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Abstract. Information theoretically secure multi-party computation (MPC)
is a central primitive of modern cryptography. However, relatively little
is known about the communication complexity of this primitive.
In this work, we develop powerful information theoretic tools to prove
lower bounds on the communication complexity of MPC. We restrict our-
selves to a concrete setting involving 3-parties, in order to bring out the
power of these tools without introducing too many complications. Our
techniques include the use of a data processing inequality for residual in-
formation — i.e., the gap between mutual information and Gács-Körner
common information, a new information inequality for 3-party protocols,
and the idea of distribution switching by which lower bounds computed
under certain worst-case scenarios can be shown to apply for the general
case.
Using these techniques we obtain tight bounds on communication com-
plexity by MPC protocols for various interesting functions. In particular,
we show concrete functions that have “communication-ideal” protocols,
which achieve the minimum communication simultaneously on all links
in the network. Also, we obtain the first explicit example of a function
that incurs a higher communication cost than the input length in the se-
cure computation model of Feige, Kilian and Naor [17], who had shown
that such functions exist. We also show that our communication bounds
imply tight lower bounds on the amount of randomness required by MPC
protocols for many interesting functions.

1 Introduction

Information theoretically secure multi-party computation has been a central
primitive of modern cryptography. The seminal results of Ben-Or, Goldwasser,
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and Wigderson [3] and Chaum, Crépeau, and Damgård [9] showed that infor-
mation theoretically secure function computation is possible between parties
connected by pairwise, private links as long as only a strict minority may col-
lude in the honest-but-curious model (and a strictly less than one-third minority
may collude in the malicious model). Since then, several protocols have improved
the efficiency of these protocols.

However, relatively less is known about lower bounds on the amount of com-
munication required by a secure multi-party computation protocol, with a few
notable exceptions [31,21,10,17]. In fact, [28] shows that establishing strong com-
munication lower bounds (even with restrictions on the number of rounds) would
imply breakthrough lower bound results for other well-studied problems like
private-information retrieval and locally decodable codes. Further, due to the
standard upper bounds on the communication needed in a secure multi-party
computation protocol [3,9], such lower bounds would imply non-trivial circuit
complexity lower bounds — a notoriously hard problem in theoretical computer
science. The goal of this work is to develop tools to tackle the difficult problem
of lower bounds for communication in secure multi-party computation, even if
they do not immediately have direct implications to circuit complexity or locally
decodable codes.

In this work we develop novel information-theoretic tools to obtain lower
bounds on the communication complexity of secure computation. Our tools have
connections with information-complexity techniques developed in the context of
communication complexity and related problems. In particular, all these tools
are related to notions of “common information” introduced by Gács-Körner [22]
and Wyner [43].3

We shall restrict our study to a concrete setting that brings out the power of
these tools without introducing too many additional complications. Our setting
involves 3 parties (with security against corruption of any single party) of which
only two parties have inputs, X and Y , and only the third party produces an
output Z as a (possibly randomized) function of the inputs. This class of func-
tions is similar to that studied in [17], but our protocol model is more general
(since it allows fully interactive communication), making it harder to establish
lower bounds. Also, our lower bounds apply to the semi-honest setting, where
security is required only against passive corruption.

Results and Techniques. We study the setting shown in Figure 1. We obtain
lower bounds on the expected number of bits that need to be exchanged between
each pair of parties when securely evaluating a (possibly randomized) function
of two inputs, so that Alice and Bob feed the inputs to the function, and Charlie
receives the output from the function. In fact, our bounds are on the entropy

3 In communication complexity and related problems, the lower bound techniques re-
late to Wyner common information [39,6], whereas the tools in this work are more
directly related to Gács-Körner common information. Wyner common information
and Gács-Körner common information have been generalized to a measure of corre-
lation represented as the “tension region” in [40].
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Fig. 1 A three-party secure computation problem. Alice (party-1) has inputX and Bob
(party-2) has Y . We require that (i) Charlie (party-3) obtains as output a randomized
function of the other two parties’ inputs, distributed as pZ|XY , (ii) Alice and Bob learn
no additional information about each other’s inputs, and (iii) Charlie learns nothing
more about X,Y than what is revealed by Z. All parties can talk to each other, over
multiple rounds over bidirectional pairwise private links.

of the transcript between each pair,4 and hence hold even when the protocol is
amortized over several instances with independent inputs. Further, often these
bounds do not depend on the input distribution (as long as the distribution has
full support), and hold even if the protocol is allowed to depend on the input
distribution.

At a high-level, the ingredients in deriving our lower bounds are the following:

– Firstly, we observe that, since Alice and Bob do not obtain any outputs, they
are both forced to reveal their inputs fully (up to equivalent inputs) to the
rest of the system, and further, Charlie’s output depends on the inputs only
through all the communication he has with the rest of the system. Combined
with the privacy requirements, this immediately leads to a naïve lower bound:
specifically, writing X,Y, Z as X1, X2, X3, we have H(Mij) ≥ H(Xi, Xj |Xk),
where {i, j, k} = {1, 2, 3}.5
We strengthen the naïve lower bounds by relying on a “data-processing in-
equality” for residual information — i.e., the gap between mutual-information
and (Gács-Körner) common information — which lets us relate the residual
information between the messages to the residual information between the
inputs/outputs. This bound is given in Theorem 1.

