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Abstract. We state a switching lemma for tests on adversarial responses
involving bilinear pairings in hard groups, where the tester can effectively
switch the randomness used in the test from being given to the adversary
at the outset to being chosen after the adversary commits its response.
The switching lemma can be based on any k-linear hardness assumptions
on one of the groups. In particular, this enables convenient information
theoretic arguments in the construction of sequence of games proving
security of cryptographic schemes, mimicking proofs and constructions
in the random oracle model.
As an immediate application, we show that the computationally-sound
quasi-adaptive NIZK proofs for linear subspaces that were recently in-
troduced [JR13b] can be further shortened to constant-size proofs, inde-
pendent of the number of witnesses and equations. In particular, under
the XDH assumption, a length n vector of group elements can be proven
to belong to a subspace of rank t with a quasi-adaptive NIZK proof
consisting of just a single group element. Similar quasi-adaptive aggre-
gation of proofs is also shown for Groth-Sahai NIZK proofs of linear
multi-scalar multiplication equations, as well as linear pairing-product
equations (equations without any quadratic terms).

Keywords: NIZK, bilinear pairings, quasi-adaptive, Groth-Sahai, Ran-
dom Oracle, IBE, CCA2.

1 Introduction

Testing pairing equations in bilinear groups is a fundamental component of nu-
merous cryptographic schemes spanning public key encryption schemes, signa-
tures, zero knowledge proofs and so on. We state and prove a switching lemma
for testing pairing equations in bilinear groups, where an adversary is given some
random group elements from one of the groups, and the pairing test (of equality
and/or inequality) is performed on adversary’s output and the same random
group elements. We show that the tester can replace the random group elements
in the test with a new set of fresh random group elements, effectively mimick-
ing the behavior of a random oracle. This switching lemma can be based on
any k-linear hardness assumptions on one of the groups. This not only enables
convenient information theoretic arguments in the construction of sequence of



games proving security of cryptographic schemes, but also allows more efficient
protocols reminiscent of the Fiat-Shamir paradigm using random oracles [FS86].

Fiat-Shamir paradigm is best illustrated by the conversion of 3-round sigma
protocol [Dam] for proof of knowledge (PoK) of discrete logarithms to a random
oracle based NIZK. Consider an example where the prover is trying to prove
possession of the discrete logarithm x of a public value gx. In the first round
the prover commits to a random value r by sending gr. In response, the verifier
generates a fresh random value c and sends to the prover. The prover then
responds with r+cx. This constitutes an honest verifier zero-knowledge PoK. In
transforming this to a NIZK, a public random oracle H is used and the prover
just transmits (gr, r +H(gr, gx) · x). Essentially the random oracle induces the
effect of a ‘fresh’ randomness that can be used for verification and is not under
any effective control of the prover. In this paper we create an analogous effect
in the standard model using the hardness of k-linear problems (such as DDH
and DLIN) in bilinear groups. We show that even if the random testing values
are public and hence known to the prover, during verification one can switch
to freshly generated testing values with negligible change in the probability of
success of the verification.

As an immediate application, we show that the computationally-sound quasi-
adaptive NIZK (QA-NIZK) proofs for linear subspaces that we recently intro-
duced in [JR13b] can be further shortened to constant-size proofs, independent
of the number of variables and equations. In [JR13b], it was shown that for lan-
guages that are linear subspaces of vector spaces of the bilinear groups, one can
obtain more efficient computationally-sound NIZK proofs compared to [GS08] in
a slightly different quasi-adaptive setting, which suffices for many cryptographic
applications. In the quasi-adaptive setting, a class of parametrized languages
{Lρ} is considered, parametrized by ρ, and the CRS generator is allowed to gen-
erate the CRS based on the language parameter ρ. However, the CRS simulator
in the zero-knowledge setting is required to be a single efficient algorithm that
works for the whole parametrized class or probability distributions of languages,
by taking the parameter as input. This property was referred to as uniform
simulation.

The main idea underlying the construction in [JR13b] can be summarized as
follows. Consider the language Lρ (over a cyclic group G of order q, in additive
notation) defined as

Lρ =
{
〈l1, l2, l3〉 ∈ G3 | ∃x1, x2 ∈ Zq : l1 = x1 · g, l2 = x2 · f , l3 = (x1 + x2) · h

}
where ρ

def
= (g, f , h) is the parameter defining the language. Suppose that the

CRS can be set to be a basis for the null-space L⊥ρ of the language Lρ. Then,

just pairing a potential language candidate with L⊥ρ and testing for all-zero

suffices to prove that the candidate is in Lρ, as the null-space of L⊥ρ is just Lρ.
However, efficiently computing null-spaces in hard bilinear groups is itself hard.
Thus, an efficient CRS simulator cannot generate L⊥ρ . However, it was shown
that it suffices to give as CRS a (hiding) commitment that is computationally
indistinguishable from a binding commitment to L⊥ρ .



Our contributions. Utilizing the switching lemma, for n equations in t vari-
ables, our computationally-sound quasi-adaptive NIZK proofs for linear sub-
spaces require only k group elements under the k-linear decisional assump-
tion [HK07,Sha07]. Thus, under the XDH3 assumption for bilinear groups, our
proofs require only one group element. In contrast, the Groth-Sahai system re-
quires (n + 2t) group elements and our previous system required (n − t) group
elements. Similarly, under the decisional linear assumption (DLIN), our proofs
require only 2 group elements, whereas the Groth-Sahai system requires (2n+3t)
group elements and our previous system required (2n−2t) group elements. These
parameters are summarized in Table 1. While our CRS size grows linearly with
n, the number of pairing operations is competitive and could be significantly less
compared to earlier schemes for appropriate n and t.

