
On the Impossibility of Cryptography
with Tamperable Randomness

Per Austrin1,?, Kai-Min Chung2,??, Mohammad Mahmoody3,? ? ?,
Rafael Pass4,†, and Karn Seth4

1 KTH Royal Institute of Technology austrin@kth.se
2 Academica Sinica kmchung@iis.sinica.edu.tw

3 University of Virginia mohammad@cs.virginia.edu
4 Cornell {rafael,karn}@cs.cornell.edu

Abstract. We initiate a study of the security of cryptographic primi-
tives in the presence of efficient tampering attacks to the randomness of
honest parties. More precisely, we consider p-tampering attackers that
may efficiently tamper with each bit of the honest parties’ random tape
with probability p, but have to do so in an “online” fashion. Our main
result is a strong negative result: We show that any secure encryption
scheme, bit commitment scheme, or zero-knowledge protocol can be “bro-
ken” with probability p by a p-tampering attacker. The core of this result
is a new Fourier analytic technique for biasing the output of bounded-
value functions, which may be of independent interest.

We also show that this result cannot be extended to primitives such as
signature schemes and identification protocols: assuming the existence of
one-way functions, such primitives can be made resilient to (1/poly(n))-
tampering attacks where n is the security parameter.5
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1 Introduction

A traditional assumption in cryptography is that the only way for an attacker
to gather or control information is by receiving and sending messages to honest
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parties. In particular, it is assumed that the attacker may not access the inter-
nal states of honest parties. However, such assumptions on the attacker—which
we refer to as physical assumptions—are quite strong (and even unrealistic).
In real-life, an attacker may through a “physical attack” learn some “leakage”
about the honest parties’ internal states and may even tamper with their inter-
nal states. For instance, a computer virus may (e.g., using a, so-called, buffer
overflow attack [2, 18, 32]) be able to bias the randomness of an infected com-
puter. Understanding to what extents the traditional physical assumptions can
be relaxed, to capture such realistic attacks, is of fundamental importance.

Indeed, in recent years leakage-resilient cryptography—that is, the design of
cryptographic schemes and protocols that remain secure even when the attacker
may receive (partial) leakage about the internal state of the honest parties—has
received significant attention (see e.g., [1, 7, 10,12–14,21,25,30,31,34]).

In this work, we focus on understanding the power of tampering attacks—
that is, attacks where the adversary may partially modify (i.e., tamper with) the
internal state of honest parties. Early results in the 1990’s already demonstrate
that tampering attacks may be very powerful: by just slightly tampering with
the computation of specific implementations of some cryptographic schemes (e.g.,
natural implementations of RSA encryption [33]), Boneh, DeMillo and Lipton [6]
demonstrated that the security of these schemes can be broken completely.

Previous works on tamper-resilient cryptography consider tampering of com-
putation [3,5,6,16,24,30] and tampering with the memory of an honest party who
holds a secret (e.g., a signing or a decryption algorithm) [9,15,19,26,29,30]. This
line of research culminated in strong compilers turning any polynomial-size cir-
cuit C into a new “tamper-resilient” polynomial-size circuit C ′; tamper-resilience
here means that having “grey-box” access to C ′ (i.e., having black-box access
while tampering with the computation of C ′) yields no more “knowledge” than
simply having black-box access to C. These works, thus, show how to keep a
secret hidden from a tampering attacker. Our focus here is somewhat different.
In analogy with recent work of leakage-resilient security, we aim to investigate
to what extent a tampering attacker may violate the security of a cryptographic
protocol by tampering with the internal state of honest parities.

For concreteness, let us focus on the security of public-key encryption schemes
(but as we shall see shortly, our investigation applies to many more cryptographic
tasks such as zero-knowledge proofs and secure computation). Roughly speaking,
we require a tamper-resilient encryption scheme to guarantee that ciphertexts
conceal the encrypted messages, even if the internal computation of the sender
(of the ciphertext) has been tampered with.6 As first observation note that if the
attacker may completely change the computation of the sender, he could simply

6 Let us remark that the simulation property of tamper-resilient compilers do not nec-
essarily guarantee that if the sender algorithm is compiled into a “tamper-resilient”
version, then the encryption scheme is tamper-resilient. This is due to the fact that
the simulation property of those compilers only guarantee that an attacker cannot
learn more from tampering with the sender strategy than it could have with black-
box access to it. But in the case of encryption schemes, it is actually the input to
the algorithm (i.e., the message to be encrypted) that we wish to hide (as opposed



make the sender send the message in the clear. Thus, to hope for any reasonable
notion of tamper-resilient security we need to restrict the attacker’s ability to
tamper with the computation.

Tampering with Randomness. Among various computational resources, random-
ness might be one of the hardest to protect against tampering. This is due to
the fact that randomness is usually generated (perhaps based on some “physi-
cal” resources available to the system) and any malicious attacker who is able
to change the bits along their generation can mount a tampering attack against
the randomness. Indeed given the breakthrough results of [22, 27, 28] it is be-
coming even more clear that randomness is one of the most vulnerable aspects
of a cryptographic system. Thus, a very basic question is to what extent we
can protect our systems against tampering with randomness. In this work we
initiate a formal study of this question by considering tampering attacks to the
randomness of the honest players; namely we study the following basic question:

Can security of cryptographic primitives be preserved under tampering
attacks to the randomness of honest parties?

Note that we need to restrict the tampering ability of the attacker, for oth-
erwise the adversary can effectively make the scheme deterministic by always
fixing the randomness of the honest parties to all zeros. But it is well-known
that deterministic encryption schemes cannot be semantically secure. Therefore,
here we initiate study of the power of weak types of tampering attacks to the
randomness of the honest parties.

General Model: The Tampering Virus. We envision the adversary as consisting
of two separate entities: (1) a classical attacker who interacts with the honest
parties only by sending/receiving messages to/from them (without any side-
channels), and (2) a tampering circuit (a.k.a. the “virus”) who observes the
internal state of the honest parties and may only tamper with their random-
ness (but may not communicate with the outside world, and in particular with
the classical attacker). The tampering circuit only gets to tamper with a small
fraction of the random bits, and in an efficient manner. Note that this model
excludes a scenario in which the virus (even efficiently) samples the whole ran-
domness, regardless of the original randomness sampled by the system, because
in this cases all of the sampled tampered bits might be different from the system’s
original random seed. However, here we study weak attackers who only tamper
with a small fraction of the random bits. In fact, previous works on resettable
cryptography [8] can be interpreted as achieving tamper resilience against adver-
saries who tamper with all of the randomness of the honest parties by resampling
the randomness of the honest parties and executing them again and again. This
is incomparable to our model, since our adversary does not have control over

to some secret held by the algorithm). See the full version for a more detailed
comparison with previous work.



the honest parties’ execution (to run them again), but is more powerful in that
it could change the value of some of the random bits.

Online Tampering. Let 0 < p < 1 be the parameter describing the “power”
of adversary (which defines the fraction of tampered bits). It still remains to
clarify how the tampering is done over these bits. The first naive model would
allow the adversary to tamper with a p fraction of the bits after all the bits are
sampled by the system (and, thus, are known to the virus as well). However,
this is not realistic since the sequence of random bits used by the system could
always be sampled in an online manner; namely, the system could sample the
i-th random bit whenever it needs it and might use it “on the fly”. Therefore,
a tampering adversary also needs to tamper with them one-by-one, efficiently,
and in an on-line fashion.

More precisely, we consider a so-called p-tampering attack, where the ad-
versary gets to tamper with the random tape of the honest players as follows.
The randomness of honest parties is generated bit-by-bit, and for each gener-
ated bit xi the efficient tampering circuit gets to tamper with it with inde-
pendent probability p having only knowledge of previously generated random
bits x1, x2, . . . , xi−1 (but not the value of the random bits tossed in the fu-
ture). Roughly speaking, requiring security with respect to p-tampering attacks
amounts to requiring that security holds even if the honest players’ random-
ness comes from a computationally efficient analog of a Santha-Vazirani (SV)
source [35]. Recall that a random variable X = (X1, . . . , Xn) over bit strings is an
SV source with parameter δ if for every i ∈ [n] and every (x1, . . . , xi) ∈ {0, 1}i,
it holds that δ ≤ P[Xi = xi|X1 = x1, . . . , Xi−1 = xi−1] ≤ 1 − δ. It is easy to
see that the random variable resulting from performing a p-tampering attack on
a uniform n-bit string is an SV source with parameter (1 − p)/2; in fact, any
SV source is equivalent to performing a computationally unbounded p-tampering
attack on a uniform n-bit string.

The main focus of this work is on the following question:

Can security be achieved under p-tampering attacks?

2 Our Results and Techniques

Our main result is a strong negative answer to the question above for a vari-
ety of basic cryptographic primitives. A p-tampering attacker can break all of
the following with advantage Ω(p): (1) the security of any CPA-secure (public-
key or private-key) encryption scheme, (2) the zero-knowledge property of any
efficient-prover proof (or argument) system for nontrivial languages, (3) the hid-
ing property of any commitment scheme, and (4) the security of any protocol for
computing a “nontrivial” finite function. More formally, we prove the following
theorems.

Theorem 1 (Impossibility of Encryption). Let Π be any CPA-secure public-
key encryption scheme. Then a p-tampering attacker can break the security of Π



with advantage Ω(p). Moreover, the attacker only tampers with the random bits
of the encryption (not the key-generation) without knowing the message.

A similar impossibility result holds for private-key encryption schemes in
which the tampering adversary can also tamper with the randomness of the
key-generation phase.7

Theorem 2 (Impossibility of Zero-Knowledge). Let (P, V ) be an efficient
prover proof/argument system for a language L ∈ NP such that the view of any
p-tampering verifier can be simulated by an efficient simulator with indistin-
guishability gap o(p), then the language L is in BPP.

Theorem 3 (Impossibility of Commitments). Let (S,R) be a bit-commitment
scheme. Then, either an efficient malicious sender can break the biding with ad-
vantage Ω(p) (without tampering), or an efficient malicious p-tampering receiver
can break the hiding with advantage Ω(p).

Following [19] we consider two-party functions f : D1 ×D2 7→ R where only
one player gets the output. A function f is called trivial in this context, if
there is a deterministic single-message (i.e., only one player speaks) protocol for
computing f that is information theoretically secure.

Theorem 4 (Impossibility of Secure Computation). The security of any
protocol for computing a two-party non-trivial function can be broken with ad-
vantage Ω(p) through a p-tampering attack.

Relation to Subliminal Channels. Cryptographic research on “subliminal chan-
nels” [36] and the related field of “kleptography” [37] study whether a crypto-
graphic scheme can be “misused” for a purpose other than the original purpose
it was designed for (e.g., by putting an undetectable trapdoor in the systems).
The existence of subliminal channels between “outside” and “inside” adversaries
could be a huge security concern in certain scenarios such as voting schemes [17].
Our Theorem 1 (and its private-key variant) show that any efficient encryption
scheme always has a subliminal channel between an outsider adversary and an
insider virus who is (only) able to tamper with the randomness of the encryption
device no matter how the encryption algorithm tries to “detect” a virus who is
signaling a bit of information to the adversary.

Tampering with Randomness vs. Imperfect Randomness. Our negative results
are closely related to the impossibility result of Dodis et al. [11] on the “im-
possibility of cryptography with imperfect randomness”, where the security of
cryptographic primitives are analyzed assuming that the honest parties only have
access to randomness coming from an SV source (as opposed to the randomness
being perfectly uniform). [11] present several strong impossibility results for se-
cure realizability of cryptography primitives in a setting where players only have

7 Note that this is necessary, because the one-time pad encryption is deterministic
during its encryption phase.



access to such imperfect randomness. The SV sources they consider for their
impossibility results, however, may not be efficiently computable.

The key-difference between tamper-resilient security in our setting and secu-
rity with imperfect randomness is that we restrict to randomness sources that
are efficiently sampled through an (online) p-tampering attack; thus achieving
tamper-resilient security becomes easier than resilience to imperfect randomness.
Note that even if one can efficiently sample from the sources employed by [11],
that still does not solve our main question, because by sampling fresh random-
ness for the system the adversary is indeed tampering with all of the random
seed. As we discussed above, however, in such scenario the adversary can always
fix the randomness to zero and so we are essentially down to the determinis-
tic case. Another, perhaps less important difference, is that for primitives with
simulation-based security, we allow the simulator to depend on the p-tampering
attacker, whereas in [11] the simulator must work for any randomness source;
this further makes achieving tamper-resilient security easier than resilience to
imperfect randomness.

Positive Results. We complement the above negative results by demonstrating
some initial positive results: Assuming the existence of one-way functions, for
any p = n−α, where α > 0 is a constant and n is the security parameter, every
implementation of signature schemes, identification protocols, and witness hiding
protocols can be made resilient against p-tampering attackers. We also present a
relaxed notion of semantic security for encryption schemes that can be achieved
under n−α-tampering attacks. We show that for these primitives, security holds
even if the randomness source “min-entropy loss” of at most O(log n). We next
show how to use PRGs to ensure that a tampering attacker will only be able
to decrease the overall (pseudo) min-entropy by O(log n). The above mentioned
primitives already imply the existence of one-way functions [23], thus preventing
against n−α-tampering attacks can be achieved for these primitives uncondition-
ally. Finally, we present positive results for tamper-resilient key-agreement and
secure multi-party computation in the presence of (at least) two honest players.
For further details see the full version [4] of the paper.

2.1 Our Techniques

Our main technical contribution is to develop new methods for biasing Boolean,
and more generally, bounded-value functions, using a p-tampering attack.

Biasing Bounded-Value Functions Our first (negative) result uses elemen-
tary Fourier analysis to prove an efficient version of the Santha-Vazirani theo-
rem: Any balanced (or almost balanced) efficiently computable Boolean function
f can be biased by Ω(p) through an efficient p-tampering attack.

Specifically, let Un denote the uniform distribution over {0, 1}n and let UTam,p
n

denote the distribution obtained after performing a p-tampering attack on Un
using a tampering algorithm Tam; more precisely, let UTam,p

n = (X1, . . . , Xn)



where with probability 1− p, Xi is a uniform random bit, and with probability
p, Xi = Tam(1n, X1, . . . , Xi−1).

Theorem 5 (Biasing Boolean Functions: Warm-up). There exists an ora-
cle machine Tam with input parameters n and ε < 1 that runs in time poly(n/ε)
and for every n ∈ N and ε ∈ (0, 1), every Boolean function f : {0, 1}n →
{−1, 1}, and every p < 1, for µ = E[f(Un)] it holds that

E[f(UTamf ,p
n )] ≥ µ+ p · (1− |µ| − ε).

The tampering algorithm Tam is extremely simple and natural; it just greed-
ily picks the bit that maximizes the bias at every step. More precisely,
Tamf (x1, . . . , xi−1) estimates the value of

EUn−i [f(x1, . . . , xi−1, b, Un−i)]

for both of b = 0 and b = 1 by sampling, and sets xi to the bit b with larger
estimated expectation.

Theorem 5 suffices for our impossibility result for tamper-resilient zero-knowledge.
For all our remaining impossibility results, however, we need a more general ver-
sion that also deals with bounded value functions f : {0, 1}n → [−1, 1]. Our
main technical theorem provides such a result.

Theorem 6 (Main Technical Theorem: Biasing Bounded-Value Func-
tions). There exists an efficient oracle machine Tam such that for every n ∈ N ,
every bounded-value function f : {0, 1}n → [−1, 1], and every p < 1,

E[f(UTamf ,p
n )] ≥ E[f(Un)] +

p ·Var[f(Un)]

5
.

Note that in Theorem 6 the dependence on the variance of f is necessary
because f may be the constant function f(x) = 0, whereas for the case of
balanced Boolean functions this clearly cannot happen. Let us also point out
that we have not tried to optimize the constant 1/5, and indeed it seems that
a more careful analysis could be used to bring it down since for small p the
constant gets close to 1.

The greedy algorithm does not work in the non-Boolean case anymore. The
problem, roughly speaking, is that a greedy strategy will locally try to increase
the expectation, but that might lead to choosing a wrong path. As a “counter-
example” consider a function f such that: conditioned on x1 = 0 f is a constant
function ε, but conditioned on x1 = 1, f is a Boolean function with average
−ε. For such f , the greedy algorithm will set x1 = 0 and achieves bias at most
ε, while by choosing x1 = 1 more bias could be achieved. To circumvent this
problem we use a “mildly greedy” strategy: we take only one sample of f(·) by
choosing x′i, x

′
i+1, . . . , x

′
n at random (x1, . . . , xi−1 are already fixed). Then, we

keep the sampled x′i with probability proportional to how much the output of f
is close to our “desired value”, and flip the value of x′i otherwise.

More precisely, Tam(1n, x1, . . . , xi−1) proceeds as follows:



– Samples (x′i, x
′
i+1, . . . , x

′
n)← Un−i+1 and compute

y = f(x1, . . . , xi−1, x
′
i, . . . , x

′
n).

– Sample Tam(1n, x1, . . . , xi−1) from a Boolean random variable with average
y · x′i (i.e. output x′i with probability 1+y

2 , and −x′i with probability 1−y
2 ).

Note that our mildly greedy strategy is even easier to implement than the greedy
one: to tamper with each bit, it queries f only once.

Impossibility Results for Tamper-Resilient Cryptography We employ
the biasing algorithms of Theorems 5 and 6 to obtain our negative results using
the following blue-print: We first prove a computational version of the “splitting
lemma” of [11] (Lemma 7 below which follows from Corollary 3.2 in [11]). Then
we will use the same arguments as those of [11] to derive our impossibility results.

Lemma 7 ( [11]). Let f0 and f1 be two efficient functions from {0, 1}m to
{0, 1}poly(m) such that Prx←Um [f0(x) 6= f1(x)] ≥ 1/ poly(n). Then there an
Santha-Vazirani source of randomness X with parameter 1/2− 1/ poly(n) such
that f0(X) is computationally distinguishable from f1(X).

We use our Theorem 6 to prove the following computational version of
Lemma 7 which allows one to distinguish the functions f0, f1 by tampering with
their random input.

Lemma 8 (Computational Splitting Lemma). Let f0 and f1 be two ef-
ficient functions from {0, 1}m to {0, 1}poly(m) and Prx←Um

[f0(x) 6= f1(x)] ≥
ε > 1/ poly(m). Then one can efficiently find a poly(m)-size function f and a
poly(m)-size tampering circuit Tam such that

Pr[f(f1(UTam,p
n )) = 1] ≥ Pr[f(f0(UTam,p

n )) = 1] +Ω(ε · p).

Proof Outline. We derive Lemma 8 from Theorem 6 as follows. We use Theo-
rem 6 to bias the difference function gf (x) = f(f1(x))− f(f0(x)) (with domain
{−1, 0,+1}) towards 1 by a tampering circuit Tam. It is easy to see that if f is
Boolean, doing this is equivalent to the goal of Lemma 8. We show that if one
samples f from a family of pairwise independent Boolean functions, then the
resulting function gf (·) has sufficient variance as needed by Theorem 6.

We use our Lemma 8 similar to the way Lemma 7 is employed in [11] to derive
our impossibility results for tamper resilient: encryption schemes, commitments,
and two-party secure function evaluation protocols. For all these primitives an
adversary uses Lemma 8 to generate a tampering circuit Tam that later on
lets him distinguish the corresponding challenges (generated using the tampered
randomness) and break the security.

Zero-Knowledge. Zero-knowledge proofs in the setting of [11] require a universal
simulator that simultaneously handles a large class of imperfect randomness
sources. We can also use our Lemma 8 to rule out such tamper-resilient zero-
knowledge proofs. In the computational setting, however, it is the malicious



verifier who generates the bad source of randomness, and so we shall allow the
simulator to depend on the tampering circuit as well. Thus, the simulator in our
setting has more power. This prevents us from applying Lemma 8 directly.

We proceed in using the following high level outline. In the first step, we
generalize a result by Goldreich and Oren [20] showing that non-trivial zero-
knowledge protocols cannot have deterministic provers. Our generalization to
[20] shows that non-trivial zero-knowledge protocols require having prover mes-
sages with min-entropy ω(log n). This means that the verifier can apply a (seeded)
randomness extractor to the transcript and obtain one almost unbiased bit. In
a second step, we show how to use (the proof of) Theorem 5 to tamper with the
prover’s randomness so as to signal bits of the witness to the verifier.

This outline, however, oversimplifies: is it not the case that every non-trivial
zero-knowledge protocol requires the prover messages to have min-entropy
ω(log n); in fact, for some “easy” instances, the prover may not communicate
at all. Rather, we demonstrate that an “instance-based” version of the min-
entropy extension of the Goldreich and Oren [20] theorem holds, and using it we
can prove that either the prover’s messages have high min-entropy (and thus the
witness can be leaked to the verifier), or the instance can be decided “trivially”.
It follows that in either case, we can correctly decide the instance and thus the
language must be trivial.

3 Biasing Functions via Online Tampering

In this section we study how much the output of a bounded function can be
biased through a tampering attack, and we will formally prove Theorem 5 and
Theorem 6. For the full proofs of the applications of these two theorems (sketched
in previous section) we refer the reader to the full version of the paper [4].

First we formally define an online tampering process and a tampering source
of randomness (as a result of an online tampering attack performed on a uniform
source of randomness).

Definition 9. A distribution X = (X1, . . . , Xn) over {−1, 1}n is an (efficient)
p-tampering source if there exists an (efficient) tampering algorithm Tam such
that X can be generated in an online fashion as follows: For i = 1, . . . , n,

Xi =

{
Tam(1n, X1, . . . , Xi−1) with probability p,

U i1 with probability 1− p,

where U i1 denotes a uniformly random bit over {−1, 1}. In other words, with
probability p, Tam gets to tamper the next bit with the knowledge of the previous
bits (after the tampering)8. The tampering algorithm Tam might also receive an

8 In a stronger variant of tampering attacks, the attacker might be completely stateful
and memorize the original values of the previous bits before and after tampering and
also the places where the tampering took place, and use this extra information in its
future tampering. Using the weaker stateless attacker of Definition 9 only makes our
negative results stronger. Our positive results hold even against stateful attackers.



auxiliary input and use it in its tampering strategy.9 We use UTam,p
n to denote

the p-tampered source obtained by the above tampering process with tampering
algorithm Tam.

Note that in the definition above, the tampering algorithm Tam might be
completely oblivious to the parameter p. By referring to Tam as a p-tampering
algorithm, we emphasize on the fact that Tam’s algorithm might depend on p.

Remark 10. Every p-tampering source is also a Santha-Vazirani source [35] with
parameter δ = (1− p)/2. In fact, it is not hard to see that without the efficiency
consideration, the two notions are equivalent.

3.1 Preliminaries: Calculating the Effect of a Single Variable

Recall that the Fourier coefficients of any function f : {−1, 1}n → [−1, 1] are

indexed by the subsets S of [n] and are defined as f̂(S) := Ex[f(x)χS(x)], where

χS(x) :=
∏
i∈S xi. Note that the Fourier coefficient of the empty set f̂(∅) is

simply the expectation E[f(Un)].
For every prefix x≤i = (x1, . . . , xi), let fx≤i

: {−1, 1}n−i → [−1, 1] be the
restriction of f on x≤i, i.e., fx≤i

(xi+1, . . . , xn) := f(x1, . . . , xn). We note that
the variables of fx≤i

are named (xi+1, . . . , xn) and thus the Fourier coefficients

of fx≤i
are f̂x≤i

(S)’s with S ⊆ {i + 1, . . . , n}. The following basic identity can
be proved by straightforward calculation.

f̂x1
(∅) = f̂(∅) + f̂({1}) · x1. (1)

Recall that f̂(∅) and f̂x1
(∅) are simply expectations. One interpretation of the

above identity is that ±f̂({1}) is the change of expectation when we set x1 = ±1.
This is thus useful for analyzing the bias introduced as the result of a tampering
attack.

Using the above identity with a simple induction, we can express f(x) as
a sum of Fourier coefficients of restrictions of f . Namely, f(x) equals to the

expectation f̂(∅) plus the changes in expectation when we set xi bit by bit.

Lemma 11. f(x) = f̂(∅) +
∑n
i=1 f̂x≤i−1

({i}) · xi for every x ∈ {−1, 1}n.

Proof. By expanding f̂x≤j
(∅) = f̂x≤j−1

(∅)+f̂x≤j−1
({j})·xj , (implied by Equation

(1)) and a simple induction on j it follows that:

f(x) = f̂x≤j
(∅) +

n∑
i=j+1

f̂x≤i−1
({i}) · xi,

which proves the lemma.

9 The auxiliary input could, e.g., be the information that the tampering algorithm
receives about the secret state of the tampered party; this information might not be
available at the time the tampering circuit is generated by the adversary.



As a corollary, the above lemma implies that the sum of Fourier coefficients
(of restrictions of f) in absolute value is at least |f(x)| − |f̂(∅)|.

Corollary 12. For every x ∈ {−1, 1}n, it holds that
∑n
i=1

∣∣∣f̂x≤i−1
({i})

∣∣∣ ≥
|f(x)| − |f̂(∅)|.

Proof. By triangle inequality we have

n∑
i=1

∣∣∣f̂x≤i−1
({i})

∣∣∣ =

n∑
i=1

∣∣∣f̂x≤i−1
({i}) · xi

∣∣∣ ≥ ∣∣∣∣∣
n∑
i=1

f̂x≤i−1
({i}) · xi

∣∣∣∣∣
= |f(x)− f̂(∅)| ≥ |f(x)| − |f̂(∅)|

where the second equality uses Lemma 11.

3.2 The Boolean Case

A seminal result by Santha and Vazirani [35] shows that for every balanced
Boolean function f (e.g., a candidate “extractor”), there exists a p-tampering
source X that biases the output of f by at least p. We now present a strength-
ening of this result that additionally shows that if the function f is efficiently
computable, then the source X could be an efficient p-tampering one (and only
needs to use f as a black box). In the language of extractors, our result thus
proves a strong impossibility result for deterministic randomness extraction from
“efficient” Santha-Vazirani sources. Our proof of the generalized result is quite
different (and in our eyes simpler) than classic proofs of the Santha-Vazirani
theorem and may be of independent interest.

In fact, we present two different proofs. The first one achieves optimal bias
p for balanced f , whereas the second uses an extremely simple “lazy greedy”
tampering algorithm that makes only a single query to f and achieves bias p/3
for balanced f .

Theorem 13 (Theorem 5 restated). There exists an oracle machine Tam
with input parameters n and ε < 1 that runs in time poly(n/ε) and for every
n ∈ N and ε ∈ (0, 1), every Boolean function f : {0, 1}n → {−1, 1}, and every
p < 1, for µ = E[f(Un)] it holds that

E[f(UTamf ,p
n )] ≥ µ+ p · (1− |µ| − ε).

Proof (Proof of Theorem 5). Let us first present a proof with an inefficient
tampering algorithm achieving bias p · (1 − |µ|); next, we show how to make
it efficient while not loosing much in bias. On input x≤i−1 = (x1, . . . , xi−1),

Tam sets xi = sgn(f̂x≤i−1
({i})). By Equation (1), f̂x≤i−1

({i}) corresponds to the
change in expectation of fx≤i−1

when setting the value of xi. This amounts to



greedily choosing the xi that increases the expectation. Let X = UTam,p
n . By

applying Lemma 11 and the linearity of expectations, we have

E[f(X)] = f̂(∅) +

n∑
i=1

EX
[
f̂X≤i−1

({i}) ·Xi

]
= f̂(∅) +

n∑
i=1

EX≤i−1

[
f̂X≤i−1

({i}) · E[Xi|X≤i−1]
]
.

Since Tam tampers with the i’th bit with independent probability p, therefore

E[Xi|X≤i−1] = p · sgn(f̂X≤i−1
({i})

and so it holds that

E[f(X)] = f̂(∅) + p ·
n∑
i=1

EX
[∣∣∣f̂X≤i−1

({i})
∣∣∣] = f̂(∅) + p · EX

[
n∑
i=1

∣∣∣f̂X≤i−1
({i})

∣∣∣]
≥ f̂(∅) + p · (1− f̂(∅))

where the last inequality follows by Corollary 12.

Note that the above tampering algorithm Tam in general is not efficient since
computing f̂x≤i−1

({i}) exactly may be hard. However, we show that Tam may

approximate f̂x≤i−1
({i}) using M = Θ(n

2

ε2 · log n
ε ) samples, and set xi according

to the sign of the approximation of f̂x≤i−1
({i}), while still inducing essentially

the same bias. This clearly can be done efficiently given oracle access to f . As

before, let X = UTamf ,p
n denote the corresponding p-tampering source. To lower

bound E[f(X)], we note that the only difference from the previous case is that

Tam(1n, x≤i−1) is no longer always outputting sgn(f̂x≤i−1
({i})). Nevertheless,

we claim that for every x<i it holds that

f̂x≤i−1
({i}) · E[Xi|X≤i−1 = x≤i−1] ≥ p ·

(
|f̂x≤i−1

({i})| − ε/n
)

since either (i) |f̂x≤i−1
({i})| ≥ ε/2n in which case (by a Chernoff bound) Tam

outputs sgn(f̂x≤i−1
({i})) with probability at least 1−ε/2n, or (ii) |f̂x≤i−1

({i})| <
ε/2n in which case the inequality holds no matter what Tam outputs since
|E[Xi|X≤i−1 = x≤i−1]| ≤ p. A lower bound on E[f(X)] then follows by the
same analysis as before:

E[f(X)] ≥ f̂(∅) + p ·
n∑
i=1

EX
[∣∣∣f̂X≤i−1

({i})
∣∣∣− ε/n] ≥ µ+ p · (1− |f̂(∅)| − ε).

Before presenting the second proof, we state the following lemma, which fol-
lows similarly to lemma 11, but instead it relies on a squared version of Equation
(1). See the full version for a proof.



Lemma 14. For every x ∈ {−1, 1}n,

f(x)2 = f̂(∅)2 +

n∑
i=1

(
f̂x≤i−1

({i})2 + 2f̂x≤i−1
(∅) · f̂x≤i−1

({i}) · xi
)
.

We continue to present the second proof using a “lazy greedy” tampering
algorithm that makes a single query to f and achieves bias p/3 for balanced f .

Theorem 15. There exists an oracle machine Tam that makes a single query
to its oracle such that for every n ∈ N , every Boolean function f : {0, 1}n →
{−1, 1}, and every p < 1, for µ = E[f(Un)] it holds that

E[f(UTamf ,p
n )] ≥ µ+ p · (1− µ2)/3.

Proof. We consider a lazy greedy tampering algorithm LTam that on input x≤i−1
= (x1, . . . , xi−1), samples uniformly random (x′i, . . . , x

′
n)← Un−i+1, queries y =

f(x1, xi−1, x
′
i, . . . , x

′
n), and outputs Xi = x′i if y = 1 and Xi = −x′i if y = −1.

Namely, LTam samples a random completion of x≤i−1 and output the sampled
bit x′i iff the sample evaluates to 1.

Interestingly, this simple lazy greedy LTam implicitly “plays the first Fourier
coefficient” in expectation in the sense that E[Tam(x≤i−1)] = f̂x≤i−1

({i}).

Claim. For every x≤i−1, E[LTam(x≤i−1)] = f̂x≤i−1
({i}).

Proof. Let Xi = LTam(x≤i−1). We have E[Xi] = Ex≥i←Un−i+1
[f(x) · xi] =

f̂x≤i−1
({i}).

To analyze LTam, we derive two equalities analogous to that in the proof of
Theorem 5, and the theorem follows by combining the two equalities. First, since
LTam gets to tamper with bit i with independent probability p and E[LTam(x≤i−1)]

= f̂x≤i−1
({i}), by Lemma 3.3, we have that E[Xi|X≤i−1] = p · f̂X≤i−1

({i}). Thus,

E[f(X)] = f̂(∅) + p ·
n∑
i=1

EX
[
f̂X≤i−1

({i})2
]
. (2)

Similarly, by applying Lemma 14 and the linearity of expectations, we have

E[f(X)2] = f̂(∅)2 +

n∑
i=1

(
EX [f̂X≤i−1

({i})2]
)

+

n∑
i=1

(
2EX≤i−1

[f̂X≤i−1
(∅) · f̂X≤i−1

({i}) · E[Xi|X≤i−1]]
)
.

Simplifying using the fact that f is Boolean, the trivial bound |f̂X≤i−1
(∅)| ≤ 1,

and E[Xi|X≤i−1] = p · f̂X≤i−1
({i}) gives

1 ≤ f̂(∅)2 + (1 + 2p) ·
n∑
i=1

EX [f̂X≤i−1
({i})2]. (3)



Plugging Equation (3) in Equation (2) yields

E[f(X)] ≥ f̂(∅) +
p

1 + 2p

(
1− f̂(∅)2

)
≥ µ+ p ·

(
1− µ2

)
/3,

which completes the proof of Theorem 15.

3.3 Tampering with Bounded-Value Functions—The General Case

We further consider the more general case of tampering non-Boolean, bounded-
value functions. We present an efficient tampering algorithm that biases the
expectation of the function by an amount linear in the variance of the function.

Theorem 16 (Theorem 6 restated). There exists an efficient oracle machine
Tam such that for every n ∈ N , every bounded-value function f : {0, 1}n →
[−1, 1], and every p < 1,

E[f(UTamf ,p
n )] ≥ E[f(Un)] +

p ·Var[f(Un)]

5
.

We prove Theorem 5 using lazy greedy tampering algorithm again. As before,
we let LTam take a single sample, and make decision based on the outcome of
the sample, but since f is not Boolean, we make randomized decision based on
the function value on the sample. Specifically, on input x≤i−1 = (x1, . . . , xi−1):

– LTam samples uniformly random (x′i, . . . , x
′
n)← Un−i+1, and computes y =

f(x1, xi−1, x
′
i, . . . , x

′
n).

– LTam outputs Xi = x′i with probability (1 + y)/2, and Xi = −x′i with
probability (1− y)/2. Note that Xi has expectation E[Xi] = y · x′i.

The following claim says that LTam “implicitly plays the first Fourier coefficient”
in expectation.

Claim. For every x≤i−1 ∈ {−1, 1}i−1, E[LTam(x≤i−1)] = f̂x≤i−1
({i}).

Proof. Let Xi = LTam(x≤i−1). We have:

E[Xi] = Ex≥i←Un−i+1
[f(x) · xi] = f̂x≤i−1

({i}).

Let X = ULTamf ,p
n . Also, let the mean E[f(Un)] = µ, the second moment

E[f(Un)2] = ν, and the variance Var[f ] = σ2 be denoted so. The analyze of
the lazy greedy algorithm LTam for the non-Boolean case is significantly more
involved. We first follow an analogous step in the analysis of Boolean case to
derive an inequality between E[f(X)] and E[f(X)2], then rely on a potential
function analysis to derive a second inequality relation between E[f(X)] and
E[f(X)2], and then derive a lower bound on E[f(X)] by combining the two. The
two inequalities are stated in the following lemmas.

Lemma 17. E[f(X)]− µ ≥ p
1+2p ·

(
E[f(X)2]− ν + σ2

)
.



Lemma 18. E[f(X)] + E[f(X)2]
2 + E[f(X)2]2

4 ≥ µ+ ν
2 + ν2

4 .

We first use the above two lemmas to show that E[f(X)] − µ ≥ (pσ2)/5,
which implies that E[f(X)] ≥ µ+ p ·Var[f ]/5, as desired. If E[f(X)2] ≥ ν, then
Lemma 17 implies

E[f(X)]− µ ≥ p

1 + 2p
· σ2 ≥ 1

5
· pσ2.

For the case that E[f(X)2] ≤ ν, let α , ν − E[f(X)2] ≥ 0. Lemma 18 implies

E[f(X)]− µ ≥ 1

2
(ν − E[f(X)2]) +

1

4
(ν2 − E[f(X)2]2) ≥ α

2

which together with Lemma 17 implies that

[f(X)]− µ ≥ max

{
p

1 + 2p
·
(
σ2 − α

)
,
α

2

}
≥ p

1 + 4p
≥ pσ2

5
.

Now we prove Lemmas 17 and 18. The proof of Lemma 17 is a generalization of
the analysis for biasing Boolean functions.

Proof (Proof of Lemma 17). By applying Lemma 11 and the linearity of expec-
tations, we have

E[f(X)] = f̂(∅) +

n∑
i=1

EX
[
f̂X≤i−1

({i}) ·Xi

]
= f̂(∅) +

n∑
i=1

EX≤i−1

[
f̂X≤i−1

({i}) · E[Xi|X≤i−1]
]
.

Since LTam gets to tamper with bit i with independent probability p, by Lemma 3.3
we have that E[Xi|X≤i−1] = p · f̂X≤i−1

({i}). Thus,

E[f(X)] = f̂(∅) + p ·
n∑
i=1

EX
[
f̂X≤i−1

({i})2
]
. (4)

Similarly, by applying Lemma 14 and the linearity of expectations, we have

E[f(X)2] = f̂(∅)2 +

n∑
i=1

(
EX [f̂X≤i−1

({i})2]
)

+

n∑
i=1

(
2EX≤i−1

[f̂X≤i−1
(∅) · f̂X≤i−1

({i}) · E[Xi|X≤i−1]]
)
.

Simplifying using the trivial bound |f̂X≤i−1
(∅)| ≤ 1 and E[Xi|X≤i−1] = p ·

f̂X≤i−1
({i}) gives

E[f(X)2] ≤ f̂(∅)2 + (1 + 2p) ·
n∑
i=1

EX [f̂X≤i−1
({i})2]. (5)



The lemma follows by combining Equations (4) and (5):

E[f(X)] ≥ f̂(∅) +
p

1 + 2p

(
E[f(X)2]− f̂(∅)2

)
= µ+

p

1 + 2p

(
E[f(X)2]− ν + σ2

)
where the last equality uses the fact that f̂(∅)2 = µ2 = ν − σ2.

The proof of Lemma 18 is less trivial. Our key observation is the following
useful property of the lazy greedy tampering algorithm LTam: consider the func-
tion f together with an arbitrary function g : {−1, 1}n → [−1, 1] (ultimately,
we shall set g(x) = f(x)2, but in the discussion that follows, g can be com-
pletely unrelated to f). While intuitively we expect the expectation of f to be
increasing after tampering, it is clearly possible that the tampering causes the
expectation of g to decrease. Nevertheless, we show that for a properly defined
potential function combining the expectations of f and g, the potential is guar-
anteed to be non-decreasing after tampering. Namely, we prove the following
lemma whose proof can be found in the full version of the paper.

Lemma 19. Let g : {−1, 1}n → [−1, 1] be an arbitrary function. For every
prefix x≤i ∈ {−1, 1}i, define a potential

Φ(x≤i) := f̂x≤i
(∅) +

ĝx≤i
(∅)

2
+
ĝx≤i

(∅)2

4
,

and let Φ := Φ(x≤0). Then it holds that E[Φ(X)] ≥ Φ.

Lemma 18 now follows easily.

Proof (Proof of Lemma 18). By applying Lemma 19 with g = f2 and noting
that ĝ(∅) = ν, we have

E[f(X)] +
E[f(X)2]

2
+

E[f(X)2]2

4
≥ µ+

ν

2
+
ν2

4
.
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