– We can further improve the above lower bounds using a new tool, called
distribution switching. The key idea is that the security requirement forces the

4 The entropy bounds translate to bounds on the expected number of bits communi-
cated, when we require that the messages on the individual links are encoded using
(possibly adaptively chosen) prefix-free codes. See the full version [14] for details.

5 We point out a simple example for which one can obtain a tight bound from this
naïve bound: addition (in any group) requires one group element to be communi-
cated between every pair of players, even with amortization over several independent
instances. Previous lower bounds for secure evaluation of addition, while considering
an arbitrary number of parties, either restricted themselves to bounding the number
of messages required [21,10], or relied on non-standard security requirements (like
“unstoppability” [21]).



distribution of the transcript on certain links to be independent of the inputs.
Hence, we can optimize our bounds over all input distributions having full
support. Further, this shows that even if the protocol is allowed to depend
on the input distribution, our bounds (which depend only on the function
being evaluated) hold for every input distribution that has full support over
the input domain. The resulting bound is summarised in Theorem 2.

– A different improvement comes from exploiting the fact that in a protocol, the
transcripts have to be generated by the parties interactively, rather than be
created by an omniscient “dealer.” An important technical contribution of this
work is to provide a new tool towards this, in the form of a new information
inequality for 3-party interactive protocols (Lemma 4). We use this along with
the idea of distribution switching to significantly improve the above lower
bounds by optimizing them using appropriate distributions of inputs. In fact,
we can take the different terms in our bounds and optimize each of them
separately using different distributions over the inputs. The resulting bounds
(Theorem 3 and Theorem 4) are often stronger than what can be obtained by
considering a single input distribution for the entire expression.

The resulting bounds are summarized in Theorem 1, Theorem 2, Theorem 3
and Theorem 4. We remark that unlike most of the existing results (for e.g. the
bounds in [21] for summation (mod 2)), our lower bounds are not restricted to
specific functions, but are applicable to all 3-party functions (except Theorem 2
and Theorem 4, which place some restrictions on the functions). To illustrate the
use of our lower bounds, we apply them to several interesting example functions.
In particular, we show the following:

– We analyze secure protocols for a few functions – group-add, controlled-
erasure and remote-ot – and, applying our lower bounds, show that these
protocols achieve optimal communication complexity simultaneously on each
link. We call such a protocol a communication-ideal protocol. We leave it open
to characterize which functions have communication-ideal protocols.

– We show an explicit deterministic function f : {0, 1}n × {0, 1}n → {0, 1}n−1
which has a communication-ideal protocol in which Charlie’s total commu-
nication cost is (and must be at least) 3n − 1 bits. In contrast, [17] showed
that there exist functions f : {0, 1}n × {0, 1}n → {0, 1}, for which Charlie
must receive at least 3n − 4 bits, if the protocol is required to be in their
non-interactive model. (Note that our bound is incomparable to that of [17],
since we require the output of our function to be longer; on the other hand,
our bound uses an explicit function, and continues to hold even if we allow
unrestricted interaction.)

In the full version of this paper [14], we extend the above results to lower bounds
on a couple of related quantities. Firstly, we identify a multi-secret sharing prim-
itive that is interesting on its own right, but also has the property that lower
bounds on its share sizes serve as lower bounds for communication complexity
of MPC protocols; some of our preliminary lower bounds are, in fact, bounds
on the share sizes for such a multi-secret sharing scheme. Secondly, we show



that our lower bounds for communication complexity also yield lower bounds on
the amount of randomness needed in secure computation protocols. We analyze
secure protocols for several natural functions, and prove that these protocols are
randomness-optimal, i.e., they use the least amount of randomness.

Related Work. Communication complexity of multi-party computation with-
out security requirements has been widely studied since [44] (see [33]), and more
recently has seen the use of information-theoretic tools as well, in [7] and subse-
quent works. Independently, in the information theory literature communication
requirements of interactive function computation have been studied (e.g. [37]).

In secure multi-party computation, there has been a vast literature on information-
theoretic security, focusing on building efficient protocols, as well as character-
izing various aspects like corruption models that admit secure protocols (e.g.
[3,9,8,27,20,26]) and the number of rounds of interaction needed (e.g. [18,24,19,38,30]).
Among other things, these results upper-bounded the communication complex-
ity of multi-party secure computation in terms of the circuit complexity of the
computation. Recently, [1] showed that, in general this upper bound is not tight
by showing that all functions can be securely evaluated with sub-exponential
communication (in our model of 3-party computation protocols), whereas most
functions have exponential circuit complexity.

But lower-bounding communication complexity has received much less atten-
tion. For 2-party secure computation with security against passive corruption of
one party (when the function admits such a protocol), communication complex-
ity was combinatorially characterized in [31]. [21,10] gave tight lower and upper
bounds on the number of messages needed for secure computation of addition
(mod 2) by n parties. Further, relying on a stronger corruption model (fail-stop
corruption), [21] also argued a lower bound for the amortized communication
complexity of secure addition over any finite field. Feige et al. [17] obtained a
lower bound on the communication complexity for a restricted class of 3-party
protocols; along with positive results, they gave a modest lower bound for com-
munication needed for evaluating random functions in this model. The difficulty
of obtaining general lower bounds was pointed out by Ishai and Kushilevitz [28],
who related such lower bounds to lower bounds for locally decodable codes and
private information retrieval protocols. The connection to private information
retrieval protocols was recently used in [1] to, among other things, derive the
best known general upper bound on communication for Boolean functions in
the model of [17]. The related question of how much randomness is required for
secure computation seems to have received even less attention, but again, with
some notable exceptions [32,5,23,34].

We remark that in a model with computational security, under computational
hardness assumptions, the communication complexity of secure computation is
linear in the input size, relying on fully homomorphic encryption ([25] and sub-
sequent works) or exponential computation by the parties [36]. Also, in a model
with exponential amount of correlated randomness shared among the parties,
such a result was obtained in [29].



Information-theoretic tools have been successfully used in deriving bounds in
various cryptographic problems like key agreement (e.g. [35,11]), secure 2-party
computation (e.g. [15]) and secret-sharing and its variants (e.g. [2] and [4]). In
this work, we rely on information-theoretic tools developed in [42,40], which also
considered cryptographic problems. Some preliminary observations leading to
this work appeared in [13].

2 Preliminaries

Notation. We write pX to denote the distribution of a discrete random variable
X; pX(x) denotes Pr[X = x]. When clear from the context, the subscript of pX
will be omitted. The conditional distribution denoted by pZ|U specifies Pr[Z =
z|U = u], for each value z that Z can take and each value u that U can take. A
randomized function of two variables, is specified by a probability distribution
pZ|XY , where X,Y denote the two input variables, and Z denotes the output
variable.

For random variables T,U, V, we write the Markov chain T − U − V to
indicate that T and V are conditionally independent conditioned on U : i.e.,
I(T ;V |U) = 0. All logarithms are to the base 2 and entropies are in bits.
Protocols. A 3-party protocol Π is specified by a collection of “next message
functions” (Π1, Π2, Π3) which probabilistically map a state of the protocol to
the next state (in a restricted manner), and output functions (Πout

1 , Πout
2 , Πout

3 )
used to define the outputs of the parties as probabilistic functions of their views.
We shall also allow the protocol to depend on the distribution of the inputs to
the parties. (This would allow one to tune a protocol to be efficient for a suitable
input distribution. Allowing this makes our lower bounds stronger; on the other
hand, none of the protocols we give for our examples require this flexibility.)

Without loss of generality, the state of the protocol consists only of the inputs
received by each party and the transcript of the messages exchanged so far.6 We
denote the final transcripts on the three links, after executing protocol Π on its
specified input distribution by MΠ

12,M
Π
23 and MΠ

31. When Π is clear from the
context, we simply writeM12 etc. We defineM1 = (M12,M31) as the transcripts
that party 1 can see; M2 and M3 are defined similarly. We define the view of the
ith party, Vi to consist of Mi and that party’s inputs and outputs (if any).

It is easy to see that a protocol, along with an input distribution, fully defines
a joint distribution over all the inputs, outputs and the joint transcripts on all
the links.
Secure Computation. We consider three party computation functionalities,
in which Alice and Bob (parties 1 and 2) receive as inputs the random variables
X ∈ X and Y ∈ Y, respectively, and Charlie (party 3) produces an output
Z ∈ Z distributed according to a specified distribution pZ|XY . The sets X , Y
6 Since the parties are computationally unbounded, there is no need to allow private
randomness as part of the state; randomness for a party can always be resampled at
every round conditioned on the inputs, outputs and messages in that party’s view.



and Z are always finite. In secure computation, we shall consider the inputs to
the computation to come from a distribution pXY over X × Y.

A (perfectly) secure computation protocolΠ(pXY , pZ|XY ) = (Π1, Π2, Π3, Π
out
3 )

for (pXY , pZ|XY ) is a protocol which satisfies the following conditions:

– Correctness: Output of Charlie, is distributed according to pZ|X=x,Y=y, where
x, y are the inputs to Alice and Bob

– Privacy: The privacy condition corresponds to “1-privacy”, wherein at most
one party is passively corrupt. Corresponding to security against Alice, Bob
and Charlie, respectively, we have the following three Markov chains. V1−X−
(Y, Z), V2 − Y − (X,Z) and V3 − Z − (X,Y ). Equivalently (see Footnote 6),
I(M1; (Y,Z)|X) = I(M2; (X,Z)|Y ) = I(M3; (X,Y )|Z) = 0.

Intuitively, the privacy condition guarantees that even if one party (say Alice)
is curious, and retains its view from the protocol (in particular, M1), this view
reveals nothing more to it about the inputs and outputs of the other parties
(namely, Y,Z), than what its own inputs and outputs reveal (as long as the
other parties erase their own views). In other words, a curious party may as well
simulate a view for itself based on just its inputs and outputs, rather than retain
the actual view it obtained from the protocol execution.