Note that Schnorr proofs of multiple equations in the random oracle model
can also be combined into a proof consisting of only two group elements (by
taking random linear combinations employing the random oracle), but it still
requires commitments to all the variables. Thus, our proofs are even shorter
than Schnorr proofs. On the other hand, Schnorr proofs are proof of knowledge
(as opposed to ours or Groth-Sahai), and can be somewhat faster to verify as they
only use exponentiation instead of pairings. We also show that proofs of multiple

Table 1. Comparison with Groth-Sahai, Jutla-Roy (2013) and Schnorr-NIZKs for Lin-
ear Subspaces. Parameter t is the number of unknowns and n is the dimension of the
vector space, i.e. the number of equations. See text for recent independent work.

XDH DLIN
Proof CRS #Pairings Proof CRS #Pairings

Groth-Sahai n+ 2t 4 2n(t+ 2) 2n+ 3t 9 3n(t+ 3)
Jutla-Roy ’13 n− t 2t(n− t) + 2 (n− t)(t+ 2) 2n− 2t 4t(n− t) + 3 2(n− t)(t+ 2)
Schnorr (RO) t+ 2 − − − − −
This paper 1 n+ t+ 1 n+ 1 2 2(n+ t+ 2) 2(n+ 2)

linear scalar-multiplication equations, as well as multiple linear pairing product
equations (i.e. without any quadratic terms) can be aggregated into a single proof
in the Groth-Sahai system. This can lead to significant shortening of proofs of
multiple linear pairing product equations. The comparisons are tabulated in
Table 2. We remark that this is in contrast to the batching of Groth-Sahai
proof verification [BFI+10], where the proofs were not aggregated, but multiple
pairing equations were batched together during the verification step. We can
use similar batching techniques to improve the verification step; therefore, we
skip taking these optimizations into consideration. A recent work [LPJY14] has
also obtained constant-size QA-NIZK proofs under DLIN (but not under XDH).
While our proofs are marginally shorter (2 against 3 in DLIN), they additionally
show constant-size unbounded simulation-sound QA-NIZK proofs.

3 XDH is the assumption that DDH is hard in one of the pairing groups. Also note
that DDH is same as the k-linear assumption for k = 1.



Table 2. Comparison with (1) Groth-Sahai for n number of linear Scalar Multiplication

Equations: ~y · ~aj + ~bj · ~x = uj , with j ∈ [1, n], ~y ∈ Zq
s, ~x ∈ Gt and uj ∈ G. and (2)

Groth-Sahai for n number of linear Pairing Product Equations: e(~y, ~aj)+e(~bj , ~x) = uj ,
with j ∈ [1, n], ~y ∈ Gs, ~x ∈ Gt and uj ∈ GT .

DLIN Linear Multi-Scalar and Linear Pairing-Product
Proof CRS #Pairings

Groth-Sahai 3(s+ t) + 9n 9 9n(s+ t+ 3) + n

This paper 3(s+ t) + 18 9 + 4n 18(s+ t+ 3) + n

While the cryptographic literature is replete with applications using NIZK
proofs of algebraic languages over bilinear groups, and many examples were
given in [JR13b] involving NIZK proofs of linear subspaces, we focus on two
particular cases where aggregation of proofs of linear subspaces lead to inter-
esting results. We consider a construction of [CCS09] to convert key-dependent
message (KDM) CPA secure encryption scheme [BHHO08] into a KDM-CCA2
secure scheme which involved proving O(N) linear equations, where N is the
security parameter. With our aggregation of proofs, the size of this proof (in
the quasi-adaptive setting) is reduced to just 2 group elements (under the DLIN
assumption) from the earlier O(N) sized quasi-adaptive proofs and Groth-Sahai
proofs. It is also easy to see that the quasi-adaptive setting for proving the NIZK
suffices, as is the case for most applications. As another application we reduce the
size of the publicly-verifiable CCA2-IBE scheme obtained in [JR13b] by another
group element to just five group elements plus a tag. This makes it shorter than
the highly-optimized CCA2-IBE scheme obtained using the [CHK04] paradigm
from hierarchical-IBE (HIBE) and in addition is publicly-verifiable.

Organization of the paper. We begin the rest of the paper with the switching
lemma for bilinear tests in hard groups in Section 2. We recall the quasi-adaptive
NIZK definitions in Section 3 and develop constant-size quasi-adaptive NIZKs
for linear subspaces in Section 4. In Section 5, we apply our switching lemma to
aggregate Groth-Sahai NIZKs. Finally, we provide application examples in Sec-
tion 6. We defer detailed proofs, formal descriptions and a summary of standard
hardness assumptions that we use to the full paper [JR13a].

2 Switching Lemma for Bilinear Tests in Hard Groups

Notations. Consider bilinear groups G1 and G2 with pairing e to a target group
GT , all of prime order q, and random generators g1 ∈ G1 and g2 ∈ G2. Let 01, 02

and 0T be the identity elements in the three groups G1,G2 and GT respectively.
We will use additive notation for group operations, with G1,G2 and GT viewed
as Zq-vector spaces. The scalar product by Zq elements naturally extends to
vectors and matrices of group elements. The pairing operation also naturally
extends to vectors of elements (by summation) and correspondingly to matrices
of elements. Column vectors will be denoted by an arrow over the letter, e.g. ~r



for (column) vector of Zq elements, and ~d as (column) vector of group elements.

Thus, e(~f
>
, ~h) =

∑
i e(fi,hi).

Switching Lemma Usage Example. We demonstrate the usage of the Switching
Lemma by way of a toy example. Suppose we are given three elements g, f (=
a · g),h(= b · g) in the group G1 and we need a proof system, not necessarily
ZK, for tuples of the form (x · g, x · f , x · h). Towards that end, suppose the
following CRS is published: ((ar1 + br2) · g2,−r1 · g2,−r2 · g2). So the pairing
test e(x · g, (ar1 + br2) · g2) + e(x · f ,−r1 · g2) + e(x · h,−r2 · g2) = 0T , satisfies
completeness, i.e., it holds for valid tuples.

However, how do we know that it is sound? A look at the pairing equation
shows that there is a fair degree of freedom to satisfy it, without being a valid
tuple. So we definitely have to resort to a computational hardness assumption to
argue soundness. This is where we invoke the switching lemma, which is based
on a hardness assumption. Thus even though we publish a CRS that uses r1, r2,
during verification we can switch them with fresh r′1, r

′
2 chosen randomly and

independently.

This means if a candidate tuple (l1, l2, l3) satisfies the original test with
a certain probability, then it also satisfies the switched test: e(l1, (ar

′
1 + br′2) ·

g2) + e(l2,−r′1 · g2) + e(l3,−r′2 · g2) = 0T with almost the same probability.
Rearranging, we get: r′1 ·e(a · l1− l2,g2)+r′2 ·e(b · l1− l3,g2) = 0T . Now, observe
that the r′1, r

′
2 were chosen after the tuple was given. So with high probability,

both of e(a · l1 − l2,g2) and e(b · l1 − l3,g2) must be 0T . Therefore, l2 = a · l1
and l3 = b · l1, thus proving soundness.

Another way to look at this is that we produced a single CRS by random
linear combination of CRS’es to prove the individual languages {(x ·g, x ·f ) | x ∈
Zq} and {(x·g, x·h) | x ∈ Zq}. Since the combined CRS is given to the adversary,
we cannot resort to information-theoretic arguments to separate the individual
equations. However with the switching lemma in play, the separation follows.

Switching Lemma Intuition. First consider the asymmetric bilinear group set-
ting, where DDH holds in each individual group, and there is no easy isomor-
phism from G1 to G2 and vice-versa. If an Adversary A is given two random
group elements, say r1, r2, from G2, then one would like to claim that it is highly
improbable for A to produce non-zero f1, f2 in G1 such that e(f1, r1)+e(f2, r2) =
0T . First, note that if the groups were symmetric, then this is easy to achieve by
setting f1 = r2 and f2 = −r1. But, since we are in the asymmetric setting, the
improbability is proven under DDH holding for G2 as follows: We will show that
an adversary A that can produce a non-zero f1, f2 satisfying the above pairing
equation can be used to produce an adversary B that can break DDH. So, given
a DDH challenge, g2, x · g2, y · g2 and h which is either xy · g2 or z · g2, adver-
sary B passes g2, x · g2 to A (note they are random and independent). Since A
produces non-zero f1, f2 such that e(f1,g2) + e(f2, x · g2) = 0T , it follows that
f1 = −x · f2. Then comparing e(f1, y · g2) with −e(f2,h) allows B to distinguish
the two versions of h.



Surprisingly, a similar claim holds when the adversary A is given an arbitrary
long, say length n vector ~r of random group elements from G2, and A is required

to produce a length n vector~f (from G1) such that e(~f
>
,~r) = 0T . This is proven

using a hybrid argument, and for that purpose it is useful to restate the above
claim of improbability as a switching lemma: Given r1, r2, if an adversary has
probability ∆ success in producing non-zero f1, f2 such that e(f1, r1) + e(f2, r2) =
0T , then the probability of e(f1, r

′
1)+e(f2, r

′
2) = 0T holding is also negligibly close

to ∆, where r′1, r
′
2 are chosen after A commits f1, f2.

Moving on to the symmetric bilinear groups, and assuming that the k-linear
(commonly called DLIN for 2-linear) assumption holds for the groups, one can
show that ifA is now given k independent pairs of random group elements, then it
is highly improbable for A to produce non-zero f1, f2 such that the above pairing
test holds for all k pairs (with the same f1, f2). Again, a switching lemma variant
is more useful for proving the general lemma for n-vectors. Further, the reduction
to the k-linear assumption is achieved by embedding the k-linear challenge in a
single pairing test which is a random linear combination of the k pairing tests.

We now state the switching lemma in its full generality and later remark on
interesting special cases.

Lemma 1 (Switching Lemma). Let D be an arbitrary efficiently samplable
distribution over n×m matrices from Zq. For any PPT adversary A producing
a vector of n elements from group G1, let ∆A be the following probability

Pr

R $←− Gm×k2 , Cn×m ← D, ~f
n×1
← A(g1,g2,R,C) :

~f 6= ~0
n×1
1 and e

(
~f
>
,C · R

)
= ~0

1×k
T


Then, under the k-linear assumption for group G2, the following probability is
negligibly close to ∆A.

Pr

R $←− Gm×k2 , Cn×m ← D, ~f
n×1
← A(g1,g2,R,C), R′

$←− Gm×k2 :

~f 6= ~0
n×1
1 and e

(
~f
>
,C · R′

)
= ~0

1×k
T


The absolute value of the difference in the probabilities is bounded by m·adv(klin).

Remarks. If we assume that the distribution D overwhelmingly produces full
ranked matrices, then observe that the later probability is information theoreti-
cally close to 0. Hence we can state:

Pr

R $←− Gm×k2 , Cn×m ← D, ~f
n×1
← A(g1,g2,R,C) :

~f 6= ~0
n×1
1 and e

(
~f
>
,C · R

)
= ~0

1×k
T

 ≈k−linear 0

If, however, D produces singular matrices non-negligibly often, then there is

an efficient adversary that can induce the event ~f 6= ~01 and e(~f
>
,C · R) = ~0T .



The switching lemma still stands since the same adversary can induce the event
~f 6= ~01 and e

(
~f
>
,C · R′

)
= ~0T just as easily.

Although the presence of the C matrix is not strictly essential for the settings
that we consider in this paper, we leave it in this form for generalizations to
groups where the scalar field or ring is not easily invertible.

Instead of using the k-linear assumption directly, we use a related assump-
tion which we call the k-lifted linear assumption and is implied by the k-linear
assumption with a perfect reduction (see [JR13a] for a proof).

Definition 1 (k-lifted linear assumption). For a constant k ≥ 1, assuming
a generation algorithm G that outputs a tuple (q,G) such that G is of prime order
q, the k-lifted linear assumption asserts that it is computationally infeasible to
distinguish between

Tuple0 = (b1 · g, · · · , bk · g, r1 · g, · · · , rk · g, b1s1 · g, · · · , bksk · g, σ · g)

and

Tuple1 = (b1 · g, · · · , bk · g, r1 · g, · · · , rk · g, b1s1 · g, · · · , bksk · g, sk+1 · g)

where g is chosen randomly from G, bi, ri and si are chosen randomly from Zq,
and σ =

∑n
i=1 risi.

Note that the k-linear assumption is a variant of the k-lifted linear assumption
with all r1, ..., rk equal to one. Now we prove the switching lemma under this
weaker assumption.

Proof. (of Lemma 1) When m ≤ k, the lemma follows information-theoretically
(although the proof for m > k also works for this case) by noting that in this
case R will have rank m with high probability. Now we focus on the case that
m > k. Consider the following inductive hypothesis (over j):

Pr

R $←− Gm×k2 , Cn×m ← D, ~f
n×1
← A(g1,g2,R,C), R′

$←− Gm×k2 :

~f 6= ~0
n×1

and e
(
~f
>
,C · R′′

)
= ~0

1×k
T


differs from ∆A by at most j · adv(klin), where R′′ has the first (m − j) rows
same as first (m− j) rows of R and the last j rows same as the last j rows of R′.
In the base case, i.e., when j = 0, this is same as the hypothesis (antecedent)
in the lemma, and when j = m, this induction hypothesis is same as the claim
(consequent) in the lemma. Thus, we just need to prove the induction step.

For an adversary A, suppose the difference in the two probabilities corre-
sponding to (induction hypothesis for) j = t and j = t+ 1 be δ. More precisely,
denote the probability for adversary A corresponding to j = t by ∆t. Thus, we
are supposing that |∆t−∆t+1| ≥ δ. Using A as a black box we wlll demonstrate
an adversary S that will have advantage at least (negligibly close to) δ to break
the k-lifted linear assumption.

So, let a k-lifted linear challenger produce: (b1 ·g2, · · · , bk ·g2, r1 ·g2,..., rk ·g2,
b1s1 · g2,..., bksk · g2, χ) in the group G2, where χ is either (

∑n
i=1 risi) · g2 or



random. Note that bi, ri and si are chosen randomly and independently by the
challenger.

Let vectors ~r and ~s be defined component-wise as (~r)i = ri ·g2 and (~s)i = si,
respectively. Define the k by k matrix B as the diagonal matrix with the i-th
diagonal element set to bi. Further, let B = B · g2.

S samples Cn×m ← D, and chooses g1 at random. It next samples an (m−
t− 1) by k matrix R1 at random from Zq (i.e. all elements of the matrix chosen
randomly and independently from Zq). It sets R1 = R1 · B. It further samples
a t by k matrix R2 at random from G2 (i.e. all elements chosen randomly and

independently from G2). Finally S sets R to be the rows of R1, the row ~r> and
the rows of R2 combined (in that order) to form an m by k matrix. Observe
that all of R’s entries are independently random. The adversary A is then given
g1, g2, R and C. The adversary A in response produces ~f. Now, S first checks

that ~f is non-zero. It then chooses another t by k matrix R2 at random from
Zq and sets R2 = R2 · B. Noting that S has access to B ·~s · g2, S (efficiently)
performs the following bilinear test

e

~f>,C ·
R1 · B ·~s · g2

χ
R2 · B ·~s · g2

 ?
= 0T (1)

S outputs 1 if the test succeeds, and otherwise outpus 0.

Note that the above experiment has two games, one corresponding to real
k-lifted linear challenge Tuple0 choice, and one corresponding to fake k-lifted
linear Tuple1 challenge choice. We will call these games G0 (the real game) and
G0
′ (the fake game). Our aim is to show that the probability of S outputting 1

in the real game G0 differs from the probability of its outputting 1 in the fake
game G0

′ by (negligibly close to) δ. To prove this, we first modify the above
two games. In the modified games G1 and G1

′, S itself chooses the k-lifted
linear challenges according to the same distribution as in G0 and G0

′. However,
it defers the choice of ~s to after A has responded (noting that A is not given
anything related to ~s). After A responds, S chooses ~s at random, and also sets

χ as ~r> · ~s in G1 and as ~r′> · ~s in G1
′, where ~r′ is another random k-tuple

independent of ~r. Adversary S then performs the same test (1) as above, and
outputs 1 if the test succeeds, and otherwise it outputs 0. Since the distributions
in games G1 and G1

′ are identical to the distributions in G0 and G0
′ (resp.),

the probabilities of S outputting 1 remains the same in the respective games.

Now, note that in the (real) game G1 the above test (1) is equivalent to
testing

e

~f>,C ·
R1

~r>

R2

 ·~s
 ?

= 0T (2)

and in the (fake) game G1
′ the test (1) is equivalent to testing (2) but with ~r

replaced by ~r′. Now define games G2 and G2
′ which are identical to games G1



and G1
′ (resp.) except that instead of (1) the final test performed by S in G2 is

e

~f>,C ·
R1

~r>

R2

 ?
= ~0

1×k
T (3)

and the final test performed by S in G2
′ is same but with ~r replaced by ~r′.

Going through the details of games G2 and G2
′, it is clear that probability

of S outputting 1 in G2 (G2
′) is exactly ∆t (resp. ∆t+1). Moreover, since the

distributions in G1 and G2 are identical, ∆t is also the probability of (3) holding
in G1. Thus, the probability of (2) holding in G1 is at least ∆t, and no more
except for the probability of (3) not holding and yet (2) holding. Since in game
G1, ~s is chosen after A responds, this additional probability is at most the
probability (over random choice of ~s) of (2) holding for any fixed choice of rest
of the coins in the game for which (3) does not hold. This probability is at most
1/q. It follows that the probability of S outputting 1 in G1 (and hence in G0)
differs from ∆t by at most 1/q. A similar argument shows that the probability
of S outputting 1 in G1

′ (and hence in game G0
′) differs from ∆t+1 by at most

1/q. Since, by hypothesis |∆t+1 −∆t| ≥ δ, this completes the proof.

3 Quasi-Adaptive NIZK Proofs

We recall here the definitions from [JR13b] and provide a summary. Instead
of considering NIZK proofs for a (witness-) relation R, the authors consider
Quasi-Adaptive NIZK proofs for a probability distribution D on a collection of
(witness-) relations R = {Rρ}. The quasi-adaptiveness allows for the common
reference string (CRS) to be set based on Rρ after the latter has been chosen
according to D. However the simulator generating the CRS (in the simulation
world) is required to be a single probabilistic polynomial time algorithm that
works for the whole collection of relations R.

To be more precise, they consider ensemble {Dλ} of distributions on collection
of relations Rλ, where each Dλ specifies a probability distribution on Rλ =
{Rλ,ρ}. When λ is clear from context it can be dropped. Since in the quasi-
adaptive setting the CRS could depend on the relation, an associated parameter
language Lpar is considered such that a member of this language is enough to
characterize a particular relation, and this language member is provided to the
CRS generator.

A tuple of algorithms (K0,K1,P,V) is called a QA-NIZK proof system for
witness-relations Rλ = {Rρ} with parameters sampled from a distribution D
over associated parameter language Lpar, if there exists a probabilistic poly-
nomial time simulator (S1,S2), such that for all non-uniform PPT adversaries
A1,A2,A3 we have:

Quasi-Adaptive Completeness:

Pr[λ← K0(1m); ρ← Dλ;ψ ← K1(λ, ρ); (x,w)← A1(λ, ρ, ψ);

π ← P(ψ, x,w) : V(ψ, x, π) = 1 if Rρ(x,w)] = 1



Quasi-Adaptive Soundness:

Pr[λ← K0(1m); ρ← Dλ;ψ ← K1(λ, ρ);

(x, π)← A2(λ, ρ, ψ) : V(ψ, x, π) = 1 and ¬(∃w : Rρ(x,w))] ≈ 0

Quasi-Adaptive Zero-Knowledge:

Pr[λ← K0(1m); ρ← Dλ;ψ ← K1(λ, ρ) : AP(ψ,·,·)
3 (λ, ρ, ψ) = 1] ≈

Pr[λ← K0(1m); ρ← Dλ; (ψ, τ)← S1(λ, ρ) : AS(ψ,τ,·,·)3 (λ, ρ, ψ) = 1],

where S(ψ, τ, x, w) = S2(ψ, τ, x) for (x,w) ∈ Rρ and both oracles (i.e. P and
S) output failure if (x,w) 6∈ Rρ.

Note that ψ is the CRS in the above definitions.

4 Aggregating Quasi-Adaptive Proofs of Linear
Subspaces

We summarize the linear-subspace QA-NIZK setting of [JR13b] here and refer
the reader to that paper for details.

Linear Subspace Languages. We consider languages that are linear subspaces of
vectors of G1 elements. In other words, the languages we are interested in can
be characterized as languages parametrized by A as below:

LA = {~x> · A ∈ Gn1 | ~x ∈ Zqt}, where A is a t× n matrix of G1 elements.

Here A is an element of the associated parameter language Lpar, which is all
t × n matrices of G1 elements. The parameter language Lpar also has a corre-
sponding witness relation Rpar, where the witness is a matrix of Zq elements :
Rpar(A,A) iff A = A · g1.

Robust and Efficiently Witness-Samplable Distributions. Let the t × n dimen-
sional matrix A be chosen according to a distribution D on Lpar. The distribu-
tion D is called robust if with probability close to one the left-most t columns of
A are full-ranked. A distribution D on Lpar is called efficiently witness-samplable
if there is a probabilistic polynomial time algorithm such that it outputs a pair
of matrices (A,A) that satisfy the relation Rpar (i.e., Rpar(A,A) holds), and
further the resulting distribution of the output A is same as D. For example, the
uniform distribution on Lpar is efficiently witness-samplable, by first picking A
at random, and then computing A.



QA-NIZK Construction. We now describe a computationally sound quasi-ad-
aptive NIZK (K0,K1,P,V) for linear subspace languages {LA} with parameters
sampled from a robust and efficiently witness-samplable distribution D over
the associated parameter language Lpar. As a conceptual starting point, we
first develop a construction which has k2 element proofs, demonstrating a single
application of the Switching Lemma. Later, we give a k element construction
which linearly combines the first construction proofs and uses an additional
layer of Switching Lemma application. Our description here is self sufficient and
relates to the scheme in [JR13b] in that we linearly combine proofs of multiple
elements yielding constant-size proofs.
Algorithm K1: The algorithm K1 generates the CRS as follows. Let At×n be

the parameter supplied to K1. Let s
def
= n − t: this is the number of equations

in excess of the unknowns. It generates a matrix Dt×k
2

with all elements chosen
randomly from Zq and k elements {bv}v∈[1,k] and sk elements {riu}i∈[1,s],u∈[1,k]
all chosen randomly from Zq. Define matrices Rs×k

2

and Bk
2×k2 component-wise

as follows:

(R)i,k(u−1)+v = riu, with i ∈ [1, s], u, v ∈ [1, k].

(B)ij =

{
bv if i = j = k(u− 1) + v, with u, v ∈ [1, k]

0 if i 6= j, with i, j ∈ [1, k2]

Intuitively, the matrix R is a k times column-wise repetition of the rij ’s, and

if we denote {bv}v∈[1,k] by ~b, then the diagonal matrix B is just the vector ~b
repeated k times along the diagonal (i.e. Bk(u−1)+v,k(u−1)+v is bv and not bu).

The common reference string (CRS) has two parts CRSp and CRSv which
are to be used by the prover and the verifier respectively.

CRSt×k
2

p := A ·
[

D
R B−1

]
CRS(n+k2)×k2

v =

D B
R
−B

 · g2

Prover P: Given candidate ~l
1×n

= ~x> · A with witness vector ~xt×1, the prover

generates the following proof consisting of k2 elements in G1: ~p1×k2 :=
~x> · CRSp
Verifier V: Given candidate ~l

1×n
, and proof ~p1×k2 , the verifier checks the fol-

lowing (k2 equations) :

e
([
~l
1×n

~p1×k2
]
,CRSv

)
?
= ~0

1×k2

T

Theorem 1. The above algorithms (K0,K1,P,V) constitute a computationally
sound quasi-adaptive NIZK proof system for linear subspace languages {LA} with
parameters A sampled from a robust and efficiently witness-samplable distribu-
tion D over the associated parameter language Lpar, given any group generation
algorithm for which the k-linear assumption holds for group G2.



Proof Intuition. We now give a proof sketch for soundness and defer the full
proof, including completeness and zero knowledge, to the full paper [JR13a].

Soundness: We prove soundness by transforming the system over a sequence of
games. Consider an adversary A that wins if it can produce a “proof” ~p for a

candidate ~l that is not in LA and yet the pairing test e
([
~l
1×n

~p1×k2
]
,CRSv

)
?
= ~0

1×k2

T holds. Game G0 just replicates the soundness security definition. In
Game G1 the CRS is generated using parameter witness A and its null-space,
and this can be done efficiently by the challenger as the parameter distribution is
efficiently witness samplable. After this transformation, we show that in the case
of a certain event, a verifying proof of a non-language member implies breaking
the k-linear assumption in group G2, while in the case of the event not occurring
we can apply the Switching Lemma to bound the probability of the adversary
winning.

In Game G1, the challenger efficiently samples A according to distribution D,
along with witness A (since D is an efficiently witness samplable distribution).
Since A is a t × (t + s) dimensional rank t matrix, there is a rank s matrix[
Wt×s

Is×s

]
of dimension (t + s) × s whose columns form a complete basis for the

null-space of A, which means A ·
[
Wt×s

Is×s

]
= 0t×s. In this game, the NIZK CRS

is computed as follows: Generate matrix D′ t×k
2

with elements randomly chosen

from Zq and the matrices Rs×k
2

and Bk
2×k2 as in the real CRS. Implicitly set:

D = D′ + W R B−1. Therefore we have,

CRSt×k
2

p = A ·
[

D
R B−1

]
= A ·

([
D′

0s×k
2

]
+

[
W

Is×s

]
· R B−1

)
= A ·

[
D′

0s×k
2

]

CRS(n+k2)×k2
v =

D B
R
−B

 · g2 =

D′ B + W R
R
−B

 · g2

Suppose thatA wins G1. Now, let us partition the Zq matrix A as
[
At×t0 At×s1

]
and the candidate vector ~l as

[
~l
1×t
0

~l
1×s
1

]
. Note that, since A0 has rank t, the

elements of ~l0 are ‘free’ elements and ~l0 can be extended to a unique n el-
ement vector ~l ′, which is a member of LA. This member vector ~l ′ can be

computed as ~l ′1×n :=
[
~l0 −~l0 ·W

]
, where W = −A−10 A1. The proof of ~l ′ is

computed as ~p′1×k
2

:= ~l0 ·D′. Since A wins G1, then (~l , ~p) passes the verification

test, and further by design (~l
′
, ~p′) passes the verification test. Thus, we obtain:

(~l
′
1−~l1) ·R = (~p′−~p) ·B, where ~l

′1×s
1 = −~l0 ·W. This gives us a set of equalities,



for all u ∈ [1, k]:

s∑
i=1

(l ′1i−l1i)·riu = (p′k(u−1)+1−pk(u−1)+1)·b1 = · · · = (p′k(u−1)+k−pk(u−1)+k)·bk

(4)

Note that since ~l is not in the language, there exists an i ∈ [1, s], such that
~l
′
1i −~l1i 6= 0. Now consider the event E defined as follows:

Event E ≡ For some u ∈ [1, k] :

s∑
i=1

(l ′1i − l1i) · riu 6= 01 (5)

Our strategy now is to show that the probability of A winning in both the events
E and ¬E is negligible. Under the event ¬E, we apply the Switching Lemma to
switch the riu’s to a fresh set of random values r′iu’s while verifying. After that,
we argue information theoretically that the probability of winning the switched
game is negligible. Under the event E, we show that one can build a k-linear
challenge adversary using A, such that if A wins then this new adversary can
efficiently compute the (least) u in Event E, and using the multiple equalities in
Equation 4 it can break the k-linear challenge. ut

We now show that the proof system described above with k2 group elements
can be further shortened to just k group elements. The main idea is to observe
that Equation 4 is again several sets of equations, and we can carefully set up
the system so that the prover only shows random linear combinations of Equa-
tion 4. Then resorting to Switching Lemma we conclude that the individual
equations must be true. We now describe this optimized Quasi-Adaptive NIZK
proof system in detail.

QA-NIZK construction with k elements. In this construction the Algorithm K1

generates the CRS as follows. It generates a matrix Dt×k with all elements chosen
randomly from Zq and k elements {bv}v∈[1,k] and k3 elements {tuvw}u,v,w∈[1,k]
and sk elements {riu}i∈[1,s],u∈[1,k] all chosen randomly from Zq. Define matrices

Rs×k and Bk×k component-wise as follows:

(R)iw =

k∑
u=1

k∑
v=1

riutuvw, with i ∈ [1, s], w ∈ [1, k].

(B)vw =

k∑
u=1

bvtuvw, with v, w ∈ [1, k].

The construction of CRSp and CRSv remain algebraically the same, although
now they use lesser elements. The prover and verifier also retain the same al-
gebraic form. The set of equalities for this construction corresponding to the

equation (~l
′
1 −~l1) · R = (~p′ − ~p) · B, is for all w ∈ [1, k]:

s∑
i=1

[
(l ′1i − l1i) ·

(
k∑
u=1

k∑
v=1

riutuvw

)]
−

k∑
v=1

[
(p′v − pv) ·

(
k∑
u=1

bvtuvw

)]
= 01

(6)



Rearranging, we get for all w ∈ [1, k]:

k∑
u=1

k∑
v=1

[
tuvw

(
s∑
i=1

[
(l ′1i − l1i) · riu

]
− (p′v − pv) · bv

)]
= 01 (7)

Now, using the Switching Lemma and after applying information theoretic
arguments, we transition to a game where the adversary wins if it wins the
original game and the following event occurs:

For all u ∈ [1, k] :

s∑
i=1

(l ′1i − l1i) · riu = (p′1 − p1) · b1 = · · · = (p′k − pk) · bk (8)

After this point, the proof is analogous to the previous QA-NIZK construc-
tion. Detailed proof is given in [JR13a]. We also give a more optimized con-
struction in [JR13a] which uses less randomness and enjoys a better security
reduction.

5 Aggregating Groth-Sahai Proofs

We show that proofs of multiple linear scalar-multiplication equations, as well
as multiple linear pairing product equations can be aggregated into a single
proof in the Groth-Sahai system. We will focus on describing the aggregation for
the scalar-multiplication equations, as the results for the linear pairing product
equations are obtained in almost an identical manner.

Consider bilinear groups G1 and G2 with pairing e into a third group GT .
Consider equations of the type

n∑
i=1

yi · ai +

m∑
i=1

bi · xi = t1 (9)

where the variables yi are to take values in Zq, the variables xi are to take values
in G1. The constants ai are in G1, and scalar constants bi are in Zq. Moreover,
t1 is in G1.

When the bilinear group is symmetric, i.e. G1 = G2, and under the DLIN
assumption, the Groth-Sahai NIZK proof of the above equation requires com-
mitments to the variables, each commitment being of size three group elements
(for both yi or xi). In addition it requires a proof of nine group elements. When
there are multiple equations of the above kind in the same variables, the commit-
ments to the variables remain the same, but each equation requires nine group
elements. In other words, if there are m + n variables and k equations, the full
proof of the k equations has size 3 · (m+ n) + 9k group elements.

We will now show that in the quasi-adaptive setting, the full proof of the
k equations can be obtained with size 3 · (m + n) + 9 group elements. We first
describe how the proof is done in the Groth-Sahai system, and then we will point
out the relevant changes. The proofs and commitments actually belong to the
Zq-module G3 (where G = G1 = G2).



We will write these groups in additive notation, and the bilinear pairing
operation e(A,B) written in infix notation as A⊗B, with the pairing operation
defining a tensor product G⊗G over Zq. Without loss of generality (see e.g. A2.2
in [Eis95]), we can assume that GT = G ⊗ G. Further, this naturally extends
to a tensor product G3⊗G3. One can also define a tensor product Zq ⊗G, but
since G is a Zq-module, this tensor product is just G.

Let ι1 : Zq → G3, ι2 : G → G3, p1 : G3 → Zq, p2 : G3 → G be group
homomorphisms s.t. ι1 ◦p1, and ι2 ◦p2 are identity maps in Zq and G resp. Note
that the maps ι1 and ι2 naturally define a group homomorphism ιT from Zq⊗G
(= G) to G3⊗G3, and similarly p1 and p2 define a group homomorphism pT
from G3⊗G3 to Zq ⊗G (= G).

The NIZK common reference string (CRS) consists of three elements from
G3, i.e. u1,u2,u3 ∈ G3. They are chosen as follows: u1 = (α · g,O,g), and
u2 = (O, β · g,g), and u3 = ru1 + su2, for random α, β, r, s ∈ Zq, and random
g ∈ G\O. This real-world CRS ~u is sometimes also referred to as the binding
CRS.

The map ι2(Z) is just (O,O,Z), and p2(Z1,Z2,Z3) = Z3−α−1Z1−β−1Z2,
which shows that ι2◦p2 is an identity map. It also shows that p2(u1) = p2(u2) =
p2(u3) = O. Now, the commitments to elements Z in G are made by picking
r1, r2, r3 at random from Zq, and setting c2(Z) = ι2(Z) + r1u1 + r2u2 + r3u3.
Thus, p2(c2(Z)) = Z, and hence the name binding CRS.

The map ι1(z) is ι2(z ·g), and hence commitment to z ∈ Zq is c1(z) = c2(z ·g).

For equations of the form (9) , i.e. ~y · ~a + ~b · ~x = t1, a proof ~π (along with

commitments to variables) is obtained by setting ~π = S>ι2(~a) + R>ι1(~b) + ~θ,
where R is the matrix of rows (r1, r2, r3), coming from c2(xi), one for each
committed variable xi, and S is the matrix of rows (r1, r2, r3), coming from
c1(yi), one for each committed variable yi. Note, ~π is vector of three G3 elements.

The vector ~θ is set to be a random linear combination of Hi~u , where Hi are
finitely many matrices, and form a basis for the solutions to ~u • H~u = 0. It
turns out that these matrices Hi are independent of the ZK simulator trapdoors
α and β.

Let “•” denote the dot product of vectors of elements from G3 and G3 w.r.t.
product ⊗ . The commitments ~c1, ~c2 and the proof are verified by the following
equation:

ι1(~b) • ~c2 + ~c1 • ι2(~a) = ι1(1) • ι2(t1) + ~u • ~π.

Quasi-Adaptive Aggregation. In the quasi-adaptive setting [JR13b], the NIZK
CRS is allowed to depend on the language parameters, but with the further
requirement that the ZK simulation be uniform. In the above context, the lan-
guage parameters are ~a and ~b. Note t1 is not a language parameter, as it is a
quantity produced by the prover.

So, let there be k equations in the same variables, with the j-th equation
being

~y · ~aj + ~bj · ~x = tj1 (10)



In the above setting the prover produces k proofs, ~πj . We would like the prover to
give a random linear combination of these proofs, where the randomness is fixed
in the CRS setup. In the DLIN setting, we need two different linear combinations.
Thus, let the CRS generator choose two random Zq-vectors ~ρ and ~ψ. The prover

is required to produce ~πρ =
∑
j∈[1,k] ρj · ~π

j and ~πψ =
∑
j∈[1,k] ψj · ~π

j . To be

able to do so, the prover needs
∑
j ρj · ι2(~aj),

∑
j ρj · ι1(~bj) (and similar terms

using ψj). The ~θ terms in the proofs need not be linearly combined, and the
prover can just add one such term to each of ~πρ and ~πψ, as its purpose is only
to allow zero-knowledge simulation (i.e. witness hiding). The CRS generator can
certainly produce these elements and give them as part of the CRS. The CRS
generator also needs to give as part of the verification CRS the terms 〈ι1(ρj)〉j
and 〈ι1(ψj)〉j . In order to apply the switching lemma, we show in the proof of

the theorem below that if ~aj are efficiently witness samplable, then the CRS
generator can also simulate this verification CRS given ρj · g and ψj · g.

The verification is now done as follows:

(
∑
j

ρj · ι1(~bj)) • ~c2 + ~c1 • (
∑
j

ρj · ι2(~aj)) =
∑
j

(ι1(ρj) • ι2(tj1)) + ~u • ~πρ (11)

(
∑
j

ψj · ι1(~bj)) • ~c2 + ~c1 • (
∑
j

ψj · ι2(~aj)) =
∑
j

(ι1(ψj) • ι2(tj1)) + ~u • ~πψ

(12)

Theorem 2. The above system constitutes a computationally-sound quasi-adap-
tive NIZK proof system for equations (10) with parameters 〈~aj〉j, 〈~bj〉j, whenever

〈~aj〉j are chosen according to an efficiently witness-samplable distribution, and
given any group generation algorithm for which the DLIN assumption holds.

Proof of the theorem can be found in [JR13a]. Since Groth-Sahai proofs of
more general equations (involving quadratic terms) require pairing of adversari-
ally supplied commitments with each other, the switching lemma is not directly
applicable. It remains an open problem to aggregate such NIZK proofs.

6 Extensions and Applications

Tags. We extend the system of Section 4 to include tags mirroring [JR13b]. The
tags are elements of Zq, are included as part of the proof and are used as part
of the defining equations of the language. We still get k element proofs based on
the k-linear assumption. Details are in [JR13a].

KDM-CCA2 Encryption [CCS09]. In the paper [CCS09], the authors construct
a public key encryption scheme simultaneously secure against key dependent
chosen plaintext (KDM) and adaptive chosen ciphertext attacks (CCA2). They
apply a Naor-Yung “double encryption” paradigm to combine any KDM-CPA
secure scheme with any IND-CCA2 secure scheme along with an appropriate



NIZK proof, to obtain a KDM-CCA2 secure scheme. In a particular construc-
tion, they obtain short ciphertexts by combining the KDM-CPA secure scheme
of [BHHO08] with the IND-CCA2 scheme of [CS98], along with a Groth-Sahai
NIZK proof. We show that the NIZK proof required in this construction can be
considerably shortened. We defer the reader to [CCS09] for details of the scheme,
and just describe the equations to be proved here. Consider bilinear groups G1

and G2 in which the K-linear and L-linear assumptions hold, respectively.
Let ~g1, · · · , ~gK ,h1, · · · ,hK be part of the public key of the KDM-CPA secure

encryption scheme and let~f1, · · · ,~fK , c1, · · · , cK ,d1, · · · ,dK , e1, · · · , eK be part
of the public key of the IND-CCA2 secure encryption scheme. Let (~g,h) ∈
GN1 × G1 be a ciphertext from the KDM-CPA secure encryption scheme and

(~f,a,b) ∈ GK+1
1 ×G1×G1 be a ciphertext from the IND-CCA2 secure encryption

scheme, with label l. Let t = H(~f,a, l), where H is a collision resistant hash. The
purpose of the NIZK proof is to establish that they encrypt the same plaintext.
This translates to the following statement:

∃r1, · · · , rK , w1, · · · , wK :

~g =
∑K
i=1 ri · ~gi ∧ ~f =

∑K
i=1 wi ·~fi ∧

b =
∑K
i=1 wi · (di + t · ei) ∧

h− a =
∑K
i=1 ri · hi −

∑K
i=1 wi · ci


This translates into N +K + 3 equations in 2K variables. Using the Groth-

Sahai NIZK scheme, this requires (2K)(L+1) elements of G2 and (N +K+3)L
elements of G1. In our scheme this requires L elements of G1 in the proof - 1
under DDH and 2 under DLIN assumptions in G2.

CCA2-IBE Scheme [JR13b]. The definition of CCA2-secure encryption [BDPR98]
naturally extends to the Identity-Based Encryption setting [CHK04]. In [JR13b],
the authors construct a fully adaptive CCA2-secure IBE, which also allows public
verification of the assertion that a ciphertext is valid for the particular claimed
identity. The IBE scheme has four group elements (and a tag), where one group
element serves as one-time pad for encrypting the plaintext. The remaining three
group elements form a linear subspace with one variable as witness and three
integer tags corresponding to: (a) the identity, (b) the tag needed in the IBE
scheme, and (c) a 1-1 (or universal one-way) hash of some of the elements. It
was shown that if these three group elements can be QA-NIZK proven to be
consistent, and given the unique proof property of the QA-NIZKs, then the
IBE scheme can be made CCA2-secure. Since, there are three components, and
one variable the QA-NIZK required only two group elements under SXDH. We
slightly shorten the proof to one element under SXDH. We defer the reader
to [JR13b] for details of the original system, and just describe the Key Genera-
tion and Encryption steps in [JR13a].
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