upon receiving t + 1 tuples (dj , πdj , σ7,j)Sj∈S′ , verify that all proofs πdj and
signatures σ7,j are valid w.r.t. the locally computed C ′test.

(b) Check whether TDec(C ′test, {dj}Sj∈S′) = 1.
(c) Compute the decryption share for the key K as (d′i, πd′i)← PDectski(CK).
(d) Compute the ciphertextCR,i ← Enc2epkU ((d

′
i, πd′i), (epkU , spki)) using the user’s

public key and the own signature public key as label, generate σ8,i ← Signsski(rsid ,
CR,i), and send (CR,i, σ8,i) to the user. Output (DELIVER2S, sid , rsid , success).

Step R11. The user U ′ reconstructs K:

(a) Upon receiving a pair (CR,i, σ8,i) from a server Si in S′, check that σ8,i is valid
and, if so, decrypt CR,i to (d′i, πd′i) ← Dec2eskU (CR,i, (epkU , spki)). Verify the
validity of d′i by verifying the proof πd′i w.r.t. CK taken from note .

(b) Once all t + 1 valid shares have been received, restore the key K ′ ← TDec(CK ,
{d′j}Sj∈S′) and output (DELIVER2U, sid , rsid ,K ′).

4.2 Security and Efficiency

We now provide the results of our security analysis. The proof of Theorem 1 is given in
the full paper [12].

Theorem 1. If (TKGen,TEnc,PDec,VfDec,TDec) is a semantically secure (t, n)-
threshold homomorphic cryptosystem, (KGen,Enc,Dec) is a CPA-secure encryption
scheme, (KGen2,Enc2,Dec2) is a CCA2-secure labeled encryption scheme, the sig-
nature scheme (SKGen,Sign,Vf) is existentially unforgeable, and a simulation-sound
concurrent zero-knowledge proof system is deployed, then our Setup and Retrieve pro-
tocols described in Section 4 securely realize F in the FCA and FCRS -hybrid model.

When instantiated with the ElGamal based encryption scheme for (TKGen,TEnc,
PDec,VfDec,TDec) and (KGen,Enc,Dec) (as described in the full version [12]), with
the ElGamal encryption scheme with Fujisaki-Okamoto padding [27, 30] for (KGen2,
Enc2,Dec2), with Schnorr signatures [46, 42] for (SKGen,Sign,Vf), and with the Σ-
protocols described in the full paper [12], then by the UC composition theorem and the
security of the underlying building blocks we have the following corollary:

Corollary 1. The Setup and Retrieve protocols described in Section 4 and instanti-
ated as described above, securely realize F under the DDH-assumption for the group
generated by GGen in the random-oracle and the FCA,FCRS -hybrid model.

Efficiency Analysis: With the primitives instantiated as for Corollary 1, the user has to
do 5n + 15 exponentiations in G for the Setup protocol and 14t + 24 exponentiations
in the Retrieve protocol. The respective figures for each server are n+ 18 and 7t+ 28.
Counting hash values as half a group element, setup requires four rounds of communi-
cation with n(2.5n + 18.5) total transmitted group elements, while retrieval takes ten
rounds with (t+ 1)(36.5 + 2.5n+ 10.5(t+ 1)) elements.



Acknowledgements

This research was supported by the European Community’s Seventh Framework Pro-
gramme through grant PERCY (agreement no. 321310). Anna Lysyanskaya is sup-
ported by NSF awards 0964379 and 1012060 and by IBM and Google faculty awards.

References

1. M. Abe, S. Fehr. Adaptively Secure Feldman VSS and Applications to Universally-
Composable Threshold Cryptography. CRYPTO 2004.

2. J. Almansa, I. Damgård, J. B. Nielsen. Simplified Threshold RSA with Adaptive and Proac-
tive Security. EUROCRYPT 2006.

3. A. Bagherzandi, S. Jarecki, N. Saxena, Y. Lu. Password-protected secret sharing. ACM
CCS 2011.

4. B. Barak, Y. Lindell, T. Rabin. Protocol initialization for the framework of universal com-
posability. Cryptology ePrint Archive, Report 2004/006, 2004.

5. M. Bellare, P. Rogaway. Random oracles are practical: A paradigm for designing efficient
protocols. ACM CCS 1993.

6. M. Ben-Or, R. Canetti, O. Goldreich. Asynchronous secure computation. STOC 1993.
7. X. Boyen. Hidden credential retrieval from a reusable password. ASIACCS 2009
8. W. E. Burr, D. F. Dodson, E. M. Newton, R. A. Perlner, W. T. Polk, S. Gupta, E. A. Nabbus.

Electronic authentication guideline. NIST Special Publication 800-63-1, 2011.
9. J. Brainard, A. Juels, B. S. Kaliski Jr., M. Szydlo. A new two-server approach for authenti-

cation with short secrets. USENIX 2003.
10. J. Camenisch, A. Kiayias, M. Yung. On the portability of generalized Schnorr proofs. EU-

ROCRYPT 2009.
11. J. Camenisch, S. Krenn, V. Shoup. A framework for practical universally composable zero-

knowledge protocols. ASIACRYPT 2011.
12. J. Camenisch, A. Lehmann, A Lysyanskaya, G. Neven. Memento: how to reconstruct your

secrets from a single password in a hostile environment. Cryptology ePrint Archive, Report
2014/429, 2014.

13. J. Camenisch, A. Lysyanskaya, G. Neven. Practical yet universally composable two-server
password-authenticated secret sharing. ACM CCS 2012.

14. J. Camenisch, V. Shoup. Practical verifiable encryption and decryption of discrete loga-
rithms. CRYPTO 2003.

15. J. Camenisch, M. Stadler. Efficient group signature schemes for large groups (extended
abstract). CRYPTO 1997.

16. R. Canetti. Universally composable security: A new paradigm for cryptographic protocols.
FOCS 2001.

17. R. Canetti. Universally composable signature, certification, and authentication. 17th Com-
puter Security Foundations Workshop. IEEE Computer Society, 2004.

18. R. Canetti, S. Halevi, J. Katz, Y. Lindell, P. D. MacKenzie. Universally composable
password-based key exchange. EUROCRYPT 2005.

19. R. Canetti, T. Rabin. Universal composition with joint state. CRYPTO 2003.
20. R. Cramer, I. Damgård, J. B. Nielsen. Multiparty computation from threshold homomorphic

encryption. EUROCRYPT 2001.
21. B. Chor, L. Moscovici. Solvability in asynchronous environments. FOCS 1989.
22. I. Damgård, M. Keller, E. Larraia, V. Pastro, P. Scholl, N. Smart. Practical covertly secure

MPC for dishonest majority—or: Breaking the SPDZ limits. ESORICS 2013.



23. I. Damgård, J. Nielsen. Universally composable efficient multiparty computation from
threshold homomorphic encryption. CRYPTO 2013.

24. I. Damgård, V. Pastro, N. Smart, S. Zakarias. Multiparty computation from somewhat ho-
momorphic encryption. CRYPTO 2012.

25. Y. Desmedt, Y. Frankel. Threshold cryptosystems. CRYPTO 1989.
26. M. Di Raimondo, R. Gennaro. Provably secure threshold password-authenticated key ex-

change. EUROCRYPT 2003.
27. T. ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms.

CRYPTO 1984.
28. A. Fiat, A. Shamir. How to prove yourself: Practical solutions to identification and signature

problems. CRYPTO 1986.
29. W. Ford, B. S. Kaliski Jr. Server-assisted generation of a strong secret from a password.

WETICE 2000, IEEE Computer Society, 2000.
30. E. Fujisaki, T. Okamoto. Secure integration of asymmetric and symmetric encryption

schemes. CRYPTO 1999.
31. J. A. Garay, P. D. MacKenzie, K. Yang. Strengthening zero-knowledge protocols using

signatures. EUROCRYPT 2003.
32. D. Goodin. Why passwords have never been weaker—and crackers have never been stronger.

Ars Technica, 2012.
33. J. Gosney. Password Cracking HPC. Passwordsˆ12 Conference, 2012.
34. C. Herley, P. C. van Oorschot. A research agenda acknowledging the persistence of pass-

words. IEEE Security & Privacy, 2012.
35. C. Herley, P. C. van Oorschot, A. S. Patrick. Passwords: If we’re so smart, why are we still

using them? (panel). Financial Cryptography 2009.
36. D. P. Jablon. Password authentication using multiple servers. CT-RSA 2001.
37. B. Kaliski. PKCS #5: Password-Based Cryptography Specification. IETF RFC 2898, 2000.
38. J. Katz, P. D. MacKenzie, G. Taban, V. D. Gligor. Two-server password-only authenticated

key exchange. ACNS 2005.
39. J. Katz, U. Maurer, B. Tackmann, V. Zikas. Universally Composable Synchronous Compu-

tation. TCC 2013.
40. P. D. MacKenzie, T. Shrimpton, M. Jakobsson. Threshold password-authenticated key ex-

change. CRYPTO 2002.
41. P. D. MacKenzie, K. Yang. On simulation-sound trapdoor commitments. EURO-

CRYPT 2004.
42. D. Pointcheval, J. Stern. Security proofs for signature schemes. EUROCRYPT 1996.
43. N. Provos, D. Mazières. A Future-Adaptable Password Scheme. USENIX 1999.
44. RSA, The Security Division of EMC. New RSA innovation helps thwart “smash-and-grab”

credential theft. Press release, 2012.
45. A. Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext

security. FOCS 1999.
46. C.-P. Schnorr. Efficient signature generation by smart cards. J. Cryptol., 4(3):161–174, 1991.
47. M. Szydlo, B. S. Kaliski Jr. Proofs for two-server password authentication. CT-RSA 2005.