For simplicity, we prove all our results for perfect security as defined above;
this is also the setting for classical positive results like that of [3]. But in fact,
we expect all our bounds to extend to the setting of statistical security as well
(following [41,40] who extend similar results to the statistical security case).7
Also, the above security requirements are for an honest execution of the protocol
(corresponding to honest-but-curious or passive corruption of at most one party).
The lower bounds derived in this model typically continue to hold for active
corruption as well (since for many functionalities, every protocol secure against
active corruption is a protocol secure against passive corruption); in this case,
when a party uses a broadcast channel (as would be necessary in our setting,
where 1 out of 3 parties is corrupted), it is counted as sending individual messages
to every other party.

Communication Complexity and Entropy. A standard approach to lower-
bounding the number of bits in a string is to lower-bound its entropy. However, in
an interactive setting, a party sees the messages in each round, rather than just
a concatenation of all the bits sent over the entire protocol. In a setting where
we allow variable length messages, this would seem to allow communicating
more bits of information than the length of the transcript itself. But this allows
the parties to learn when the message transmitted in a round ends, implicitly
inserting an end-of-message marker into the bit stream. To account for this,

7 We remark that our bounds do not apply to a relaxed security setting sometimes con-
sidered in the information theory literature: there the error in computation/security
is only required to go to 0 as the size of the input grows to infinity. [12] gives an
example where there is a strict gap between the communication complexity under
this relaxed setting and the perfect security setting of this paper.



one can require that the message sent in every round is a codeword in a prefix-
free code. (The code itself can be dynamically determined based on previous
messages exchanged over the link.) It can be shown that, with this requirement,
the number of bits communicated in each link is indeed lower-bounded by the
entropy of the transcript in that link.
Normal Form. For a pair (pXY , pZ|XY ), define the relations x ∼= x′, y ∼= y′

and z ∼= z′ as follows.

1. For any x, x′ ∈ X , let Sx,x′ = {y ∈ Y : pXY (x, y) > 0, pXY (x
′, y) > 0}. We say

that x ∼= x′, if ∀y ∈ Sx,x′ and z ∈ Z, we have pZ|XY (z|x, y) = pZ|XY (z|x′, y).
2. For any y, y′ ∈ Y, let Sy,y′ = {x ∈ X : pXY (x, y) > 0, pXY (x, y

′) > 0}. We say
that y ∼= y′, if ∀x ∈ Sy,y′ and z ∈ Z, we have pZ|XY (z|x, y) = pZ|XY (z|x, y′).

3. Let S = {(x, y) : pXY (x, y) > 0}. For any z, z′ ∈ Z, we say that z ∼= z′, if
∃c ≥ 0 such that ∀(x, y) ∈ S, we have pZ|XY (z|x, y) = c · pZ|XY (z′|x, y).

A pair (pXY , pZ|XY ) is said to be in normal form if x ∼= x′ ⇒ x = x′, y ∼= y′ ⇒
y = y′, and z ∼= z′ ⇒ z = z′.

It is easy to show (as we do in the full version) that we may assume with-
out loss of generality that (pXY , pZ|XY ) is in normal form since any given
(pXY , pZ|XY ) can be transformed to a (pX′Y ′ , pZ′|X′Y ′) in normal form so that
any secure computation protocol for the former can be transformed to one for
the latter with the same communication costs, and vice versa.
Communication-Ideal Protocol. We say that a protocol Π(pXY , pZ|XY )
for securely computing a randomized function pZ|XY , for a distribution pXY is
communication-ideal if for each ij ∈ {12, 23, 31},

H(MΠ
ij ) = inf

Π′(pXY ,pZ|XY )
H(MΠ′

ij ),

where the infimum is over all secure protocols for pZ|XY with the same distri-
bution pXY . That is, a communication-ideal protocol achieves the least entropy
possible for every link, simultaneously. We remark that it is not clear, a priori,
how to determine if a given function pZ|XY has a communication-ideal protocol
for a given distribution pXY .

Common Information and Residual Information

Gács and Körner [22] introduced the notion of common information to measure
a certain aspect of correlation between two random variables. The Gács-Körner
common information of a pair of correlated random variables (U, V ) can be
defined as H(U u V ), where U u V is a random variable with maximum entropy
among all random variables Q that are determined both by U and by V (i.e.,
there are functions f and g such that Q = f(U) = g(V )). In [40], the gap between
mutual information and common information was termed residual information:
RI(U ;V ) := I(U ;V )−H(U u V ).

In [42], Wolf and Wullschleger identified (among other things) the following
important data processing inequality for residual information.



Lemma 1 ([42]) If T,U, V,W are jointly distributed random variables such that
the following two Markov chains hold: (i) U −T −W , and (ii) T −W −V , then

RI(T ;W ) ≤ RI((U, T ); (V,W )).

The Markov chain conditions above correspond to the requirement that it is
secure (against honest-but-curious adversaries) to require a pair of parties hold-
ing the views (U, T ) and (V,W ), to produce outputs T,W , respectively, because
for the first party, the rest of its view, U , can be simulated based on the out-
put T , independent of the output W (and similarly, for the second party). The
lemma states that under such a secure transformation from views to outputs,
the residual information can only decrease.

It is easy to see that the following is an equivalent definition of residual
information (see [40]).

RI(U ;V ) = min
Q:∃f,g s.t.

Q=f(U)=g(V )

I(U ;V |Q). (1)

The random variable Q which achieves the minimum is, in fact, U u V . Note
that the residual information is always non-negative.

3 Lower Bounds on Communication Complexity

This section is divided into three parts. In Section 3.1, we derive preliminary
lower bounds for secure computation. In each of the subsequent subsections, we
give different improvements of the lower bounds derived in Section 3.1. Omitted
proofs are available in the full version [14].

3.1 Preliminary Lower Bounds

We first state the following basic lemma for any protocol for secure computation.
Similar results have appeared in the literature earlier (for instance, special cases
of Lemma 2 appear in [16,41,13]).

Lemma 2 Suppose (pXY , pZ|XY ) is in normal form. Then, in any secure pro-
tocol Π(pXY , pZ|XY ), the cut isolating Alice from Bob and Charlie must reveal
Alice’s input X, i.e., H(X|M12,M31) = 0. Similarly, H(Y |M12,M23) = 0 and
H(Z|M23,M31) = 0.

Lemma 2 states the simple fact that, for (pXY , pZ|XY ) in normal form, the
information about a party’s input must flow out through the links she/he is part
of, and the information about Charlie’s output must flow in through the links he
is part of. This crucially relies on the fact that Alice and Bob obtain no output,
and Charlie has no input in our model.

We obtain a preliminary lower bound in Theorem 1 below by using the above
lemma and the data-processing inequality for residual information in Lemma 1.
Recall that the assumption below of (pXY , pZ|XY ) being in normal form is with-
out loss of generality.



Theorem 1 Any secure protocol Π(pXY , pZ|XY ), where (pXY , pZ|XY ) is in nor-
mal form, should satisfy the following lower bounds on the entropy of the tran-
scripts on each link.

H(M23) ≥ max{RI(X;Z), RI(X;Y )}+H(Y,Z|X), (2)
H(M31) ≥ max{RI(Y ;Z), RI(X;Y )}+H(X,Z|Y ), (3)
H(M12) ≥ max{RI(X;Z), RI(Y ;Z)}+H(X,Y |Z). (4)

Proof: We shall prove (2). The other two inequalities follow similarly.

H(M23) ≥ max{H(M23|M31), H(M23|M12)}
= max{I(M23;M12|M31), I(M23;M31|M12)}+H(M23|M12,M31) (5)

We can bound the last term of (5) as follows (to already get a naïve bound):

H(M23|M12,M31)
(a)
= H(M23, Y, Z|M12,M31, X)

≥ H(Y,Z|M12,M31, X)
(b)
= H(Y,Z|X),

where (a) follows from Lemma 2 and (b) follows from the privacy against Alice.
Next, we lower bound the first term inside max of (5) by RI(X;Z) as follows.

I(M23;M12|M31) = I(M23M31;M12M31|M31) ≥ RI(M23,M31;M12,M31) (6)

where the inequality follows from (1) by taking Q = M31. Now, by privacy
against Charlie, we have (M23,M31)− Z −X and by privacy against Alice, we
have (M12,M31) − X − Z. Applying Lemma 1 with the above Markov chains,
together with Lemma 2, we get

RI(M23,M31;M12,M31) ≥ RI(Z;X) = RI(X;Z).

Similarly, we can lower-bound the second term inside max of (5) by RI(X;Y ),
completing the proof. �

In the rest of the paper we will restrict our attention to pXY which have full
support. This will allow us to strengthen the preliminary bounds in Theorem 1.

3.2 Improved Lower Bounds via Distribution Switching

To improve the bounds in Theorem 1, we will use a technique we call distribution
switching. This significantly improves the above bounds and leads to one of our
main theorems.

The following lemma states that privacy requirements imply that the tran-
script M12 generated by a secure protocol computing pZ|XY is independent of
both the inputs. Moreover, if the function pZ|XY satisfies some additional con-
straints, then the other two transcripts also become independent of the inputs.
The characteristic bipartite graph of a distribution pXY is defined as a bipartite
graph on vertex set X ∪ Y such that x ∈ X and y ∈ Y have an edge between
them whenever pXY (x, y) > 0. The proof of the following lemma is along the
lines of a similar lemma in [13].



Lemma 3 Consider a function pZ|XY .

1. Suppose that pXY is such that the characteristic bipartite graph of pXY is con-
nected. Then, for any secure protocol Π(pXY , pZ|XY ), we have I(X,Y, Z;M12) =
0.

2. Suppose pXY has full support and pZ|XY satisfies the following condition:

Condition 1. There is no non-trivial partition X = X1∪X2 (i.e., X1∩X2 = ∅
and neither X1 nor X2 is empty), such that if Zk = {z ∈ Z : x ∈ Xk, y ∈
Y, p(z|x, y) > 0}, k = 1, 2, their intersection Z1 ∩ Z2 is empty.

Then, for any secure protocol Π(pXY , pZ|XY ), we have I(X,Y, Z;M31) = 0.
3. Suppose pXY has full support and pZ|XY satisfies the following condition:

Condition 2. There is no non-trivial partition Y = Y1 ∪ Y2 such that if
Zk = {z ∈ Z : x ∈ X , y ∈ Yk, p(z|x, y) > 0}, k = 1, 2, their intersection
Z1 ∩ Z2 is empty.

Then, for any secure protocol Π(pXY , pZ|XY ), we have I(X,Y, Z;M23) = 0.

We note that pXY will have a connected characteristic bipartite graph if it has
full support.

We will now strengthen the lower bounds from Theorem 1. Specifically, we
will argue that even if the protocol is allowed to depend on the input distribution
(as we do here), correctness and privacy conditions will require that the lower
bounds derived for when the distributions of the inputs are changed continue to
hold for the original setting.

Theorem 2 Consider any secure protocol Π(pXY , pZ|XY ), where pXY has full
support and (pXY , pZ|XY ) is in normal form.

1. We have the following strengthening of (4):

H(M12) ≥ max{ sup
pX′Y ′

(RI(X ′;Z ′) +H(X ′, Y ′|Z ′)),

sup
pX′Y ′

(RI(Y ′;Z ′) +H(X ′, Y ′|Z ′))}, (7)

where the sup operations are over pX′Y ′ having full support and the objective
functions are evaluated using pX′Y ′Z′(x, y, z) = pX′Y ′(x, y)pZ|XY (z|x, y).

2. If pZ|XY satisfies Condition 1 of Lemma 3, we have the following strength-
ening of (3):

H(M31) ≥ max{ sup
pX′Y ′

(RI(Y ′;Z ′) +H(X ′, Z ′|Y ′)),

sup
pX′Y ′

(RI(X ′;Y ′) +H(X ′, Z ′|Y ′))}, (8)

where the sup operations are over the same set of pX′Y ′ as in (7).



3. If pZ|XY satisfies Condition 2 of Lemma 3, we have the following strength-
ening of (2):

H(M23) ≥ max{ sup
pX′Y ′

(RI(X ′;Z ′) +H(Y ′, Z ′|X ′)),

sup
pX′Y ′

(RI(X ′;Y ′) +H(Y ′, Z ′|X ′))}, (9)

where the sup operations are over the same set of pX′Y ′ as in (7).

Proof: Notice that any secure protocol Π(pXY , pZ|XY ), where distribution pXY
has full support, continues to be a secure protocol even if we switch the input
distribution to a different one pX′Y ′ . This follows directly from examining the
correctness and privacy conditions required for a protocol to be secure.

By Lemma 3, it follows that the transcript M12 of the protocol (under both
the original and the switched input distributions) must remain independent of
the input data X,Y . Furthermore, since (pXY , pZ|XY ) is in normal form and
pX′Y ′ has full support, (pX′Y ′ , pZ|XY ) is also in normal form. Hence, (7) follows
from (4) of Theorem 1. Similarly, if the function pZ|XY satisfies the condition 1
(resp. 2) of Lemma 3, we can show (8) (resp. (9)) as well. �

3.3 An Information Inequality for Protocols and Improved Lower
Bounds

We can give a different improvement to Theorem 1 by exploiting the fact that, in
a protocol, transcripts are generated by the parties interactively rather than by
an omniscient dealer. Towards this, we derive an information inequality relating
the transcripts on different links in general 3-party protocols, in which parties
do not share any common or correlated randomness or correlated inputs at the
beginning of the protocol.

Lemma 4 In a 3-party protocol, if the inputs to the parties are independent of
each other, then, for {α, β, γ} = {1, 2, 3},

I(Mγα;Mβγ) ≥ I(Mγα;Mβγ |Mαβ).

Further, as in (6), I(Mγα;Mβγ |Mαβ) ≥ RI(Mγα,Mαβ ;Mβγ ,Mαβ). Hence, if the
inputs are independent of each other,

I(Mγα;Mβγ) ≥ I(Mγα;Mβγ |Mαβ) ≥ RI(Mγα,Mαβ ;Mβγ ,Mαβ). (10)

This inequality provides us with a means to exploit the protocol structure
behind the transcripts. For instance, consider a secure protocolΠ(pXpY , pZ|XY ),
where pX , pY have full support and (pXpY , pZ|XY ) is in normal form. We have,

H(M12) = I(M12;M23) +H(M12|M23)

= I(M12;M23) + I(M12;M31|M23) +H(M12|M23,M31)

≥ RI(X;Z) +RI(Y ;Z) +H(X,Y |Z),



where the last inequality usedH(M12|M23,M31) ≥H(X,Y |Z) and I(M12;M31|M23) ≥
RI(Y ;Z) (both as in the proof of Theorem 1) as well as I(M12;M23) ≥ RI(X;Z).
Thus the term max{RI(X;Z), RI(Y ;Z)} in (4) can be replaced by RI(X;Z) +
RI(Y ;Z) for independent inputs.

In the full version we prove the following two theorems by making use of
Lemma 4 and distribution switching:

Theorem 3 The following communication complexity bounds hold for any se-
cure protocol Π(pXY , pZ|XY ), where pXY has full support and (pXY , pZ|XY ) is
in normal form:

H(M23) ≥
(
sup
pX′

RI(X ′;Z ′)

)
+

(
sup
pX′′

H(Y,Z ′′|X ′′)
)
, (11)

H(M31) ≥
(
sup
pY ′

RI(Y ′;Z ′)

)
+

(
sup
pY ′′

H(X,Z ′′|Y ′′)
)
, (12)

H(M12) ≥ max

{
sup
pX′

(
sup
pY ′

RI(Y ′;Z ′)

)
+

(
sup
pY ′′

RI(X ′;Z ′′) +H(X ′, Y ′′|Z ′′)
)
,

sup
pY ′

(
sup
pX′

RI(X ′;Z ′)

)
+

(
sup
pX′′

RI(Y ′;Z ′′) +H(X ′′, Y ′|Z ′′)
)}

, (13)

where the sup operations are over distributions pX′ , pX′′ , pY ′ , pY ′′ having full
support. The terms in the right hand side of (11) are evaluated using the distri-
bution pY of the data Y of Bob, i.e.,

pX′Y Z′(x, y, z) = pX′(x)pY (y)pZ|XY (z|x, y),
pX′′Y Z′′(x, y, z) = pX′′(x)pY (y)pZ|XY (z|x, y).

Similarly, the terms in (12) are evaluated using the distribution pX of the data
X of Alice. The lower bound in (13) does not depend on the distributions pX and
pY of the data. The terms on the top row of (13), for instance, are evaluated
using

pX′Y ′Z′(x, y, z) = pX′(x)pY ′(y)pZ|XY (z|x, y),
pX′Y ′′Z′′(x, y, z) = pX′(x)pY ′′(y)pZ|XY (z|x, y).

When the function satisfies certain additional constraints, we can strengthen the
lower bounds on the H(M23) and H(M31) as follows:

Theorem 4 Consider any secure protocol Π(pXY , pZ|XY ), where pXY has full
support and (pXY , pZ|XY ) is in normal form.

1. Suppose the function pZ|XY satisfies Condition 1 of Lemma 3. Then, we have
the following strengthening of (12).

H(M31) ≥ sup
pX′

((
sup
pY ′

RI(Y ′;Z ′)

)
+

(
sup
pY ′′

H(X ′, Z ′′|Y ′′)
))

, (14)



where the sup operations are over distributions pX′ , pY ′ , pY ′′ having full sup-
port and the terms in the right hand side are evaluated using the distribution

pX′Y ′Z′Y ′′Z′′(x′, y′, z′, y′′, z′′) =

pX′(x′)pY ′(y′)pZ|XY (z
′|x′, y′)pY ′′(y′′)pZ|XY (z

′′|x′, y′′).

2. Suppose the function pZ|XY satisfies Condition 2 of Lemma 3. Then, we have
the following strengthening of (11).

H(M23) ≥ sup
pY ′

((
sup
pX′

RI(X ′;Z ′)

)
+

(
sup
pX′′

H(Y ′, Z ′′|X ′′)
))

, (15)

where the sup operations are over distributions pX′ , pX′′ , pY ′ having full sup-
port and the terms in the right hand side are evaluated using the distribution

pX′Y ′Z′X′′Z′′(x′, y′, z′, x′′, z′′) =

pX′(x′)pY ′(y′)pZ|XY (z
′|x′, y′)pX′′(x′′)pZ|XY (z

′′|x′′, y′).

Note that in Theorem 2, Theorem 3 and Theorem 4, any choice of pX′Y ′ ,
pX′ , pX′′ , pY ′ , pY ′′ (with full support) will yield a lower bound. For a given
function, while all choices do yield valid lower bounds, one is often able to obtain
the best lower bound analytically (as in Theorem 5, where it is seen to be the
best as it matches an upper bound) or numerically (as in Theorem 6).

To summarize, for any secure computation problem (pXY , pZ|XY ), expressed
in the normal form, Theorem 1 gives lower bounds on entropies of transcripts
on all three links. If, in addition, pXY has full support, then for H(M31), our
best lower bound is the larger of (3) and (12); for H(M23), it is the larger of (2)
and (11); and for H(M12), it is the larger of (7) and (13). Further, if pZ|XY
satisfies condition 1 of Lemma 3, then for H(M31), our best lower bound is
the larger of (8) and (14); if pZ|XY satisfies condition 2 of Lemma 3, then for
H(M23), our best lower bound is the larger of (9) and (15).

Our communication lower bounds were developed for protocols whose designs
may take into account the joint distribution of X and Y . However, the right
hand sides of (7) and (13) do not depend on the distribution pXY of the inputs.
Thus, even though we allow the protocol to depend on the distributions, our
lower bound on H(M12) does not. The same is true for (8) and (14) for H(M31)
(resp. (9) and (15) for H(M23)), which apply when the function pZ|XY satisfies
condition 1 (resp. 2) of Lemma 3. When these conditions are not satisfied, the
communication complexity of the optimal protocol may indeed depend on the
distribution of the input (see full version for an example).

4 Application to Specific Functions

In this section we consider a few important examples, and apply our generic
lower bounds from above to these examples, to obtain interesting results. While



many of these results are natural to conjecture, they are not easy to prove (see,
for instance, Footnote 5).
Optimality of the FKN Protocol. Feige et al. [17] provided a generic (non-
interactive) secure computation protocol for all 3-party functions in our model.
This protocol uses a straight-forward (but “inefficient”) reduction from an arbi-
trary function to a variant of the oblivious transfer problem, which we shall call
the remote OT function (defined below), and then gives a simple protocol for this
new function. While the resulting protocol is inefficient for most functions, one
could ask whether the protocol that [17] used for remote OT itself is optimal.
We use our lower bounds from above to show that this is indeed the case.

The remote
(
m
1

)
-OTn

2 function, is defined as follows: Alice’s input X =
(X0, X1, . . . , Xm−1) is made up of m strings each of length n bits, and Bob has
an input Y ∈ {0, 1, . . . ,m − 1}. Charlie wants to compute Z = f(X,Y ) = XY .
The protocol of [17] requires nm bits to be exchanged over the Alice-Charlie (31)
link, n+ logm bits over the Bob-Charlie (23) link and nm+ logm bits over the
Alice-Bob (12) link. In the full version, we prove the following theorem, which
shows that this protocol is optimal and in fact, a communication-ideal protocol.

Theorem 5 Any secure protocol Π(pXY ,remote-ot) for computing remote(
m
1

)
-OTn

2 for inputs X and Y , where pXY has full support, must satisfy

H(M31) ≥ nm, H(M23) ≥ n+ logm, and H(M12) ≥ nm+ logm.

In the full version we also give two other examples (group-add, controlled-
erasure) which have communication-ideal protocols.
Separating Secure and Insecure Computation. A basic question of secure
computation is whether it needs more bits to be communicated than the input-
size itself (which suffices for insecure computation). While natural to expect, it is
not easy to prove this. In their restricted model, [17] showed a non-explicit result,
that for securely computing most Boolean functions on the domain {0, 1}n ×
{0, 1}n, Charlie is required to receive at least 3n− 4 bits, which is significantly
more than the 2n bits sufficient for insecure computation.

remote
(
2
1

)
-OTn

2 from above already gives us an explicit example of a func-
tion where this is true: the total input size is 2n+ 1, but the communication is
at least H(M31)+H(M23) ≥ 3n+1. To present an easy comparison to the lower
bound of [17], we can consider a symmetrized variant of remote

(
2
1

)
-OTn

2 , in
which two instances of remote

(
2
1

)
-OTn

2 are combined, one in each direction.
More specifically, X = (A0, A1, a) where A0, A1 are of length (n − 1)/2 (for an
odd n) and a is a single bit; similarly Y = (B0, B1, b); the output of the function
is defined as an (n − 1) bit string f(X,Y ) = (Ab, Ba). Considering (say) the
uniform input distribution over X,Y , the bounds for remote

(
2
1

)
-OTn

2 add up
to give us H(M31) ≥ 3(n− 1)/2 + 1 and H(M23) ≥ 3(n− 1)/2 + 1, so that the
communication with Charlie is lower-bounded by H(M31) +H(M23) ≥ 3n− 1.

This compares favourably with the bound of [17] in many ways: our lower
bound holds even in a model that allows interaction; in particular, this makes the



gap between insecure computation (n− 1 bits in our case, 2n bits for [17]) and
secure computation (about 3n bits for both) somewhat larger. More importantly,
our lower bound is explicit (and tight for the specific function we use), whereas
that of [17] is existential. However, our bound does not subsume that of [17],
who considered Boolean functions. Our results do not yield a bound significantly
larger than the input size, when the output is a single bit. It appears that this
regime is more amenable to combinatorial arguments, as pursued in [17], rather
than information theoretic arguments.
Communication Complexity of Securely Computing and. We define the
3-party and function as follows: Alice has an input bit X, Bob has an input bit
Y and Charlie should obtain Z = f(X,Y ) = X ∧ Y . In the full version, we
compute the following lower bound.

Theorem 6 Any secure protocol Π(pXY ,and) for computing and for inputs X
and Y , where pXY has full support over {0, 1}n × {0, 1}n, must satisfy

H(M31) ≥ n log(3), H(M23) ≥ n log(3), and H(M12) ≥ n(1.826).

The best known protocol for and (due to [17]) achieves H(M12) = 1 + log(3),
H(M23) = H(M31) = log(3). Our lower bounds on H(M31) and H(M23) match
this, but there is a gap for H(M12): an upper bound of 1+log(3) ≈ 2.585 against
a lower bound of 1.826. Closing this gap remains an open problem.

5 Conclusion

In this work we presented new tools to obtain lower bounds on the communica-
tion complexity of secure 3-party computation, and showed that they yield tight
bounds for interesting examples. However, the general problem of obtaining tight
lower bounds for communication complexity of secure computation is wide open;
indeed, their implications to circuit lower bounds presents a “barrier” to obtain-
ing super-linear bounds for explicit functions. We propose a possibly easier open
problem: do there exist Boolean functions with super-linear communication com-
plexity for secure computation? Note that lower bounds on circuit complexity do
not directly translate to lower bounds on communication complexity of secure
computation, as established by a sub-exponential upper bound of 2Õ(

√
n) for the

latter [1]. Though it is plausible that for random Boolean functions, the actual
communication cost is 2Ω(nε) for some ε > 0, none of the current techniques
appear capable of delivering such a result.
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