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Abstract. We introduce the k-LWE problem, a Learning With Errors variant
of the k-SIS problem. The Boneh-Freeman reduction from SIS to k-SIS suffers
from an exponential loss in k. We improve and extend it to an LWE to k-LWE
reduction with a polynomial loss in k, by relying on a new technique involving
trapdoors for random integer kernel lattices. Based on this hardness result, we
present the first algebraic construction of a traitor tracing scheme whose secu-
rity relies on the worst-case hardness of standard lattice problems. The proposed
LWE traitor tracing is almost as efficient as the LWE encryption. Further, it
achieves public traceability, i.e., allows the authority to delegate the tracing ca-
pability to “untrusted” parties. To this aim, we introduce the notion of projective
sampling family in which each sampling function is keyed and, with a projection
of the key on a well chosen space, one can simulate the sampling function in
a computationally indistinguishable way. The construction of a projective sam-
pling family from k-LWE allows us to achieve public traceability, by publishing
the projected keys of the users. We believe that the new lattice tools and the pro-
jective sampling family are quite general that they may have applications in other
areas.
Keywords. Lattice-based cryptography, Traitor tracing, LWE.

1 Introduction

Since the pioneering work of Ajtai [3], there have been a number of proposals of crypto-
graphic schemes with security provably relying on the worst-case hardness of standard
lattice problems, such as the decision Gap Shortest Vector Problem with polynomial
gap (see the surveys [30, 40]). These schemes enjoy unmatched security guarantees:
Security relies on worst-case hardness assumptions for problems expected to be expo-
nentially hard to solve (with respect to the lattice dimension n), even with quantum
computers. At the same time, they often enjoy great asymptotic efficiency, as the basic
operations are matrix-vector multiplications in dimension Õ(n) over a ring of cardinal-
ity ≤ Poly(n). A breakthrough result in that field was the introduction of the Learning
With Errors problem (LWE) by Regev [38, 39], who showed it to be at least as hard as
worst-case lattice problems and exploited it to devise an elementary encryption scheme.
Gentry et al. showed in [19] that Regev’s scheme may be adapted so that a master can



generate a large number of secret keys for the same public key. As a result, the latter
encryption scheme, called dual-Regev, can be naturally extended into a multi-receiver
encryption scheme. In the present work, we build traitor tracing schemes from this dual-
Regev LWE-based encryption scheme.

TRAITOR TRACING. A traitor tracing scheme is a multi-receiver encryption scheme
where malicious receiver coalitions aiming at building pirate decryption devices are
deterred by the existence of a tracing algorithm: Using the pirate decryption device,
the tracing algorithm can recover at least one member of the malicious coalition. Such
schemes are particularly well suited for fighting copyright infringement in the context of
commercial content distribution (e.g., Pay-TV, subscription news websites, etc). Since
their introduction by Chor et al. [15], much work has been devoted to devising efficient
and secure traitor tracing schemes. The most desirable schemes are fully collusion re-
sistant: they can deal with arbitrarily large malicious coalitions. But, unsurprisingly, the
most efficient schemes are in the bounded collusion model where the number of mali-
cious users is limited. The first non-trivial fully collusion resistant scheme was proposed
by Boneh et al. [11]. However, its ciphertext size is still large (Ω(

√
N), where N is the

total number of users) and it relies on pairing groups of composite order. Very recently,
Boneh and Zhandry [12] proposed a fully collusion resistant scheme with poly-log size
parameters. It relies on indistinguishability obfuscation [18], whose security foundation
remains to be studied, and whose practicality remains to be exhibited. In this paper, we
focus on the bounded collusion model. The Boneh-Franklin scheme [7] is one of the
earliest algebraic constructions but it can still be considered as the reference algebraic
transformation from the standard ElGamal public key encryption into traitor tracing.
This transformation induces a linear loss in efficiency, with respect to the maximum
number of traitors. The known transformations from encryption to traitor tracing in the
bounded collusion model present at least a linear loss in efficiency, either in the cipher-
text size or in the private key size [7, 31, 23, 41, 6, 10]. We refer to [21] for a detailed
introduction to this rich topic.

OUR CONTRIBUTIONS. We describe the first algebraic construction of a public-key
lattice-based traitor tracing scheme. It is semantically secure and enjoys public trace-
ability. The security relies on the hardness of LWE, which is known to be at least as
hard as standard worst-case lattice problems [39, 33, 13].

The scheme is the extension, described above, of the dual-Regev LWE-based en-
cryption scheme from [19] to a multi-receiver encryption scheme, where each user has
a different secret key. In the case of traitor tracing, several keys may be leaked to a
traitor coalition. To show that we can trace the traitors, we extend the LWE problem
and introduce the k-LWE problem, in which k hint vectors (the leaked keys) are given
out.

Intuitively, k-LWE asks to distinguish between a random vector t close to a given
lattice Λ and a random vector t close to the orthogonal subspace of the span of k given
short vectors belonging to the dual Λ∗ of that lattice. Even if we are given (b∗i )i≤k
small in Λ∗, computing the inner products 〈b∗i , t〉 will not help in solving this problem,
since they are small and distributed identically in both cases. The k-LWE problem can
be interpreted as a dual of the k-SIS problem introduced by Boneh and Freeman [8],
which intuitively requests to find a short vector in Λ∗ that is linearly independent with



the k given short vectors of Λ∗. Their reduction from SIS to k-SIS can be adapted to
the LWE setup, but the hardness loss incurred by the reduction is gigantic. We propose
a significantly sharper reduction from LWEα to k-LWEα. This improved reduction re-
quires a new lattice technique: the equivalent for kernel lattices of Ajtai’s simultaneous
sampling of a random q-ary lattice with a short basis [4] (see also Lemma 2). We adapt
the Micciancio-Peikert framework from [28] to sampling a Gaussian X ∈ Zm×n along
with a short basis for the lattice ker(X) = {b ∈ Zm : btX = 0}. Kernel lattices
also play an important role in the re-randomization analysis of the recent lattice-based
multilinear map scheme of Garg et al. [17], and we believe that our new trapdoor gen-
eration tool for such lattices is likely find additional applications in future. We also
remark that our technique can be adapted to the SIS to k-SIS reduction. We thus solve
the open question left by Boneh and Freeman of improving their reduction [8]: from an
exponential loss in k to a polynomial loss in k. Consequently, their linearly homomor-
phic signatures and ordinary signature schemes enjoy much better efficiency/security
trade-offs.

Our construction of a traitor tracing scheme from k-LWE can be seen as an ad-
ditive and noisy variant of the (black-box) Boneh-Franklin traitor tracing scheme [7].
While the Boneh-Franklin scheme is transformed from the ElGamal encryption with
a linear loss (in the maximum number of traitors) in efficiency, our scheme is almost
as efficient as standard LWE-based encryption, as long as the maximum number of
traitors is bounded below n/(c log n), where n is the LWE dimension determined by
the security parameter, and c is a constant. The full functionality of black-box tracing
in both the Boneh-Franklin scheme and ours are of high complexity as they both rely
on the black-box confirmation: given a superset of the traitors, it is guaranteed to find
at least one traitor and no innocent suspect is incriminated. Boneh and Franklin left the
improvement of the black-box tracing as an interesting open problem. We show that
in lattice setting, the black-box tracing can be accelerated by running the tracing pro-
cedure in parallel on untrusted machines. This is a direct consequence of the property
of public traceability, i.e., the possibility of running tracing procedure on public infor-
mation, that our scheme enjoys. We note that almost all traitor tracing systems require
that the tracing key must be kept secret. Some schemes [14, 37, 9, 12] achieve public
traceability and some others achieve a stronger notion than public traceability, namely
the non-repudation, but the setup in these schemes require some interactive protocol
between the center and each user such as a secure 2-party computation protocol in [35],
a commitment protocol in [36], an oblivious polynomial evaluation in [42, 24, 22].

To obtain public traceability and inspired from the notion of projective hash fam-
ily [16], we introduce a new notion of projective sampling family in which each sam-
pling function is keyed and, with a projection of the key on a well chosen space, one
can simulate the sampling function in a computationally indistinguishable way. The
construction of a set of projective sampling families from k-LWE allows us to publicly
sample the tracing signals.

Independently, our new lattice tools may have applications in other areas. The k-
LWE problem has a similar flavour to the Extended-LWE problem from [32]. It would
be interesting to exhibit reductions between these problems. On a closely-related topic,
it seems our sampling of a random Gaussian integer matrix X together with a short



basis of ker(X) is compatible with the hardness proof of Extended-LWE from [13]. In
particular, it should be possible to use it as an alternative to [13, Def 4.5] in the proof
of [13, Le 4.7], to show that Extended-LWE remains hard with many hints indepen-
dently sampled from discrete Gaussians.
REMARK. Due to lack of space, some background and the missing proofs of Sections 3
and 5 have been removed from this proceedings version. The full version is available
on the webpages of the authors.

2 Preliminaries

If x is a real number, then bxe is the closest integer to x (with any deterministic rule
in case x is half an odd integer). All vectors will be denoted in bold. By default, our
vectors are column vectors. We let 〈·, ·〉 denote the canonical inner product. For q prime,
we let Zq denote the field of integers modulo q. For two matrices A,B of compatible
dimensions, we let (A|B) and (A‖B) respectively denote the horizontal and vertical
concatenations ofA andB. ForA ∈ Zm×nq , we define Im(A) = {As : s ∈ Znq } ⊆ Zmq .
For X ⊆ Zmq , we let Span(X) denote the set of all linear combinations of elements
of X . We let X⊥ denote the linear subspace {b ∈ Zmq : ∀c ∈ X, 〈b, c〉 = 0}. For
a matrix S ∈ Rm×n, we let ‖S‖ denote the norm of its longest column. If S is full
column-rank, we let σ1(S) ≥ . . . ≥ σn(S) denote its singular values. We let T denote
the additive group R/Z.

If D1 and D2 are distributions over a countable set X , their statistical distance
1
2

∑
x∈X |D1(x) − D2(x)| will be denoted by ∆(D1, D2). The statistical distance is

defined similarly if X is measurable. If X is of finite weight, we let U(X) denote the
uniform distribution over X . For any invertible S ∈ Rm×m and c ∈ Rm, we define the
function ρS,c(b) = exp(−π‖S−1(b− c)‖2). For S = sIm, we write ρs,c, and we omit
the subscripts S and c when S = Im and c = 0. We let να denote the one-dimensional
Gaussian distribution with standard deviation α.

2.1 Euclidean lattices and discrete Gaussian distributions

A lattice is a set of the form {
∑
i≤n xibi : xi ∈ Z} where the bi’s are linearly in-

dependent vectors in Rm. In this situation, the bi’s are said to form a basis of the
n-dimensional lattice. The n-th minimum λn(L) of an n-dimensional lattice L is de-
fined as the smallest r such that the n-dimensional closed hyperball of radius r cen-
tered in 0 contains n linearly independent vectors of L. The smoothing parameter
of L is defined as ηε(L) = min{r > 0 : ρ1/r(L̂ \ 0) ≤ ε} for any ε ∈ (0, 1),
where L̂ = {c ∈ Span(L) : ct · L ⊆ Z} is the dual lattice of L. It was proved in [29,
Le. 3.3] that ηε(L) ≤

√
ln(2n(1 + 1/ε))/π·λn(L) for all ε ∈ (0, 1) and n-dimensional

lattices L.
For a lattice L ⊆ Rm, a vector c ∈ Rm and an invertible S ∈ Rm×m, we de-

fine the Gaussian distribution of parameters L, c and S by DL,S,c(b) ∼ ρS,c(b) =
exp(−π‖S−1(b − c)‖2) for all b ∈ L. When S = σ · Im, we simply write DL,σ,c.
Note that DL,S,c = St · DS−tL,1,S−tc. Sometimes, for convenience, we use the no-
tation DL+c,S as a shorthand for c + DL,S,−c. Gentry et al. [19] gave an algorithm,



referred to as GPV algorithm, to sample from DL,S,c when given as input a basis (bi)i
of L such that

√
ln(2n+ 4)/π ·maxi ‖S−tbi‖ ≤ 1.

We extensively use q-ary lattices. The q-ary lattice associated to A ∈ Zm×nq is
defined as Λ⊥(A) = {x ∈ Zm : xt · A = 0 mod q}. It has dimension m, and a basis
can be computed in polynomial-time from A. For u ∈ Zmq , we define Λ⊥u (A) as the
coset {x ∈ Zm : xt ·A = ut mod q} of Λ⊥(A).

2.2 Random lattices

We consider the following random lattices, called q-ary Ajtai lattices. They are obtained
by sampling A ←↩ U(Zm×nq ) and considering Λ⊥(A). The following lemma provides
a probabilistic bound on the smoothing parameter of Λ⊥(A).

Lemma 1 (Adapted from [19, Le. 5.3]). Let q be prime and m,n integers with m ≥
2n and ε > 0, then ηε(Λ⊥(A)) ≤ 4q

n
m

√
log(2m(1 + 1/ε))/π, for all except a fraction

2−Ω(n) of A ∈ Zm×nq .

It is possible to efficiently sample a close to uniform A along with a short basis
of Λ⊥(A) (see [4, 5, 34, 28]).

Lemma 2 (Adapted from [5, Th. 3.1]). There exists a ppt algorithm that given n,m, q ≥
2 as inputs samples two matricesA ∈ Zm×nq and T ∈ Zm×m such that: the distribution
of A is within statistical distance 2−Ω(n) from U(Zm×nq ); the rows of T form a basis
of Λ⊥(A); each row of T has norm ≤ 3mqn/m.

For A ∈ Zm×nq , S ∈ Rm×m invertible, c ∈ Rm and u ∈ Znq , we define the
distributionDΛ⊥u (A),S,c as c̄+DΛ⊥(A),S,−c̄+c, where c̄ is any vector of Zm such that c̄t·
A = ut mod q. A sample x from DΛ⊥u (A),S can be obtained using the GPV algorithm
along with the short basis of Λ⊥(A) provided by Lemma 2. Boneh and Freeman [8]
showed how to efficiently obtain the residual distribution of (A,x) without relying on
Lemma 2.

Theorem 1 (Adapted from [8, Th. 4.3]). Let n,m, q ≥ 2, k ≥ 0 and S ∈ Rm×m
be such that m ≥ 2n, q is prime with q > σ1(S) ·

√
2 log(4m), and σm(S) =

q
n
m · max(Ω(

√
n logm), 2σ1(S)

k
m ). Let u1, . . . ,uk ∈ Znq and c1, . . . , ck ∈ Rm be

arbitrary. Then the residual distributions of the tuple (A,x1, . . . ,xk) obtained with the
following two experiments are within statistical distance 2−Ω(n).

Exp0 : A←↩ U(Zm×nq ); ∀i ≤ k : xi ←↩ DΛ⊥ui
(A),S,ci .

Exp1 : ∀i ≤ k : xi ←↩ DZm,S,ci ; A←↩ U
(
Zm×nq |∀i ≤ k : xti ·A = uti mod q

)
.

This statement generalizes [8, Th. 4.3] in three ways. First, the latter corresponds to
the special case corresponding to taking all the ui’s and ci’s equal to 0. This general-
ization does not add any extra complication in the proof of [8, Th. 4.3], but is important
for our constructions. Second, the condition on m is less restrictive (the corresponding
assumption in [8, Th. 4.3] is that m ≥ max(2n log q, 2k)). To allow for such small



values of m, we refine the bound on the smoothing parameter of the Λ⊥(A) lattice
(namely, we use Lemma 1). Third, we allow for a non-spherical Gaussian distribution,
which seems needed in our generalized Micciancio-Peikert trapdoor gadget used in the
reduction from LWE to k-LWE in Section 3.2.

We also use the following result on the probability of the Gaussian vectors xi from
Theorem 1 being linearly independent over Zq .

Lemma 3 (Adapted from [8, Le. 4.5]). With the notations and assumptions of Theo-
rem 1, the k vectors x1, . . . ,xk sampled in Exp0 and Exp1 are linearly independent
over Zq , except with probability 2−Ω(n).

2.3 Rényi Divergence

We use Rényi Divergence (RD) in our analysis, relying on techniques developed in [27,
25, 26]. For any two probability distributions P and Q such that the support of P is a
subset of the support of Q over a countable domain X , we define the RD (of order 2)
by R(P‖Q) =

∑
x∈X

P (x)2

Q(x) , with the convention that the fraction is zero when both
numerator and denominator are zero. We recall that the RD between two offset discrete
Gaussians is bounded as follows.

Lemma 4 ([25, Le. 4.2]). For any n-dimensional lattice L ⊆ Rn and invertible matrix
S, set P = DL,S,w and Q = DL,S,z for some fixed w, z ∈ Rn. If w, z ∈ L, let
ε = 0. Otherwise, fix ε ∈ (0, 1) and assume that σn(S) ≥ ηε(L). Then R(P‖Q) ≤(

1+ε
1−ε

)2
· exp

(
2π‖w − z‖2/σn(S)2

)
.

We use this bound and the fact that the RD between the parameter distributions of two
distinguishing problems can be used to relate their hardness, if they satisfy a certain
public samplability property.

Lemma 5 ([26]). Let Φ,Φ′ denote two distributions, and D0(r) and D1(r) denote two
distributions determined by some parameter r. Let P, P ′ be two decision problems de-
fined as follows:

• P : Assess whether input x is sampled from distribution X0 or X1, where

X0 = {x : r ←↩ Φ, x←↩ D0(r)}, X1 = {x : r ←↩ Φ, x←↩ D1(r)}.

• P ′: Assess whether input x is sampled from distribution X ′0 or X ′1, where

X ′0 = {x : r ←↩ Φ′, x←↩ D0(r)}, X ′1 = {x : r ←↩ Φ′, x←↩ D1(r)}.

Assume thatD0(·) andD1(·) have the following public samplability property: there
exists a sampling algorithm S with run-time TS such that for all r, b, given any sample
x from Db(r) we have:

• S(0, x) outputs a sample distributed as D0(r) over the randomness of S.
• S(1, x) outputs a sample distributed as D1(r) over the randomness of S.

If there exists a T -time distinguisher A for problem P with advantage ε, then , for
every λ > 0, there exists an O(λε−2 · (TS + T ))-time distinguisher A′ for problem P ′

with advantage ε′ ≥ ε2

4R(Φ‖Φ′) · (ε/2−O(2−λ)).



2.4 Learning with errors

Let s ∈ Znq and α > 0. We define the distribution As,α as follows: Take a ←↩ U(Znq )
and e←↩ να, and return (a, 1q 〈a, s〉+ e) ∈ Znq ×T. The Learning With Errors problem
LWEα, introduced by Regev in [38, 39], consists in assessing whether an oracle pro-
duces samples from U(Znq × T) or As,α for some constant s ←↩ U(Znq ). Regev [39]

showed that for q ≤ Poly(n) prime and α ∈ (
√
n

2q , 1), LWE is (quantumly) not eas-
ier than standard worst-case lattice problems in dimension n with approximation fac-
tors Poly(n)/α. This hardness proof was partly dequantized in [33, 13], and the re-
quirements that q should be prime and Poly(n) were waived.

In this work, we consider a variant LWE where the number of oracle samples that the
distinguisher requests is a priori bounded. If m denotes that bound, then we will refer
to this restriction as LWEα,m. In this situation, the hardness assumption can be restated
in terms of linear algebra over Zq: Given A ←↩ U(Zm×nq ), the goal is to distinguish
between the distributions (over Tm)

1

q
U (Im(A)) + νmα and

1

q
U
(
Zmq
)
+ νmα .

Under the assumption that αq ≥ Ω(
√
n), the right hand side distribution is indeed

within statistical distance 2−Ω(n) to U(Tm) (see, e.g., [29, Le. 4.1]). The hardness as-
sumption states that by adding to them a small Gaussian noise, the linear spaces Im(A)
and Zmq become computationally indistinguishable. This rephrasing in terms of linear
algebra is helpful in the security proof of the traitor tracing scheme. Note that by a stan-
dard hybrid argument, distinguishing between the two distributions given one sample
from either, and distinguishing between them given Q samples (from the same dis-
tribution), are computationally equivalent problems, up to a loss of a factor Q in the
distinguishing advantage.

Finally, we will also use a variant of LWE where the noise distribution να is re-
placed by Dq−1Z,α, and where U(T) is replaced by U(Tq) with Tq being q−1Z with
addition mod 1. This variant, denoted by LWE′, was proved in [34] to be no easier than
standard LWE (up to a constant factor increase in α).

3 New lattice tools

The security of our constructions relies on the hardness of a new variant of LWE, which
may be seen as the dual of the k-SIS problem from [8].

Definition 1. Let k ≤ m, S ∈ Rm×m invertible and C = (c1‖ · · · ‖ck) ∈ Rk×m.
The (k, S, C)-LWEα,m problem (or (k, S)-LWE if C = 0) is as follows: Given A ←↩
U(Zm×nq ),u ←↩ U(Znq ) and xi ←↩ DΛ⊥−u(A),S,ci for i ≤ k, the goal is to distinguish
between the distributions (over Tm+1)

1

q
· U
(
Im
(ut
A

))
+ νm+1

α and
1

q
· U
(
Spani≤k

( 1
xi

)⊥)
+ νm+1

α .



The classical LWE problem consists in distinguishing the left distribution from uni-
form, without the hint vectors x+

i = (1‖xi). These hint vectors correspond to the se-
cret keys obtained by the malicious coalition in the traitor tracing scheme. Once these
hint vectors are revealed, it becomes easy to distinguish the left distribution from the
uniform distribution: take one of the vectors x+

i , get a challenge sample y and com-
pute 〈x+

i ,y〉 ∈ T; if y is a sample from the left distribution, then the centered residue
is expected to be of size ≈ α · (

√
mσ1(S) + ‖ci‖), which is � 1 for standard pa-

rameter settings; on the other hand, if y is sampled from the uniform distribution,
then 〈x+,y〉 should be uniform. The definition of (k, S)-LWE handles this issue by
replacing U(Zm+1

q ) by U(Spani≤k(x
+
i )
⊥).

Sampling x+
i fromDΛ⊥((ut‖A)),S,ci may seem more natural than imposing that the

first coordinate of each x+
i is 1. Looking ahead, this constraint will prove convenient

to ensure correctness of our cryptographic primitives. Theorem 3 below and its proof
can be readily adapted to this hint distribution. They may also be adapted to improve
the SIS to k-SIS reduction from [8]. Setting C = 0 is also more natural, but for tech-
nical reasons, our reduction from LWE to (k, S, C)-LWE works with unit vectors ci.
However, we show that for small ‖ci‖, there exist polynomial time reductions between
(k, S, C)-LWE and (k, S)-LWE.

In the proof of the hardness of (k, S)-LWE problem, we rely on a gadget integral
matrix G that has the following properties: its first rows have Gaussian distributions, it
is unimodular and its inverse is small. Before going to this proof, we shall build such
a gadget matrix by extending Ajtai’s simultaneous sampling of a random q-ary lattice
with a short basis [4] (see also Lemma 2) to kernel lattices. More precisely, we adapt
the Micciancio-Peikert framework [28] to sampling a Gaussian X ∈ Zm×n along with
a short basis for the lattice ker(X) = {b ∈ Zm : btX = 0}.

3.1 Sampling a GaussianX with a small basis of ker(X)

The Micciancio-Peikert construction [28] relies on a leftover hash lemma stating that
with overwhelming probability over A ←↩ U(Zm×nq ) and for a sufficiently large σ, the
distribution of At ·DZm,σ mod q is statistically close to U(Znq ). We use a similar result
over the integers, starting from a GaussianX ∈ Zm×n instead of a uniformA ∈ Zm×nq .
The proof of the following lemma relies on [1], which improves over a similar result
from [2]. The result would be neater with σ2 = σ1, but, unfortunately, we do not know
how to achieve it. The impact of this drawback on our results and constructions is mostly
cosmetic.

Lemma 6. Let m ≥ n ≥ 100 and σ1, σ2 > 0 satisfying σ1 ≥ Ω(
√
mn logm), m ≥

Ω(n log(σ1n)) and σ2 ≥ Ω(n5/2
√
mσ2

1 log
3/2(mσ1)). Let X ←↩ Dm×n

Z,σ1
. There exists

a ppt algorithm that takes n,m, σ1, σ2, X and c ∈ Zn as inputs and returns x ∈
Zn, r ∈ Zm such that x = c+Xtr with ‖r‖ ≤ O(σ2/σ1), with probability 1−2−Ω(n),
and

∆
(
(X,x), Dm×n

Z,σ1
×DZn,σ2,c

)
≤ 2−Ω(n).

We now adapt the trapdoor construction from [28] to kernel lattices.



Theorem 2. Let n,m1, σ1, σ2 be as above, and m2 ≥ m1 bounded as nO(1). There
exists a ppt algorithm that given n,m1,m2 (in unary), σ1 and σ2, returns X1 ∈
Zm1×n, X2 ∈ Zm2×n, and U ∈ Zm×m with m = m1 +m2, such that:

• the distribution of (X1, X2) is within statistical distance 2−Ω(n) of Dm1×n
Z,σ1

×
(DZm2 ,σ2,δ1 × · · · × DZm2 ,σ2,δn), where δi denotes the ith canonical unit vector
in Zm2 whose ith coordinate is 1 and whose remaining coordinates are 0.

• we have |detU | = 1 and U ·X = (In‖0) with X = (X1‖X2),
• every row of U has norm ≤ O(

√
nm1σ2) with probability ≥ 1− 2−Ω(n).

The second statement implies that the last m − n rows of U form a basis of the
random lattice ker(X).

Proof. We first sample X1 from Dm1×n
Z,σ1

using the GPV algorithm. We run m2 times
the algorithm from Lemma 6, on the input n,m1, σ1, σ2, X1 and c running through the
columns of C = [In|0n×(m2−n)]. This gives X2 ∈ Zm2×n and R ∈ Zm1×m2 such that
Xt

2 = [In|0n×(m2−n)] +Xt
1 ·R. One can then see that U ·X = [In‖0], where

U =

[
0 Im2

Im1
−(X1|0)

]
·
[
Im1

0
−Rt Im2

]
=

[
−Rt Im2

Im1
+ (X1|0)Rt −(X1|0)

]
, X =

[
X1

X2

]
.

The result then follows from Gaussian tail bounds (to bound the norms of the rows
of X1) and elementary computations. ut

Our gadget matrix G is U−t. In the following corollary, we summarize the proper-
ties we will use.

Corollary 1. Let n,m1,m2,m, σ1, σ2 be as in Theorem 2. There exists a ppt algorithm
that given n,m1,m2 (in unary), and σ1, σ2 as inputs, returns G ∈ Zm×m such that:

• the top n × m submatrix of G is within statistical distance 2−Ω(n) of Dn×m1

Z,σ1
×

(DZm2 ,σ2,δ1 × · · · ×DZm2 ,σ2,δn)
t,

• we have |detG| = 1 and ‖G−1‖ ≤ O(
√
nm2σ2), with probability 1− 2−Ω(n).

3.2 Hardness of k-LWE

The following result shows that this LWE variant, with S a specific diagonal matrix, is
no easier than LWE.

Theorem 3. There exists c > 0 such that the following holds for k = n/(c log n).
Let m, q, σ, σ′ be such that σ ≥ Ω(n), σ′ ≥ Ω(n3σ2/ log n), q ≥ Ω(σ′

√
logm)

is prime, and m ≥ Ω(n log q) (e.g., σ = Θ(n), σ′ = Θ(n5/ log n), q =
Θ(n5) and m = Θ(n log n)). Then there exists a probabilistic polynomial-time re-
duction from LWEm+1,α in dimension n to (k, S)-LWEm+2n,α′ in dimension 4n,

with α′ = Ω(mn3/2σσ′α) and S =
[
σ · Im+n 0

0 σ′ · In

]
. More concretely, using a

(k, S)-LWEm+2n,α′ algorithm with run-time T and advantage ε, the reduction gives
an LWEm+1,α algorithm with run-time T ′ = O(Poly(n) · ε−2 · T ) and advantage
ε′ = Ω((ε− 2−Ω(n/ logn))3)−O(2−n).



The reduction takes an LWE instance and extends it to a related k-LWE instance
for which the additional hint vectors (xi)i≤k are known. The major difficulty in this
extension is to restrain the noise increase, as a function of k.

The existing approach for this reduction (that we improve below) is the technique
used in the SIS to k-SIS reduction from [8]. In the latter approach, the hint vectors are
chosen independently from a small discrete Gaussian distribution, and then the LWE
matrixA is extended to a larger matrixA′ under the constraint that the hint vectors are in
the q-ary lattice Λ⊥(A′) = {b : btA′ = 0 mod q}. Unfortunately, with this approach,
the transformation from an LWE sample with respect to A, to a k-LWE sample with
respect to A′, involves a multiplication by the cofactor matrix det(G) · G−1 over Z of
a k × k full-rank submatrix G of the hint vectors matrix. Although the entries of G are
small, the entries of its cofactor matrix are almost as large as detG, which is exponential
in k. This leads to an “exponential noise blowup,” restraining the applicability range
to k ≤ Õ(1) if one wants to rely on the hardness of LWE with noise rate 1/α ≤
Poly(n) (otherwise, LWE is not exponentially hard to solve). To restrain the noise
increase for large k, we use the gadget of Corollary 1. Ignoring several technicalities,
the core idea underlying our reduction is that the latter gadget allows us to sample a
small matrix X2 with X

−1
2 also small, which we can then use to transform the given

LWE matrix A+ = (ut‖A) ∈ Z(m+1)×n
q into a taller k-LWE matrix A′+ = T · A+,

using a transformation matrix T of the form

T =

[
Im+1

−X−12 X1

]
,

for some small independently sampled matrix X1 = [1|X1]. We can accordingly trans-
form the given LWE sample vector b = A+s + e for matrix A+ into an LWE sample
b′ = Tb = A′+s + Te for matrix A′+ by multiplying the given sample by T . Since
[X1|X2] · T = 0, it follows that [X1|X2] · A′+ = 0, so we can use k small rows
of [X1|X2] as the k-LWE hints x+

i for the new matrix A′+, while, at same time, the
smallness of T keeps the transformed noise e′ = Te small.

Proof. For a technical reason related to the non-zero centers δi in the distribution of
the hint vectors produced by our gadget from Corollary 1, we decompose our reduc-
tion from LWEm+1,α to (k, S)-LWE into two subreductions. The first subreduction
(outlined above) reduces LWEm+1,α in dimension n to (k, S, C)-LWEm+2n,α′ in di-
mension 4n, where the ith row of C is the unit vector ci = (0m+n|δi) ∈ Rm+2n

for i = 1, . . . , k. The second subreduction reduces (k, S, C)-LWEm+2n,α′ in dimen-
sion 4n to (k, S)-LWEm+2n,α′ in dimension 4n. We first describe and analyze the first
subreduction, and then explain the second subreduction.

Description of the first subreduction. Let (A+, b) with A+ = (ut‖A) denote the
given LWEα,m+1 input instance, where A+ ←↩ U(Z(m+1)×n

q ), and b ∈ Tm+1 comes
from either the “LWE distribution” 1

qU (Im(A+)) + νm+1
α or the “Uniform distribu-

tion” 1
qU
(
Zm+1
q

)
+ νm+1

α . The reduction maps (A+, b) to (A′,u′, X, b′) with A′ ∈
Z(m+2n)×4n
q and u′ ∈ Z4n

q independent and uniform, X ∈ Zk×(m+2n) with its ith



row xi independently sampled from DΛ⊥−u′ (A
′),S for i ≤ k, and b′ ∈ Tm+1+2n com-

ing from either the “k-LWE distribution” 1
qU (Im(A′+)) + νm+1+2n

α if b is from the
“LWE distribution,” or the “k-Uniform distribution” 1

qU
(
Spani≤k(x

+
i )
⊥) if b is from

the “Uniform distribution.” Here A′+ = (u′t‖A′), and x+
i denotes the vector (1‖xi)

for i ≤ k. The reduction is as follows.

1. Sample gadget X2 ∈ Z2n×2n using Corollary 1 (with parameters n,m1,m2, σ1,
σ2 set to k, n, n, σ, σ′ respectively), and sample X1 ←↩ D2n×m

Z,σ . Define T =[
Im+1

−X−1
2 · (1|X1)

]
∈ Z(m+1+2n)×(m+1), where 1 is the all-1 vector. LetX ∈ Zk×(m+2n)

denote the matrix made of the top k rows of (X1|X2).
2. Sample C+ ∈ Z(m+1+2n)×3n

q with independent columns uniform orthogonally
to Im((1|X)) modulo q. LetutC ∈ Z3n

q be the top row ofC+, andC ∈ Z(m+2n)×3n
q

denote its remaining m+ 2n rows.
3. Compute Σ = α′ · Im+1+2n − T · T t and

√
Σ such that

√
Σ ·
√
Σ
t
= Σ; if Σ is

not positive definite, abort.
4. ComputeA′+ = (T ·A+|C+) and b′ = Tb+ 1

qC
+ ·s′+

√
Σe′, with s′ ←↩ U(Z3n

q )

and e′ ←↩ νm+1+2n
1 . Let (u′)t = (u‖uC)t ∈ Z4n

q be the top row of A′+.
5. Return (A′,u′, X, b′).

Step 1 aims at building a transformation matrix T that sends A+ to the left n
columns of A′+. Two properties are required from this transformation. First, it must
be a linear map with small coefficients, so that when we map the LWE right hand side
to the k-LWE right hand side, the noise component does not blow up. Second, it must
contain some vectors (1‖xi) in its (left) kernel, with xi normally distributed. These
vectors are to be used as k-LWE hints. For this, we use the gadget of the previous
subsection. This ensures that the xi’s are (almost) distributed as independent Gaussian
samples from DZn,σ ×DZn,σ′ , and that the matrix T is integral with small coefficients.
We define B ∈ Z2n×n

q by [A+‖B] = TA+, so that we have:[
1|X1|X2

]
·
[
A+

B

]
=
[
1|X1|X2

]
·
[

Im+1

−X−12 · (1|X1)

]
·A+ = 0 mod q.

This means each row of
(
X1|X2

)
belongs to Λ⊥−u(A

′′), where A′′ = [At|Bt]t.
At this stage, it is tempting to define the k-LWE matrix as A′′ and give away

the k-LWE hint vectors xi ∈ Λ⊥−u(A
′′) making up the matrix X . However, this ap-

proach does not quite work: we have extended A by 2n rows, but we give only k
hint vectors (we cannot output them all, as the bottom rows of X2 may not be nor-
mally distributed). This creates a difficulty for mapping “Uniform” to “k-Uniform”
in the reduction. Step 2 circumvents the above difficulty by sampling extra column
vectors C+ ∈ Z(m+1+2n)×3n

q that are uniform in the subspace orthogonal to the hint
vectors x+

i modulo q. When the parameters are properly set, the columns of [T |C+]
span the full subspace orthogonal to the xi’s mod q, with overwhelming probability.
We finally set A′+ =

[
A+

B

∣∣∣C+
]
.

It remains to see how to map “LWE” to “k-LWE.” The main problem, when mul-
tiplying b by T , is that the LWE noise gets skewed. If its covariance matrix was of



the form α2 · Im+1, then it becomes α2T · T t. To compensate for that, in Step 3,
we add to T · b an independent Gaussian noise with well-chosen covariance Σ =
α′2 · Im+1+2n −α2T · T t. We set α′ large enough to ensure that this symmetric matrix
is positive definite. This noise unskewing technique was adapted to discrete Gaussians
and used in cryptography in [34].

Analysis of the first subreduction. All steps of the reduction can be implemented in
polynomial time. Its correctness follows from the following three lemmas. The proofs
can be found in the full version.

Lemma 7. The tuple (A′,u′, X) is within statistical distance 2−Ω(n/ logn) of the dis-
tribution in which A′ ∈ Z(m+2n)×4n

q and u′ ∈ Z4n
q are independent and uniform, and

the rows ofX ∈ Zk×(m+2n) are fromDΛ⊥−u′ (A
′),S,ci , where ci = (0m+n|δi) ∈ Rm+2n

and δi denotes the ith canonical unit vector in Zn for i = 1, . . . , k.

Next, we assume that (A′+, X) is fixed and consider the distribution of b′ in the
two cases of the distribution of b. First we consider the “LWE” to “k-LWE” distribution
mapping.

Lemma 8. The following holds with probability 1 − 2−Ω(n/ logn) over the choice of
X1 and X2. If b ∈ Tm+1 is sampled from 1

qU(ImA) + νm+1
α , then b′ ∈ Tm+1+2n is

within statistical distance 2−Ω(n) of 1
qU (ImA′+) + νm+1+2n

α′ .

Finally, we consider the “Uniform” to “k-Uniform” distribution mapping.

Lemma 9. The following holds with probability 1−2−Ω(n/ logn) over the choice ofX1

and X2. If b is sampled from 1
qU
(
Zm+1
q

)
+ νm+1

α , then b′ is within statistical distance
2−Ω(n) of 1

qU
(
Spani≤k(x

+
i )
⊥)+ νm+1+2n

α′ .

Overall, we have described a reduction that maps the “LWE distribution” to the “k-
LWE distribution,” and the “Uniform distribution” to the “k-Uniform distribution,” up
to statistical distance 2−Ω(n/ logn).

Second subreduction. It remains to reduce the (k, S, C)-LWE with non-zero cen-
ters for the hint distribution, to (k, S)-LWE with zero-centered hints. For this, we use
Lemma 5 to obtain the following.

Lemma 10. Let m′ = m + 2n, n′ = 4n, and assume that σm′(S) ≥ ω(
√
n). If there

exists a distinguisher against (k, S)-LWEm′,α′ in dimension n′ with run-time T and
advantage ε, then there exists a distinguisher against (k, S, C)-LWEm′,α′ with run-
time T ′ = O(Poly(m′) ·ε−2 ·T ) and advantage ε′ = Ω((ε−O(2−n))3/R−O(2−n)),
where R = O(exp(k · (2−n′ + 2π · ‖C‖2/σm′(S)2)).

The main idea of the proof of Lemma 10, given in the full version, is to apply
Lemma 5 with P, P ′ being the (k, S)-LWE and (k, S, C)-LWE problems respectively,
which have instances of the form x = (r,y), where r = (A,u, {xi}i≤k) and the
hints xi for i ≤ k sampled from either the zero-centered distribution←↩ DΛ⊥−u(A),S,0

(distributionΦ of r, in (k, S)-LWE) or the non-zero center distribution←↩ DΛ⊥−u(A),S,ci



(distribution Φ′ of r, in (k, S, C)-LWE), and y ∈ Tm+1 is a sample from either the
distribution

D0(r) =
1

q
· U
(
Im
(ut
A

))
+ νm+1

α

or the distribution

D1(r) =
1

q
· U
(
Spani≤k

( 1
xi

)⊥)
+ νm+1

α .

Given x = (r,y), is possible to efficiently sample y′ from eitherD0(r) orD1(r), so the
public-samplability property assumed by Lemma 5 is satisfied. This Lemma gives the
desired reduction between (k, S)-LWE and (k, S, C)-LWE, as long as the RDR(Φ‖Φ′)
between the distribution of r in the two problems is polynomially bounded. The latter
reduces to obtaining a bound on the RD between a Gaussian distribution and a small
offset thereof, which is given by Lemma 4.

In our application of Lemma 10, the (k, S, C)-LWE problem resulting from the
first subreduction has ‖C‖ = 1, and σm′(S) = σ, so that R = O(exp(k · (2−n +
1/σ))) = O(1) using σ = Ω(n) and k ≤ n. This shows that the second subreduction
is probabilistic polynomial time. ut

Our technique can be applied to improve the Boneh-Freeman reduction from SIS to
k-SIS, from an exponential loss in k to a polynomial loss in k. In fact, we map A to A′′

in the same way (except that we do not use and add u on top of the matrix A) and then
also use the top k rows of (X1|X2) as the k-SIS hints for the new matrix A′′. Then,
whenever the adversary can output a short vector x1‖x2 that is orthogonal to A′′, we
can also output a short vector (x1 − x2 · X

−1
2 X1) which is orthogonal to A. As the

rows of X1 are distributed as independent Gaussian samples and the adversary is only
given its first k rows, it can be shown that, if x1‖x2 is linearly independent from the
k-SIS hints, then the vector (x1 − x2 · X

−1
2 X1) is null with a negligible probability.

RD may also be used to reduce k-SIS with non-zero-centered hints (with small centers)
to k-SIS with zero-centered hints.

4 A lattice-based public-key traitor tracing scheme

In this section, we describe and analyze our basic traitor tracing scheme. First, we give
the underlying multi-user public-key encryption scheme. We then explain how to im-
plement black-box confirmation tracing.

4.1 A multi-user encryption scheme

The scheme is designed for a given security parameter n, a number of users N and
a maximum malicious coalition size t. It then involves several parameters q,m, α, S.
These are set so that the scheme is correct (decryption works properly on honestly gen-
erated ciphertexts) and secure (semantically secure encryption and possibility to trace



members of malicious coalitions). In particular, we define S as Diag(σ, . . . , σ, σ′, . . . , σ′) ∈
Rm×m where σ′ > σ and their respective numbers of iterations are set so that (t, S)-
LWEm+1,α is hard to solve.

Setup. The trusted authority generates a master key pair using the algorithm from
Lemma 2. Let (A, T ) ∈ Zm×nq × Zm×m be the output. We additionally sample u
uniformly in Znq . Matrix T will be part of the tracing key tk, whereas the public key
is pk = A+, with A+ = (ut‖A).

Each user Ui for i ≤ N obtains a secret key ski from the trusted authority, as
follows. The authority executes the GPV algorithm using the basis of Λ⊥(A) consist-
ing of the rows of T , and the standard deviation matrix S. The authority obtains a
sample xi from DΛ⊥−u(A),S . The standard deviations σ′ > σ may be chosen as small

as 3mqn/m
√

(2m+ 4)/π. The user secret key is x+
i = (1‖xi) ∈ Zm+1. Using the

Gaussian tail bound and the union bound, we have ‖xi‖ ≤
√
mσ′ for all i ≤ N , with

probability ≥ 1−N · 2−Ω(m).
The tracing key tk consists of the matrix T and all pairs (Ui, ski).

Encrypt. The encryption algorithm is exactly the 1-bit encryption scheme from [19,
Se. 7.1], which we recall, for readability.5 The plaintext and ciphertext domains areP =
{0, 1} and C = Zm+1

q respectively, and:

Enc :M 7→
[
ut

A

]
· s+ e+

[
M · bq/2c

0

]
, where s←↩ U(Znq ) and e←↩ bναqem+1.

As explained in [19], this scheme is semantically secure under chosen plaintext attacks
(IND-CPA), under the assumption that LWEm+1,α is hard to solve.

Decrypt. To decrypt a ciphertext c ∈ Zm+1
q , user Ui uses its secret key x+

i and
evaluates the following function Dec from Zm+1

q to {0, 1}: Map c to 0 if 〈x+
i , c〉 mod q

is closer to 0 than ±bq/2c.
If c is an honestly generated ciphertext of a plaintextM ∈ {0, 1}, we have 〈x+

i , c〉 =
〈x+
i , e〉+M · bq/2c mod q, where e←↩ bναqem+1. It can be shown that the latter has

magnitude≤ 2
√
mαq‖x+

i ‖with probability 1−2−Ω(n) over the randomness of e. This
is ≤ 3mαqσ′ for all i, with probability ≥ 1−N · 2−Ω(n). To ensure the correctness of
the scheme, it suffices to set q ≥ 4mαqσ′. Note that other constraints will be added to
enable tracing.

Theorem 4. Letm,n, q,N be integers such that q is prime andN ≤ 2o(n). Letα, σ, σ′ >
0 such that σ′ ≥ σ ≥ Ω(mqn/m

√
logm) and α ≤ 1/(4mσ′). Then the scheme de-

scribed above is IND-CPA under the assumption that LWEm+1,α is hard. Further, the
decryption algorithm is correct:

∀M ∈ {0, 1},∀i ≤ N : Dec (Enc(M,pk), ski) =M

holds with probability ≥ 1− 2−Ω(n) over the randomness used in Setup and Enc.

5 As usual, the encryption algorithm may be used to encapsulate session keys which are then fed
into an efficient data encapsulation mechanism to encrypt the data.



4.2 Tracing traitors

We now present a black-box confirmation algorithm Trace.6 It is given access to an
oracle OD that provides black-box access to a decryption device D. It takes as inputs
the tracing key tk = (T, (Ui,x+

i )i≤N ) and a set of suspect users {Ui1 , . . . ,Uik} of
cardinality k ≤ t, where t is the a priori bound on any coalition size. Wlog, we may
consider that k = t and ij = j for all j ≤ k.

Algorithm Trace gathers information about which keys have been used to build
decoder D, by feeding different carefully designed distributions to oracle OD. We con-
sider the following t+ 1 distributions Tr0, . . . , T rt over C = Zm+1

q :

Tri = U
(
Span(x+

1 , . . . ,x
+
i )
⊥)+ bναqem+1.

The first distribution Tr0 is the uniform distribution, whereas the last distribution Trt
is meant to be computationally indistinguishable from Enc(0). We define p∞ as the
probability Pr[OD (c,M) = 1] that the decoder can decrypt the ciphertexts, over the
randomness of M ←↩ U({0, 1}) and c←↩ Enc(M). We define pi as the probability the
decoder decrypts the signals in Tri, for i ∈ [0, t]:

pi = Pr
c←↩ Tri

M ←↩ U({0, 1})

[
OD

(
c+

[
M · bq/2c

0

]
,M

)
= 1

]
.

A gap between pi−1 and pi is meant to indicate that Ui is a traitor.
The confirmation and soundness properties are proved in the full version. We now

concentrate on a new feature of our scheme: public traceability.

5 Projective sampling and public traceability

We now modify the scheme of the Section 4 so that the tracing signals can be publicly
sampled. For this purpose, we introduce the concept of projective sampling family.

5.1 Projective sampling

Inspired from the notion of projective hash family [16], we propose the notion of pro-
jective sampling family in which each sampling function is keyed and, with a projected
key, one can simulate the sampling function in a computationally indistinguishable way.
Let X be a finite non-empty set. Let F = (Fk)k∈K be a collection of sampling func-
tions indexed by K, so that Fk is a sampling function over X , for every k ∈ K. We
call Sam = (F,K,X) a sampling family. We now introduce the concept of projective
sampling.

Definition 2 (Projective Sampling). Let Sam = (F,K,X) be a sampling family. Let
J be a finite, non-empty set, and let π : K → J be a (probabilistic) function. Let also

6 Note that in our context, minimal access is equivalent to standard access: since the plaintext
domain is small, plaintext messages can be tested exhaustively.



P = (Pj)j∈J be a collection of sampling functions over X , and D be a distribution
over K. Then PSam = (F,K,X, P, J, π,D) is called a projective sampling family if,
with overwhelming probability over the choice of k, k′ ←↩ D, and given the secret
key k and its projected key π(k), 1) the distributions obtained using Fk and Pπ(k) are
computationally indistinguishable, and 2) the distributions obtained using Fk and Pπ(k′)
can be efficiently distinguished.

The first condition means that for k ←↩ D, the value π(k) “encodes” the sampling
distribution of Fk, so that when π(k) is made public, the sampled signal Fk can be pub-
licly simulated by Pπ(k). The security requirement is very strong because the adversary
is not only given the projected key, as in projective hashing, but also the secret key k.
We require that sampling signals from the secret key and from its projected key are
indistinguishable for the insiders who know the secret key. This is relevant for traitor
tracing, as the traitors are system insiders and they possess secret data. The second con-
dition (that we actually do not directly use in our cryptographic application) allows to
prevent the trivial solution consisting in setting Pπ(k) as an efficient sampling function
that is independent of k: the simulation signal Pπ(k) must be specific to k.7

5.2 Projective sampling from k-LWE

We construct a set of projective sampling families (PSami)0≤i≤t. The parameters are
almost identical to the parameters in the Setup of the multi-user scheme of Section 4.
A further difference, required for simulation purposes in the security proof, is that σ′ >
σ must be set Ω̃(

√
mn+ πq).

We letA←↩ U(Zm×nq ) andu←↩ U(Znq ) be public parameters. For each i, we define
Ki = (Zmq )i and Di as the distribution on Ki that samples k = (xj)j≤i with xj ←↩
DΛ⊥−u(A),σ for all j ≤ i. The sampling function Fi,k is defined as U(Spanj≤i(x

+
j )
⊥)+

bναqem+1. The projected key πi(k) is defined as follows:

• Sample H ∈ Zm×(m−n)q uniformly, conditioned on Im(A) ⊆ Im(H).
• For each j ≤ i, define htj = −xtj ·H .

• Finally, set J = Zm×(m−n)q × (Zm−nq )i and set πi(k) = (H, (hj)j≤i).
We now define the sampling Pi,πi(k) with projected key πi(k) = (H, (hj)j≤i), as

follows:
• SetHj = (htj‖H) ∈ Z(m+1)×(m−n)

q . We havex+t
j ·Hj = 0 and Im(A+) ⊆ Im(Hj).

• Set Pi,πi(k) = U (∩j≤iIm(Hj)) + bναqem+1, with ∩j≤0Im(Hj) = Zm+1
q by con-

vention. Note that ∩j≤iIm(Hj) ⊆ Spanj≤i(x
+
j )
⊥.

Theorem 5. For each i = 0, . . . , t, PSami is a projective sampling family. Concretely,
under the (i, S)-LWEα,m hardness assumptions, given the uniformly sampled public
parameters (A,u), the secret key k = (xj)j≤i ←↩ Di and its projected key πi(k) =
(H, (hj)j≤i), the distributions Fi,k and Pi,πi(k) are indistinguishable. Moreover, they
are both indistinguishable from U(Im(A+)) + bναqem+1. Finally, with overwhelming

7 Another trivial situation occurs when π(k) = k: the projected key leaks the full information
about the original key and one cannot safely publish the projected key.



probability, the distributions Fi,k and Pi,πi(k′) can be efficiently distinguished, when k′

is independently sampled from Di.

Proof. For the last statement, observe that with overwhelming probability, the secret
key k′ contains an x′j ∈ Zmq that does not belong to Spanj≤i(xj) (by Lemma 3). In
that case, taking the inner product of all x′j’s of k′ with a sample from Pi,πi(k′) gives
small residues modulo q, whereas one of the inner products of the x′j’s with a sample
from with a sample from Fi,k will be uniform modulo q.

We now consider the first statement. From the hardness of (i, S)-LWEm,α, given k,
the distributions

Fi,k = U(Spanj≤i(x
+
j )
⊥) + bναqem+1 and U(Im(A+)) + bναqem+1

are indistinguishable. Further, given k = (xj)j≤i, the projected key πi(k) = (H, (hj)j≤i)
can be sampled from Di. Therefore, given both k and πi(k), the distributions Fi,k and
U(Im(A+)) + bναqem+1 remain indistinguishable.

Now, we have Im(A+) ⊆ ∩j≤iIm(Hj) ⊆ (Spanj≤i(x
+
j ))
⊥. Hence:

U(Im(A+)) + U(∩j≤iIm(Hj)) = U(∩j≤iIm(Hj)),

U(Spanj≤i(x
+
j )
⊥) + U(∩j≤iIm(Hj)) = U(Spanj≤i(x

+
j )
⊥).

We note that givenh1, . . . ,hi, one can efficiently sample fromU(∩j≤iIm(Hj)). There-
fore, under the hardness of (i, S)-LWEm,α, this shows that Fi,k, Pi,πi(k) andU(Im(A+))+
bναqem+1 are indistinguishable. ut

5.3 Public traceability from projective sampling

In the scheme of Section 4, the tracing key tk = (T, (Ui,xi)i≤N ) must be kept secret,
as it would reveal the secret keys of the users. The tracing signals are samples from
U(Spanj≤i(x

+
j )
⊥) + bναqem+1, which exactly matches Fi,k. By publishing the pro-

jected key πi(k), anyone can use the projective sampling Pi,πi(k): by Theorem 5, given
(k, πi(k)), Fi,k and Pi,πi(k) are indistinguishable and they are both indistinguishable
from the original sampling U(Im(A+)) + bναqem+1. We are thus almost done with
public traceability.

However, a subtle point is that we have to use all the projective samplings (Pi,πi(k))
for transforming the secret tracing to the public tracing: all the projected keys (hj)j≤N
should be published. Because the keys k in Fi,k are not independent, it could occur
that the adversary exploits a projected key πi(k) for distinguishing Pi′,πi′ (k′) from the
original signals. To handle this, we prove that, given (xj)j≤i and all the keys (hj)j≤N ,
the adversary cannot distinguish Pi,πi(k) from the original signals. For this purpose, we
exploit a technique from [20] to simulate (hj)i<j≤N from the public information.

Theorem 6. Set i ≤ t. Under the (i, S)-LWEα,m and the LWE′α,m hardness assump-
tions, given the secret key k = (xj)j≤i and the projected keys (H, (hj)j≤N ), the fol-
lowing two distributions are indistinguishable

Pi,α(k) = U(∩j≤iIm(Hj)) + bναqem+1 and U(Im(A+)) + bναqem+1.



Proof. Assume a ppt attacker is given (xj)j≤i (with the xj’s independently sampled
from DΛ⊥−u(A),σ) and all the projected keys (hj)j≤N )). We are to prove that, under the
(i, S)-LWEα,m and LWE′α,m hardness assumptions, it cannot distinguish between the
distributions (over Zm+1

q )

U(Im(A+)) + bναqem+1 and Pi,πi(k) = U(∩j≤iIm(Hj)) + bναqem+1.

We proceed by a sequence of games.
Game0: This is the above distinguishing game. We let ε0 denote the adversary’s
distinguishing advantage. The goal is to show that ε0 is negligible.
Game1: In this second game, we sample x1, . . . ,xi from DΛ⊥−u(A),σ as in Game0,
but the xj’s for j > i are sampled uniformly in Znq , conditioned on xtj · A = −ut.
The hj’s for j > i are modified accordingly, but the rest is as in Game0. We let ε1
denote the adversary’s distinguishing advantage.

The main point is that in Game1, no secret information is required for sampling the
projected keys hj’s for j > i. The proof of the following lemma may be found in the
full version.

Lemma 11. Under the LWE′α,m hardness assumption, the quantity |ε1 − ε0| is negli-
gible.

We note that, in Game1, the hj’s can be sampled publicly from the available data.
Therefore, from Theorem 5, under the (i, S)-LWEα,m hardness assumptions, the ad-
vantage ε1 is negligible. ut
Semantic security of the updated scheme. We modify the public information of the
scheme of Section 4, so that we can use the set of projective sampling families de-
scribed above. For this aim, we simply add the projected key (H, (hi)i≤N ) to the public
key. The scheme becomes publicly traceable because the tracing signals can be sampled
from the projected keys, as explained above. Finally, as the public key has been modi-
fied, we should prove that the knowledge of these projected keys provides no significant
advantage for an adversary towards breaking the semantic security of the encryption
scheme. Fortunately, the semantic security directly follows from Theorem 6, for the
particular case of i = 0.
Acknowledgements. We thank M. Abdalla, D. Augot, R. Bhattacharrya, L. Ducas,
V. Guleria, G. Hanrot, F. Laguillaumie, K. T. T. Nguyen, G. Quintin, O. Regev, H. Wang
for helpful discussions. The authors were partly supported by the LaBaCry MERLION
grant, the Australian Research Council Discovery Grant DP110100628, the ANR-09-
VERSO-016 BEST and ANR-12-JS02-0004 ROMAnTIC Projects, the INRIA invited
researcher scheme, the Singapore National Research Foundation Research Grant NRF-
CRP2-2007-03, the Singapore MOE Tier 2 research grant MOE2013-T2-1-041, the LIA
Formath Vietnam and the ERC Starting Grant ERC-2013-StG-335086-LATTAC.

References

1. D. Aggarwal and O. Regev. A note on discrete gaussian combinations of lattice vectors,
2013. Draft. Available at http://arxiv.org/pdf/1308.2405v1.pdf.



2. S. Agrawal, C. Gentry, S. Halevi, and A. Sahai. Sampling discrete gaussians efficiently and
obliviously. In Proc. of ASIACRYPT (1), vol. 8269 of LNCS, pages 97–116. Springer, 2013.

3. M. Ajtai. Generating hard instances of lattice problems (extended abstract). In Proc. of
STOC, pages 99–108. ACM, 1996.

4. M. Ajtai. Generating hard instances of the short basis problem. In Proc. of ICALP, volume
1644 of LNCS, pages 1–9. Springer, 1999.

5. J. Alwen and C. Peikert. Generating shorter bases for hard random lattices. Theor. Comput.
Science, 48(3):535–553, 2011.

6. O. Billet and D. H. Phan. Efficient Traitor Tracing from Collusion Secure Codes. In Proc.
of ICITS, volume 5155 of LNCS, pages 171–182. Springer, 2008.

7. D. Boneh and M. K. Franklin. An efficient public key traitor tracing scheme. In Proc. of
CRYPTO, volume 1666 of LNCS, pages 338–353. Springer, 1999.

8. D. Boneh and D. M. Freeman. Linearly homomorphic signatures over binary fields and new
tools for lattice-based signatures. In PKC, vol. 6571 of LNCS, pages 1–16. Springer, 2011.

9. D. Boneh and B. Waters. A fully collusion resistant broadcast, trace, and revoke system. In
Proc. of ACM CCS, pages 211–220. ACM, 2006.

10. Dan Boneh and Moni Naor. Traitor tracing with constant size ciphertext. In Peng Ning,
Paul F. Syverson, and Somesh Jha, editors, ACM CCS 08, pages 501–510. ACM Press.

11. Dan Boneh, Amit Sahai, and Brent Waters. Fully collusion resistant traitor tracing with short
ciphertexts and private keys. In EUROCRYPT 2006, vol. 4004 of LNCS, pages 573–592.

12. Dan Boneh and Mark Zhandry. Multiparty key exchange, efficient traitor tracing, and more
from indistinguishability obfuscation. Cryptology ePrint Archive, Report 2013/642, 2013.

13. Z. Brakerski, A. Langlois, C. Peikert, O. Regev, and D. Stehlé. Classical hardness of learning
with errors. In STOC, pages 575–584. ACM, 2013.

14. Hervé Chabanne, Duong Hieu Phan, and David Pointcheval. Public traceability in traitor
tracing schemes. In EUROCRYPT 2005, vol. 3494 of LNCS, pages 542–558. Springer.

15. B. Chor, A. Fiat, and M. Naor. Tracing traitors. In Proc. of CRYPTO, volume 839 of LNCS,
pages 257–270. Springer, 1994.

16. Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In Lars R. Knudsen, editor, EUROCRYPT 2002,
volume 2332 of LNCS, pages 45–64. Springer, April / May 2002.

17. S. Garg, C. Gentry, and S. Halevi. Candidate multilinear maps from ideal lattices. In EURO-
CRYPT, volume 7881 of LNCS, pages 1–17, 2013.

18. S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters. Candidate indistin-
guishability obfuscation and functional encryption for all circuits. In Proc. of FOCS, pages
40–49. IEEE Computer Society Press, 2013.

19. C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and new crypto-
graphic constructions. In Proc. of STOC, pages 197–206. ACM, 2008.

20. S. D. Gordon, J. Katz, and V. Vaikuntanathan. A group signature scheme from lattice as-
sumptions. In Proc. of ASIACRYPT, volume 2647 of LNCS, pages 395–412. Springer, 2010.

21. A. Kiayias and S. Pehlivanglu. Encryption For Digital Content. Springer, 2010.
22. A. Kiayias and M. Yung. Breaking and repairing asymmetric public-key traitor tracing. In

Digital Rights Management Workshop, pages 32–50, 2002.
23. A. Kiayias and M. Yung. Traitor tracing with constant transmission rate. In Lars R. Knudsen,

editor, EUROCRYPT 2002, volume 2332 of LNCS, pages 450–465. Springer.
24. H. Komaki, Y. Watanabe, G. Hanaoka, and H. Imai. Efficient asymmetric self-enforcement

scheme with public traceability. In Kwangjo Kim, editor, PKC 2001, volume 1992 of LNCS,
pages 225–239. Springer, February 2001.

25. A. Langlois, D. