How to Eat Your Entropy and Have it Too —
Optimal Recovery Strategies for Compromised
RNGs

Yevgeniy Dodis'*, Adi Shamir?, Noah Stephens-Davidowitz', and Daniel
Wichs?**

! Dept. of Computer Science, New York University.
{ dodis@cs.nyu.edu, noahsd@gmail.com }
2 Dept. of Computer Science and Applied Mathematics, Weizmann Institute.
adi.shamir@weizmann.ac.il
3 Dept. of Computer Science, Northeastern University.
wichs@ccs.neu.edu

Abstract. We study random number generators (RNGs) with input,
RNGs that regularly update their internal state according to some aux-
iliary input with additional randomness harvested from the environment.
We formalize the problem of designing an efficient recovery mechanism
from complete state compromise in the presence of an active attacker. If
we knew the timing of the last compromise and the amount of entropy
gathered since then, we could stop producing any outputs until the state
becomes truly random again. However, our challenge is to recover within
a time proportional to this optimal solution even in the hardest (and
most realistic) case in which (a) we know nothing about the timing of
the last state compromise, and the amount of new entropy injected since
then into the state, and (b) any premature production of outputs leads to
the total loss of all the added entropy used by the RNG. In other words,
the challenge is to develop recovery mechanisms which are guaranteed to
save the day as quickly as possible after a compromise we are not even
aware of. The dilemma is that any entropy used prematurely will be lost,
and any entropy which is kept unused will delay the recovery.

After formally modeling RNGs with input, we show a nearly optimal
construction that is secure in our very strong model. Our technique is
inspired by the design of the Fortuna RNG (which is a heuristic RNG
construction that is currently used by Windows and comes without any
formal analysis), but we non-trivially adapt it to our much stronger ad-
versarial setting. Along the way, our formal treatment of Fortuna enables
us to improve its entropy efficiency by almost a factor of two, and to show
that our improved construction is essentially tight, by proving a rigorous
lower bound on the possible efficiency of any recovery mechanism in our
very general model of the problem.

Keywords: Random number generators, RNGs with input

* Research partially supported by gifts from VMware Labs and Google, and NSF
grants 1319051, 1314568, 1065288, 1017471.
** Research partially supported by gift from Google and NSF grants 1347350, 1314722.

1 Introduction

Randomness is essential in many facets of cryptography, from the generation
of long-term cryptographic keys, to sampling local randomness for encryption,
zero-knowledge proofs, and many other randomized cryptographic primitives. As
a useful abstraction, designers of such cryptographic schemes assume a source
of (nearly) uniform, unbiased, and independent random bits of arbitrary length.
In practice, however, this theoretical abstraction is realized by means of a Ran-
dom Number Generator (RNG), whose goal is to quickly accumulate entropy
from various physical sources in the environment (such as keyboard presses or
mouse movement) and then convert it into the required source of (pseudo) ran-
dom bits. We notice that a highly desired (but, alas, rarely achieved) property
of such RNGs is their ability to quickly recover from various forms of state
compromise, in which the current state S of the RNG becomes known to the at-
tacker, either due to a successful penetration attack, or via side channel leakage,
or simply due to insufficient randomness in the initial state. This means that
the state S of practical RNGs should be periodically refreshed using the above-
mentioned physical sources of randomness I. In contrast, the simpler and much
better-understood theoretical model of pseudorandom generators (PRGs) does
not allow the state to be refreshed after its initialization. To emphasize this dis-
tinction, we will sometimes call our notion an “RNG with input”, and notice that
virtually all modern operating systems come equipped with such an RNG with
input; e.g., /dev/random [21] for Linux, Yarrow [14] for MacOs/iOS/FreeBSD
and Fortuna [10] for Windows [9].

Unfortunately, despite the fact that they are widely used and often referred to
in various standards [2,8,13,16], RNGs with input have received comparatively
little attention from theoreticians. The two notable exceptions are the works of
Barak and Halevi [1] and Dodis et al. [5]. The pioneering work of [1] emphasized
the importance of rigorous analysis of RNGs with input and laid their first
theoretical foundations. However, as pointed out by [5], the extremely clean and
elegant security model of [1] ignores the “heart and soul” issue of most real-
world RNGs with input, namely, their ability to gradually “accumulate” many
low-entropy inputs I into the state S at the same time that they lose entropy due
to premature use. In particular, [5] showed that the construction of [1] (proven
secure in their model) may always fail to recover from state compromise when
the entropy of each input I,. .., I, is sufficiently small, even for arbitrarily large
q.

Motivated by these considerations, Dodis et al. [5] defined an improved secu-
rity model for RNGs with input, which explicitly guaranteed eventual recovery
from any state compromise, provided that the collective fresh entropy of inputs
I,...,I, crosses some security threshold +*, irrespective of the entropies of in-
dividual inputs I;. In particular, they demonstrated that Linux’s /dev/random
does not satisfy their stronger notion of robustness (for similar reasons as the
construction of [1]), and then constructed a simple scheme which is provably
robust in this model. However, as we explain below, their robustness model did

not address the issue of efficiency of the recovery mechanism when the RNG is
being continuously used after the compromise.

The Premature Next Problem. In this paper, we extend the model of [5]
to address some additional desirable security properties of RNGs with input not
captured by this model. The main such property is resilience to the “premature
next attack”. This general attack, first explicitly mentioned by Kelsey, Schneier,
Wagner, and Hall [15], is applicable in situations in which the RNG state S
has accumulated an insufficient amount of entropy e (which is very common
in bootup situations) and then must produce some outputs R via legitimate
“next” calls in order to generate various system keys. Not only is this R not
fully random (which is expected), but now the attacker can potentially use R
to recover the current state S by brute force, effectively “emptying” the e bits
of entropy that S accumulated so far. Applied iteratively, this simple attack,
when feasible, can prevent the system from ever recovering from compromise,
irrespective of the total amount of fresh entropy injected into the system since
the last compromise.

At first, it might appear that the only way to prevent this attack is by
discovering a sound way to estimate the current entropy in the state and to use
this estimate to block the premature next calls. This is essentially the approach
taken by Linux’s /dev/random and many other RNGs with input. Unfortunately,
sound entropy estimation is hard or even infeasible [10,20] (e.g., [5] showed simple
ways to completely fool Linux’s entropy estimator). This seems to suggest that
the modeling of RNGs with input should consider each premature next call as a
full state compromise, and this is the highly conservative approach taken by [5]
(which we will fix in this work).

Fortuna. Fortunately, the conclusion above is overly pessimistic. In fact, the
solution idea already comes from two very popular RNGs mentioned above,
whose designs were heavily affected by the desire to overcome the premature
next problem: Yarrow (designed by Schneier, Kelsey and Ferguson [14] and used
by MacOS/iOS/FreeBSD), and its refinement Fortuna (subsequently designed
by Ferguson and Schneier [10] and used by Windows [9]). The simple but brilliant
idea of these works is to partition the incoming entropy into multiple entropy
“pools” and then to cleverly use these pools at vastly different rates when pro-
ducing outputs, in order to guarantee that at least one pool will eventually accu-
mulate enough entropy to guarantee security before it is “prematurely emptied”
by a next call. (See Section 4 for more details.)

Ferguson and Schneier provide good security intuition for their Fortuna “pool
scheduler” construction, assuming that all the RNG inputs I, ..., I, have the
same (unknown) entropy and that each of the pools can losslessly accumulate
all the entropy that it gets. (They suggest using iterated hashing with a cryp-
tographic hash function as a heuristic way to achieve this.) In particular, if ¢ is
the upper bound on the number of inputs, they suggest that one can make the
number of pools P = log, ¢, and recover from state compromise (with premature
next!) at the loss of a factor O(log ¢) in the amount of fresh entropy needed.

Our Main Result. Inspired by the idea of Fortuna, we formally extend the
prior RNG robustness notion of [5] to robustness against premature next. Unlike
Ferguson and Schneier, we do so without making any restrictive assumptions
such as requiring that the entropy of all the inputs I; be constant. (Indeed,
these entropies can be adversarily chosen, as in the model of [5], and can be
unknown to the RNG.) Also, in our formal and general security model, we do
not assume ideal entropy accumulation or inherently rely on cryptographic hash
functions. In fact, our model is syntactically very similar to the prior RNG model
of [5], except: (1) a premature next call is not considered an unrecoverable state
corruption, but (2) in addition to the (old) “entropy penalty” parameter v*, there
is a (new) “time penalty” parameter 8 > 1, measuring how long it will take to
recover from state compromise relative to the optimal recovery time needed to
receive v* bits of fresh entropy. (See Figures 2 and 3.)

To summarize, our model formalizes the problem of designing an efficient
recovery mechanism from state compromise as an online optimization problem.
If we knew the timing of the last compromise and the amount of entropy gathered
since then, we could stop producing any outputs until the state becomes truly
random again. However, our challenge is to recover within a time proportional
to this optimal solution even in the hardest (and most realistic) case in which
(a) we know nothing about the timing of the last state compromise, and the
amount of new entropy injected since then into the state, and (b) any premature
production of outputs leads to the total loss of all the added entropy used by the
RNG, since the attacker can use brute force to enumerate all the possible low-
entropy states. In other words, the challenge is to develop recovery mechanisms
which are guaranteed to save the day as quickly as possible after a compromise
we are not even aware of. The dilemma that we face is that any entropy used
prematurely will be lost, and any entropy which is kept unused will delay the
recovery.

After extending our model to handle premature next calls, we define the
generalized Fortuna construction, which is provably robust against premature
next. Although heavily inspired by actual Fortuna, the syntax of our construction
is noticeably different (See Figure 5), since we prove it secure in a stronger
model and without any idealized assumptions (like perfect entropy accumulation,
which, as demonstrated by the attacks in [5], is not a trivial thing to sweep under
the rug). In fact, to obtain our construction, we: (a) abstract out a rigorous
security notion of a (pool) scheduler; (b) show a formal composition theorem
(Theorem 2) stating that a secure scheduler can be composed with any robust
RNG in the prior model of [5] to achieve security against premature next; (c)
obtain our final RNG by using the provably secure RNG of [5] and a Fortuna-like
scheduler (proven secure in our significantly stronger model). In particular, the
resulting RNG is secure in the standard model, and only uses the existence of
standard PRGs as its sole computational assumption.

Constant-Rate RINGs. In Section 5.3, we consider the actual constants in-
volved in our construction, and show that under a reasonable setting or param-
eters, our RNG will recover from compromise in 8 = 4 times the number of

steps it takes to get 20 to 30 kB of fresh entropy. While these numbers are a
bit high, they are also obtained in an extremely strong adversarial model. In
contrast, remember that Ferguson and Schneier informally analyzed the security
of Fortuna in a much simpler case in which entropy drips in at a constant rate.
While restrictive, in Section 6 we also look at the security of generalized Fortuna
(with a better specialized scheduler) in this model, as it could be useful in some
practical scenarios and allow for a more direct comparison with the original For-
tuna. In this simpler constant entropy dripping rate, we estimate that our RNG
(with standard security parameters) will recover from a complete compromise
immediately after it gets about 2 to 3 kB of entropy (see the full version for de-
tails [6]), which is comparable to [10]’s (corrected) claim, but without assuming
ideal entropy accumulation into the state. In fact, our optimized constant-rate
scheduler beats the original Fortuna’s scheduler by almost a factor of 2 in terms
of entropy efficiency.

Rate Lower Bound. We also show that any “Fortuna-like construction” (which
tries to collect entropy in multiple pools and cleverly utilize them with an arbi-
trary scheduler) must lose at least a factor 2(logq) in its “entropy efficiency”,
even in the case where all inputs I; have an (unknown) constant-rate entropy.
This suggests that the original scheduler of Fortuna (which used logg pools
which evenly divide the entropy among them) is asymptotically optimal in the
constant-rate case (as is our improved version).

Semi-Adaptive Set-Refresh. As a final result, we make progress in address-
ing another important limitation of the model of Dodis et al. [5] (and our direct
extension of the current model that handles premature nexts). Deferring techni-
cal details to the full version [6], in that model the attacker A had very limited
opportunities to adaptively influence the samples produced by another adver-
sarial quantity, called the distribution sampler D. As explained there and in [5],
some assumption of this kind is necessary to avoid impossibility results, but it
does limit the applicability of the model to some real-world situations. As the
initial step to removing this limitation, in the full version we introduce the “semi-
adaptive set-refresh” model and show that both the original RNG of [5] and our
new RNG are provably secure in this more realistic adversarial model [6].

Other Related Work. As we mentioned, there is very little literature focusing
on the design and analysis of RNGs with inputs in the standard model. In
addition to [1,5], some analysis of the Linux RNG was done by Lacharme, Rock,
Strubel and Videau [17]. On the other hand, many works showed devastating
attacks on various cryptographic schemes when using weak randomness; some
notable examples include [4,7,11,12,15,18,19].

2 Preliminaries

Entropy. For a discrete distribution X, we denote its min-entropy by Hoo (X) =
min,{—log Pr[X = z]}. We also define worst-case min-entropy of X conditioned
on another random variable Z by in the following conservative way: Hoo (X |Z) =

—log([max, , Pr[X = z|Z = z]]). We use this definition instead of the usual
one so that it satisfies the following relation, which is called the “chain rule”
Pseudorandom Functions and Generators. We say that a function F :
{0,1}¢ x {0,1}™ — {0,1}™ is a (deterministic) (¢, g, €)-pseudorandom function
(PRF) if no adversary running in time ¢ and making gg oracle queries to F (key, -)
can distinguish between F(key, -) and a random function with probability greater
than e when key & {0,1}*. We say that a function G : {0,1}™ — {0,1}" is a
(deterministic) (¢,)-pseudorandom generator (PRG) if no adversary running in
time ¢ can distinguish between G(seed) and uniformly random bits with proba-

bility greater than & when seed & {0,1}™.

Game Playing Framework. For our security definitions and proofs we use
the code-based game-playing framework of [3]. A game GAME has an initialize
procedure, procedures to respond to adversary oracle queries, and a finalize pro-
cedure. A game GAME is executed with an adversary A as follows: First, initialize
executes, and its outputs are the inputs to 4. Then A executes, its oracle queries
being answered by the corresponding procedures of GAME. When A terminates,
its output becomes the input to the finalize procedure. The output of the latter
is called the output of the game, and we let GAM EA = y denote the event that
this game output takes value y. A®*ME denotes the output of the adversary and
AdvSME = 2 x Pr[GAME* = 1] — 1. Our convention is that Boolean flags are
assumed initialized to false and that the running time of the adversary A is de-
fined as the total running time of the game with the adversary in expectation,
including the procedures of the game.

3 RNG with Input: Modeling and Security

In this section we present formal modeling and security definitions for RNGs
with input, largely following [5].

Definition 1 (RNG with input). An RNG with input is a triple of algorithms
G = (setup, refresh, next) and a triple (n,¢,p) € N® where n is the state length,
{ is the output length and p is the input length of G:

— setup: a probabilistic algorithm that outputs some public parameters seed for
the generator.

— refresh: a deterministic algorithm that, given seed, a state S € {0,1}" and
an input I € {0,1}?, outputs a new state S’ = refresh(seed, S, I) € {0,1}".

— next: a deterministic algorithm that, given seed and a state S € {0,1}",
outputs a pair (S’, R) = next(seed, S) where S' € {0,1}" is the new state
and R € {0,1}* is the output.

Before moving to defining our security notions, we notice that there are
two adversarial entities we need to worry about: the adversary A whose task
is (intuitively) to distinguish the outputs of the RNG from random, and the

distribution sampler D whose task is to produce inputs I1, I, ..., which have
high entropy collectively, but somehow help A in breaking the security of the
RNG. In other words, the distribution sampler models potentially adversarial
environment (or “nature”) where our RNG is forced to operate.

3.1 Distribution Sampler

The distribution sampler D is a stateful and probabilistic algorithm which, given
the current state o, outputs a tuple (o’, 1,7, z) where: (a) ¢’ is the new state for
D; (b) I € {0,1}? is the next input for the refresh algorithm; (c) 7 is some fresh
entropy estimation of I, as discussed below; (d) z is the leakage about I given
to the attacker A. We denote by ¢p the upper bound on number of executions
of D in our security games, and say that D is legitimate if

HOO(IJ | Il?"'7Ij—17]j+1a"'7quazl7"'7ZqD7rYOa'"’rYQD) Z Vi (1)

for all j € {1,...,qp} where (0, 1;,7i,2;) = D(oi—1) for i € {1,...,¢p} and
[0.4

Dodis et al. provide a detailed discussion of the distribution sampler in [5],
which we also include in the full version of this paper for completeness [6]. In
particular, note that the distribution sampler D is required to output a lower
bound ~ on the min-entropy of I. These entropy estimates will be used in the
security game. In particular, we of course cannot guarantee security unless the
distribution sampler has provided the challenger with some minimum amount of
entropy. Many implemented RNGs try to get around this problem by attempting
to estimate the entropy of a given distribution directly in some ad-hoc manner.
However, entropy estimation is impossible in general and computationally hard
even in very special cases [20]. Note that these entropy estimates will be used only
in the security game, and are not given to the refresh and next procedures. By
separating entropy estimation from security, [5] provides a meaningful definition
of security without requiring the RNG to know anything about the entropy of
the sampled distributions.

3.2 Security Notions

We define the game ROB(+*) in our game framework. We show the initialize and
finalize procedures for ROB(y*) in Figure 1. The attacker’s goal is to guess the
correct value b picked in the initialize procedure with access to several oracles,
shown in Figure 2. Dodis et al. define the notion of robustness for an RNG with
input [5]. In particular, they define the parametrized security game ROB(y*)
where v* is a measure of the “fresh” entropy in the system when security should
be expected. Intuitively, in this game A is able to view or change the state of the
RNG (get-state and set-state), to see output from it (get-next), and to update

4 Since conditional min-entropy is defined in the worst-case manner, the value -y; in the
bound below should not be viewed as a random variable, but rather as an arbitrary
fixing of this random variable.

it with a sample I, from D (D-refresh). In particular, notice that the D-refresh
oracle keeps track of the fresh entropy in the system and declares the RNG to
no longer be corrupted only when the fresh entropy c is greater than v*. (We
stress again that the entropy estimates 7; and the counter ¢ are not available
to the RNG.) Intuitively, A wins if the RNG is not corrupted and he correctly
distinguishes the output of the RNG from uniformly random bits.

proc. initialize

proc. finalize(b")
IF b= 0" RETURN 1
ELSE RETURN 0

seed & setup; o < 0; S & {0,1}"

¢ < n; corrupt < false; b & {0,1}
OUTPUT seed

Fig. 1: Procedures initialize and finalize for G = (setup, refresh, next)

proc. D-refresh

(0,1,7,2) & D(o) proc. next-ror

S < refresh(S,) (S, Ro) < next(S)

cecty Ry & {0, 1)

IF ¢ 277, IF corrupt = true,
corrupt < false c+ 0

OUTPUT (v, 2) RETURN Ro

proc. get-state
c < 0; corrupt < true
OUTPUT S

proc. set-state(S™)
¢ < 0; corrupt < true

ELSE OUTPUT R,

proc. get-next
(S, R) < next(S)
IF corrupt = true,
c+0
OUTPUT R

S+ S

Fig. 2: Procedures in ROB(y*) for G = (setup, refresh, next)

Definition 2 (Security of RNG with input). A pseudorandom number gen-
erator with input G = (setup, refresh, next) is called ((t,qp, qr,qs), ", €)-robust
if for any attacker A running in time at most t, making at most gp calls to
D-refresh, qr calls to next-ror or get-next and qg calls to get-state or set-state,
and any legitimate distribution sampler D inside the D-refresh procedure, the
advantage of A in game ROB(~*) is at most .

Notice that in ROB(~*), if A calls get-next when the RNG is still corrupted,
this is a “premature” get-next and the entropy counter c is reset to 0. Intu-

itively, [5] treats information “leaked” from an insecure RNG as a total com-
promise. We modify their security definition and define the notion of robustness
against premature next with the corresponding security game NROB(7*, Ymax, 8)-
Our modified game NROB(7*, ymax, 3) has identical initialize and finalize proce-
dures to [5]’s ROB(v*) (Figure 1). Figure 3 shows the new oracle queries. The
differences with ROB(~*) are highlighted for clarity.

In our modified game, “premature” get-next calls do not reset the entropy
counter. We pay a price for this that is represented by the parameter § > 1.
In particular, in our modified game, the game does not immediately declare
the state to be uncorrupted when the entropy counter ¢ passes the threshold ~*.
Instead, the game keeps a counter T that records the number of calls to D-refresh
since the last set-state or get-state (or the start of the game). When ¢ passes v*, it
sets T «<— T and the state becomes uncorrupted only after T > ST™* (of course,
provided A made no additional calls to get-state or set-state). In particular, while
we allow extra time for recovery, notice that we do mot require any additional
entropy from the distribution sampler D.

Intuitively, we allow A to receive output from a (possibly corrupted) RNG
and, therefore, to potentially learn information about the state of the RNG
without any “penalty”. However, we allow the RNG additional time to “mix the
fresh entropy” received from D, proportional to the amount of time T™* that it
took to get the required fresh entropy ~+* since the last compromise.

As a final subtlety, we set a maximum ~yax on the amount that the entropy
counter can be increased from one D-refresh call. This might seem strange, since
it is not obvious how receiving too much entropy at once could be a problem.
However, vmax will prove quite useful in the analysis of our construction. Intu-
itively, this is because it is harder to “mix” entropy if it comes too quickly. Of
course Ymax 1S bounded by the length of the input p, but in practice we often
expect it to be substantially lower. In such cases, we are able to prove much
better performance for our RNG construction, even if Ymax s unknown to the
RNG. In addition, we get very slightly better results if some upper bound on
Ymax 1S incorporated into the construction.

Definition 3 (Security of RNG with input against premature next).
A pseudorandom number generator with input G = (setup, refresh, next) is called
((t, 9D, qR, q5), V", Ymax, €, B)-premature-next robust if for any attacker A run-
ning in time at most t, making at most qp calls to D-refresh, qr calls to next-ror
or get-next and qg calls to get-state or set-state, and any legitimate distribu-
tion sampler D inside the D-refresh procedure, the advantage of A in game
NROB(v*, Ymax, 8) is at most €.

Relaxed Security Notions. We note that the above security definition is
quite strong. In particular, the attacker has the ability to arbitrarily set the
state of G many times. Motivated by this, we present several relaxed security
definitions that may better capture real-world security. These definitions will be
useful for our proofs, and we show in Section 4.2 that we can achieve better
results for these weaker notions of security:

proc. D-refresh
$ proc. next-ror
(0,1,7,2) < D(0) (S, Ro) + next(S)
S <« refresh(S,I) R & (0,1} proc. get-state
’ IF v > Ymax, THEN 7 <— Ymax ‘ IF corrupt = true, c <+ 0 corr*upt <+ true
ppm— 5 [T+ 0,7« 0 |
T+T+1 RETURN Ry OUTPUT S
IF ¢ >~", ELSE OUTPUT R,
corrtpt<—false proc. set-state(S™)
IF T =0 proc. get-next ¢ < 0; corrupt < true
)
T" T (S.R) ¢=next(S) [T« 0;T" 0 |
IFT>p3-T, TF—eorrupt—=-true; S+ S*
corrupt < false e~<—0
OUTPUT (’y,z) OUTPUT R

Fig. 3: Procedures in NROB(7*, ymax, 3) for G = (setup, refresh, next) with differences
from ROB(~*) highlighted

— NROByeset (7", Ymax, 8) is NROB(~*, Ymax, 8) in which oracle calls to set-state
are replaced by calls to reset-state. reset-state takes no input and simply sets
the state of G to some fixed state Sy, determined by the scheme and sets the
entropy counter to zero.®

— NROB1set (7", Ymaxs 8) is NROB(~*, Yimax, 5) in which the attacker may only
make one set-state call at the beginning of the game.

— NROBgset (7", Ymaxs 8) is NROB(~Y*, Ymax, 8) in which the attacker may not
make any set-state calls.

We define the corresponding security notions in the natural way (See Def-
inition 3), and we call them respectively robustness against resets, robustness
against one set-state, and robust without set-state.

4 The Generalized Fortuna Construction

At first, it might seem hopeless to build an RNG with input that can recover from
compromise in the presence of premature next calls, since output from a com-
promised RNG can of course reveal information about the (low-entropy) state.
Surprisingly, Ferguson and Schneier presented an elegant away to get around
this issue in their Fortuna construction [10]. Their idea is to have several “pools
of entropy” and a special “register” to handle next calls. As input that potentially
has some entropy comes into the RNG, any entropy “gets accumulated” into one
pool at a time in some predetermined sequence. Additionally, some of the pools
may be used to update the register. Intuitively, by keeping some of the entropy
away from the register for prolonged periods of time, we hope to allow one pool

5 Intuitively, this game captures security against an attacker that can cause a machine
to reboot.

10

to accumulate enough entropy to guarantee security, even if the adversary makes
arbitrarily many premature next calls (and therefore potentially learns the entire
state of the register). The hope is to schedule the various updates in a clever way
such that this is guaranteed to happen, and in particular Ferguson and Schneier
present an informal analysis to suggest that Fortuna realizes this hope in their
“constant rate” model (in which the entropy 7; of each input is an unknown
constant).

In this section, we present a generalized version of Fortuna in our model
and terminology. In particular, while Fortuna simply uses a cryptographic hash
function to accumulate entropy and implicitly assumes perfect entropy accu-
mulation, we will explicitly define each pool as an RNG with input, using the
robust construction from [5] (and simply a standard PRG as the register). And,
of course, we do not make the constant-rate assumption. We also explicitly model
the choice of input and output pools with a new object that we call a scheduler,
and we define the corresponding notion of scheduler security. In addition to pro-
viding a formal model, we achieve strong improvements over Fortuna’s implicit
scheduler.

As a result, we prove formally in the standard model that the generalized
Fortuna construction is premature-next robust when instantiated with a number
of robust RNGs with input, a secure scheduler, and a secure PRG.

4.1 Schedulers

Definition 4. A scheduler is a deterministic algorithm SC that takes as input
a key skey and a state T € {0,1}™ and outputs a new state 7' € {0,1}™ and two
pool indices, injout € NU {L}.

We call a scheduler keyless if there is no key. In this case, we simply omit the
key and write SC(7). We say that SC has P pools if for any skey and any state
7, if (7/,in,out) = SC(skey, 7), then in,out € [0, P — 1] U {_L}.

Given a scheduler SC with skey and state 7, we write

SC(skey,) = (in;(SC, skey,), out; (SC, skey, 7))]_, (2)

to represent the sequence obtained by computing (in,out,7) < SC(skey, 7) re-
peatedly, a total of ¢ times. When SC, skey, and 7 are clear or implicit, we will
simply write in; and out;. We think of in; as a pool that is to be “filled” at time
j and out; as a pool to be “emptied” immediately afterwards. When out; = L,
no pool is emptied.

For a scheduler with P pools, we define security game SGAME(P, ¢, Wimax, @, 3)
as in Figure 4. In the security game, there are two adversaries, a sequence sam-
pler £ and an attacker A. We think of the sequence sampler £ as a simplified
version of the distribution sampler D that is only concerned with the entropy
estimates (;)7_;. € simply outputs a sequence of weights (w;)7_; with 0 < w; <
Wmax, Where we think of the weights as normalized entropies w; = 7;/v* and
Wmax = '7max/’y*'

11

proc. SGAME
Wi, ..., Wq &
skey & {0, 1} sk
70 + A(skey, (w;)i ;)
(in;,out;)?_, + SC%(skey, 7o)
c+0;c0+0,...,cp_1 < 0;T* 0
FOR T in 1,...,q,
IF wr > Wmax, THEN OUTPUT 0O
C < C+ wWr; Cing < Cingp + WT
IF out # 1,
IF couty > 1, THEN OUTPUT 0
ELSE Couty ¢ 0
IF c>«
IF T* =0, THEN T* + T
IF T > B-T*, THEN QUTPUT 1
OUTPUT O

Fig. 4: SGAME(P, ¢, Wmax, o,), the security game for a scheduler SC

The challenger chooses a key skey at random. Given skey and (w;)!_;, A
chooses a start state for the scheduler 7, resulting in the sequence (in;, out;)?%_;.
Each pool has an accumulated weight c;, initially 0, and the pools are filled and
emptied in sequence; on the T-th step, the weight of pool iny is increased by wr
and pool outr is emptied (its weight set to 0), or no pool is emptied if out = L.
If at some point in the game a pool whose weight is at least 1 is emptied, the
adversary loses. (Remember, 1 here corresponds to «v*, so this corresponds to the
case when the underlying RNG recovers.) We say that such a pool is a winning
pool at time T against (7o, (w;){_,). On the other hand, the adversary wins if

Zzl w; > « and the game reaches the (5 - T%)-th step (without the challenger
winning). Finally, if neither event happens, the adversary loses.

Definition 5 (Scheduler security). A scheduler SC is (t,q, Wmax, @, 3, €)-
secure if it has P pools and for any pair of adversaries £, A with cumulative
run-time t, the probability that £, A win game SGAME(P, q, wmax,, 3) is at
most €. We call r = a - B the competitive ratio of SC.5

We note that schedulers are non-trivial objects. Indeed, in the full version
of the paper [6], we prove the following lower bounds, which in particular imply
that schedulers can only achieve superconstant competitive ratios r = « - 3.

Theorem 1. Suppose that SC is a (t,q, Wmax, @, B, €)-secure scheduler running
in time tsc. Let r = « - B be the competitive ratio. Then, if ¢ > 3, e < 1/q,

5 The intuition for the competitive ratio r = a - 8 (which will be explicit in Section 6)
comes from the case when the sequence sampler £ is restricted to constant sequences
w; = w. In that case, r bounds the ratio between the time taken by SC to win and
the time taken to receive a total weight of one.

12

t=102(q- (tsc +10gq)), and r < wyax+/q, we have that

r > log, ¢ —log,(1/wmax) — log,log, ¢ — 1, (3)
Wmax log,(1/e) — 1

> : .
“ 7 e + 1 log, log (1/2) + 1

4.2 The Composition Theorem

Our generalized Fortuna construction consists of a scheduler SC with P pools, P
entropy pools G;, and register p. The G; are themselves RNGs with input and p
can be thought of as a much simpler RNG with input which just gets uniformly
random samples. On a refresh call, Fortuna uses SC to select one pool G, to
update and one pool Gyt from which to update p. next calls use only p.

Formally, we define a generalized Fortuna construction as follows: Let SC
be a scheduler with P pools and let pools G; = (setup,, refresh;, next;) for i =
0,...,P —1 be RNGs with input. For simplicity, we assume all the RNGs have
input length p and output length ¢, and the same setup procedure, setup, =
setupg. We also assume G : {0,1}* — {0,1}?* is a pseudorandom generator
(without input). We construct a new RNG with input G(SC, (G:)r ', G) =
(setup, refresh, next) as in Figure 5.

proc. setup :
ceed s setup,) proc. refresh(seed, S, I) :

s ‘ie ‘ PARSE (skey,seedg) < seed
skey < {0, 1}!s¥ PARSE (7,S,,(Si) ") « S
OUTPUT seed = (skey, seedg) (T,in, out) < SC(skey, 7)

Sin < refreshin(seedg, Sin, I)
proc.next(seed, S) : (Sout, R) 4 nextou (seedg, Sout)
PARSE (7,8, (Si){5!) « S S, S,®R
(S5, R) « G(S,) QUTPUT S = (7, S,, (Si)15")
OUTPUT (S = (7,5,,(S:)i5%"). R)

Fig. 5: The generalized Fortuna construction

We prove the following composition theorem in the full version of this paper
[6].
Theorem 2. Let G be an RNG with input constructed as above. If the sched-
uler SC is a (tsc, gD, Wmax, @, B,sc)-secure scheduler with P pools and state
length m, the pools G; are ((t,¢p,qr = ¢p,qs),7", €)-robust RNGs with input and
the register G is (t, eprg)-pseudorandom generator, then G is ((t',qp, ¢, qs), o -
V¥ Wiax - Y, €'y B)-premature-next robust where t' ~ min(t,tsc) and & = ¢3 -
s - (qp -esc + P+ 2™ - £+ qreprg)-

For our weaker security notions, we achieve better &’ :

— For NROBeset, e = q2D +qgs - (QD -esc+P-e+ qugprg)-

13

— For NROByset, € = gp -esc + P - 2™ - € + qpeprg-
— For NROByset, €' = qp - esc + P - € + qRrprg-

5 Instantiating the Construction

5.1 A Robust RNG with Input

Recall that our construction of a premature-next robust RNG with input still
requires a robust RNG with input. We therefore present [5]’s construction of
such an RNG.

Let G : {0,1}™ — {0,1}"** be a (deterministic) pseudorandom generator
where m < n. Let [y]]* denote the first m bits of y € {0,1}™. The [5] construction
of an RNG with input has parameters n (state length), ¢ (output length), and
p =n (sample length), and is defined as follows:

— setup(): Output seed = (X, X') + {0,1}?".

— S = refresh(S, I): Given seed = (X, X’), current state S € {0,1}", and a
sample I € {0,1}"™, output: S’ := S - X + I, where all operations are over
F27l.

— (8", R) = next(S): Given seed = (X, X’) and a state S € {0,1}", first
compute U = [X’ - S|7*. Then output (S’, R) = G(U).

Theorem 3 ([5, Theorem 2]). Let n > m,{,v* be integers and et € (0,1)
such that v* > m+21log(1/eext)+1 and n > m~+21og(1/cext)+log(gp)+1. Assume
that G : {0,1}™ — {0, 1}"*+¢ is a deterministic (t, eprg)-pseudorandom generator.
Let G = (setup, refresh, next) be defined as above. Then G is a ((t', qp, qr,qs),7*,€)-
robust RNG with input where t' =~ t, € = qr(2eprg + @PEext + 2771,

Dodis et al. recommend using AES in counter mode to instantiate their
PRG, and they provide a detailed analysis of its security with this instantiation.
(See [5, Section 6.1].) We notice that our construction only makes next calls
to their RNG during our refresh calls, and Ferguson and Schneier recommend
limiting the number of refresh calls by simply allowing a maximum of ten per
second [10]. They therefore argue that it is reasonable to set gp = 232 for most
security cases (effectively setting a time limit of over thirteen years). So, we can
plug in gp = qr = g5 = 2*.

In this setting, guidelines of [5, Section 6.1] show that their construction can
provide a pseudorandom 128-bit string after receiving ~¢ bits of entropy with g
in the range of 350 to 500, depending on the desired level of security.

5.2 Scheduler Construction

To apply Theorem 2, we still need a secure scheduler (as defined in Section 4.1).
Our scheduler will be largely derived from Ferguson and Schneier’s Fortuna
construction [10], but improved and adapted to our model and syntax. In our
terminology, Fortuna’s scheduler SC r is keyless with log, ¢ pools, and its state

14

proc. SC(skey, 7) :

IF 7 # 0 mod P/wWmax, THEN out < L

ELSE out < max{out: 7 =0 mod 2°" - P/Wmax }
in < F(skey, 1)

7'+ 7+1 modgq

OUTPUT (7', in,out)

Fig. 6: Our scheduler construction

is a counter 7. The pools are filled in a “round-robin” fashion. Every log, g steps,
Fortuna empties the maximal pool i such that 2° divides 7/ log, g.

SCr is designed to be secure against some unknown but constant sequence
of weights w; = w.” We modify Fortuna’s scheduler so that it is secure against
arbitrary (e.g., not constant) sequence samplers by replacing the round-robin
method of filling pools with a pseudorandom sequence.

Assume for simplicity that log, logs ¢ and log,(1/wmayx) are integers. We let
P = logy q — logylogy ¢ — 1ogy(1/wmax). We denote by skey the key for some
pseudorandom function F whose range is {0,...,P — 1}. Given a state 7 €
{0,...,9 — 1} and a key skey, we define SC(skey,) formally in Figure 6. In
particular, the input pool is chosen pseudorandomly such that in = F(skey, 7).
When 7 =0 mod P/wWmax, the output pool is chosen such that out is maximal
with 2°Ut . P/wax divides 7. (Otherwise, there is no output pool.)

The following theorem is proven in the full version of this paper [6].

Theorem 4. If the pseudorandom function F is (t,q,ex)-secure, then for any
e € (0,1), the scheduler SC defined above is (¥, q, Wmax, @, B, Esc)-secure with
t'~t esc=q (er +¢€), @« =2 (Wnmax - 10g.(1/€) + 1) - (logy ¢ — logy logs ¢ —
logs (1/wmax)), and B = 4.

Remark. Note that we set P =log, q — log, logy ¢ — logy(1/wmax) for the sake
of optimization. In practice, Wmax = Ymax/7" may be unknown, in which case we
can safely use logy ¢ — logy logy ¢ pools at a very small cost. So, one can safely
instantiate our scheduler (and the corresponding RNG) without a known bound
ON Wax, and still benefit if wmax happens to be low in practice.

Instantiation and Concrete Numbers. To instantiate the scheduler in
practice, we suggest using AES as the PRF F. As in [5], we ignore the com-
putational error term ep and set esc ~ ¢e.® In our application, our scheduler
will be called only on refresh calls to our generalized Fortuna RNG construction,
so we again set ¢ = 232, It seems reasonable for most realistic scenarios to set
Wmax = Ymax/7" =~ 1/16 and eg¢ ~ 27192 but we provide values for other wmay
and ¢ as well:

7 We analyze their construction against constant sequences more carefully in Section 6.
8 See [5] for justification for such an assumption.

15

€sc |4 |Wmax|® Pllesc |9 |Wmax|o Pllesc |9 |Wmax|® P
2712812321 /64 [115 [21| [27192[232[1/64 [144 [21] [272°0[232]1/64 [174 |21
27 128(23211/16 [367 |23| [27192]232[1/16 [494 [23| [2=2°F[232[1/16 [622 |23
2712812321 /4 [1445(25| [27192[2%2[1/4 [2000[25| [272°¢|232[1/4 [2554 |25
2-128[2321 6080(27| [27192[232]1 8476(27| [272°6[2321 10,871(27

5.3 Putting It All Together

Now, we have all the pieces to build an RNG with input that is premature-next
robust (by Theorem 2). Again setting ¢ = 232 and assuming wmax = Ymax/7* =~
32/500 ~ 1/16, our final scheme can output a secure 128-bit key in four times
the amount of time that it takes to receive roughly 20 to 30 kilobytes of entropy.

6 Constant-Rate Adversaries

We note that the numbers that we achieve in Section 5.3 are not ideal. But, our
security model is also very strong. So, we follow Ferguson and Schneier [10] and
consider the weaker model in which the distribution sampler D is restricted to
a constant entropy rate. Analysis in this model suggests that our construction
may perform much in practice. Indeed, if we think of the distribution sampler
D as essentially representing nature, this model may not be too unreasonable.

Constant-Rate Model. We simply modify our definitions in the natural way.
We say that a distribution (resp., sequence) sampler is constant if, for all i, v; =
(resp., w; = w) for all ¢ for some fixed « (resp., w). We say that a scheduler is
(t, @, Wimax, T, €)-secure against constant sequences if, for some® a, 3 such that
a-f=ritis (t ¢, Wnax, @, B, €)-secure when the sequence sampler & is required
to be constant. When ¢ = 0 and the adversaries are allowed unbounded compu-
tation (as is the case in our construction), we simply leave out the parameters ¢
and . We similarly define premature-next robustness for RNGs with input.

In the full version [6], we the note that our composition theorem, Theorem 2,
applies equally well in the constant-rate case. This allows us to construct an RNG
with input that is premature-next robust against constant adversaries with much
better parameters.

Optimizing Fortuna’s Scheduler. Ferguson and Schneier essentially analyze
the security of a scheduler that is a deterministic version of our scheduler from
Section 5.2, with pseudorandom choices replaced by round-robin choices [10].
(This is, of course, where we got the idea for our scheduler.) They conclude
that it achieves a competitive ratio of 2log, g. However, the correct value is

9 We note that when the sequence sampler £ must be constant, (t, ¢, Wmax, @, B, €)-
security is equivalent to (, g, Wmax, @, 8', €)-security if a- 8 =o' - 5’

16

3log, ¢.1Y Ferguson and Schneier’s model differs from ours in that they do not
consider adversarial starting times 7y between the emptying of pools. Taking
this (important) consideration into account, it turns out that SCr achieves a
competitive ratio of rz = 3.5log, ¢ in our model.!!

Interestingly, the pseudocode in [10] actually describes a potentially stronger
scheduler than the one that they analyzed. Instead of emptying just pool i, this
new scheduler empties each pool j with j < i. Although Ferguson and Schneier
did not make use of this in their analysis, we observe that this would lead to
significantly improved results provided that the scheduler could “get credit” for
all the entropy from multiple pools. While our model cannot syntactically capture
the notion of multiple pools being emptied at once, we notice that it can simulate
a multiple-pool scheduler by simply treating any set of pools that is emptied
together at a given time as one new pool.

In the full version of this paper, we make this observation concrete and further
optimize the scheduler of Fortuna to obtain the following result [6].

Theorem 5. For any integer b > 2, there exists a keyless scheduler SCy that is
(¢, Wmax, Tp)-s€cure against constant sequences where

Wmax 1_wmax
ry = (b S8 4 SR (log, g — log log, ¢ — logy(1/wmax)) - (5)

In particular, with wma.x = 1 and ¢ — oo, b = 3 is optimal with

rF T2 Ta (6)

r3z2.1log2quN119~101.

We note that SCy performs even better in the non-asymptotic case. For ex-
ample, in the case that Ferguson and Schneier analyzed, ¢ = 232 and wmax = 1,

we have r3 = 58.2 ~ 1%, saving almost half the entropy compared to Fortuna.

References

1. BAraAKk, B., AND HALEVI, S. A model and architecture for pseudo-random genera-
tion with applications to /dev/random. In Proceedings of the 12th ACM Conference
on Computer and Communications Security (New York, NY, USA, 2005), CCS 05,
ACM, pp. 203-212.

2. BARKER, E., AND KELSEY, J. Recommendation for random number generation
using deterministic random bit generators. NIST Special Publication 800-90A,
2012.

3. BELLARE, M., AND Rocaway, P. The security of triple encryption and a frame-
work for code-based game-playing proofs. In Advances in Cryptology - EURO-
CRYPT 2006, S. Vaudenay, Ed., vol. 4004 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2006, pp. 409-426.

10 There is an attack: Let w = 1/(2° 4 1) and start Fortuna’s counter so that pool 4 + 1
is emptied after 2 - log, q steps. Clearly, SCx takes (2° +2°"1)-log, ¢ = 3-2°-log, q
total steps to finish, achieving a competitive ratio arbitrarily close to 3log, q.

"1 This follows from the analysis of our own scheduler in the full version [6].

17

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

CVE-2008-0166. Common Vulnerabilities and Exposures, 2008.

Dopbis, Y., PoinNTcHEVAL, D., RuHauLT, S., VERGNIAUD, D., AND WICHS, D.
Security analysis of pseudo-random number generators with input: /dev/random
is not robust. In Proceedings of the 2013 ACM SIGSAC Conference on Computer
Communications Security (New York, NY, USA, 2013), CCS ’13, ACM, pp. 647—
658.

Dopbis, Y., SHAMIR, A., STEPHENS-DAviDOwWITZ, N.; AND WicHs, D. How to eat
your entropy and have it too — optimal recovery strategies for compromised rngs.
Cryptology ePrint Archive, Report 2014/167, 2014. http://eprint.iacr.org/.
DORRENDORF, L., GUTTERMAN, Z., AND PINKAS, B. Cryptanalysis of the ran-
dom number generator of the windows operating system. JACR Cryptology ePrint
Archive 2007 (2007), 419.

EASTLAKE, D., SCHILLER, J., AND CROCKER, S. RFC 4086 - Randomness Re-
quirements for Security, June 2005.

FERGUsON, N. Private communication, 2013.

. FERGUsON, N., AND SCHNEIER, B. Practical Cryptography, 1 ed. John Wiley &

Sons, Inc., New York, NY, USA, 2003.

GUTTERMAN, Z., Pinkas, B., AND REINMAN, T. Analysis of the linux random
number generator. In Proceedings of the 2006 IEEE Symposium on Security and
Privacy (Washington, DC, USA, 2006), SP 06, IEEE Computer Society, pp. 371—
385.

HENINGER, N., DURUMERIC, Z., WUsTROW, E., AND HALDERMAN, J. A. Min-
ing your Ps and Qs: Detection of widespread weak keys in network devices. In
Proceedings of the 21st USENIX Security Symposium (Aug. 2012).

Information technology - Security techniques - Random bit generation.
ISO/IEC18031:2011, 2011.

KELSEY, J., SCHNEIER, B., AND FERGUSON, N. Yarrow-160: Notes on the design
and analysis of the yarrow cryptographic pseudorandom number generator. In
In Sizth Annual Workshop on Selected Areas in Cryptography (1999), Springer,
pp. 13-33.

KELSEY, J., SCHNEIER, B., WAGNER, D., AND HALL, C. Cryptanalytic attacks
on pseudorandom number generators. In Fast Software Encryption, S. Vaudenay,
Ed., vol. 1372 of Lecture Notes in Computer Science. Springer Berlin Heidelberg,
1998, pp. 168-188.

KiLLMANN, W. AND SCHINDLER, W. A proposal for: Functionality classes for
random number generators. AIS 20 / AIS31, 2011.

LAcHARME, P., ROck, A., STRUBEL, V., AND VIDEAU, M. The linux pseudoran-
dom number generator revisited. JACR Cryptology ePrint Archive 2012 (2012),
251.

LensTRA, A. K., HucHes, J. P., AuciEr, M., Bos, J. W., KLEINJUNG, T.,
AND WACHTER, C. Public keys. pp. 626-642.

NGUYEN, AND SHPARLINSKI. The insecurity of the digital signature algorithm with
partially known nonces. Journal of Cryptology 15, 3 (2002), 151-176.

SAHAI, A.; AND VADHAN, S. P. A complete problem for statistical zero knowledge.
J. ACM 50, 2 (2003), 196—249.

WIKIPEDIA. /dev/random. http://en.wikipedia.org/wiki//dev/random, 2004.
[Online; accessed 09-February-2014].

18

http://eprint.iacr.org/
http://en.wikipedia.org/wiki//dev/random

	 How to Eat Your Entropy and Have it Too — Optimal Recovery Strategies for Compromised RNGs
	Introduction
	Preliminaries
	RNG with Input: Modeling and Security
	Distribution Sampler
	Security Notions

	The Generalized Fortuna Construction
	Schedulers
	The Composition Theorem

	Instantiating the Construction
	A Robust RNG with Input
	Scheduler Construction
	Instantiation and Concrete Numbers.

	Putting It All Together

	Constant-Rate Adversaries
	Optimizing Fortuna's Scheduler.

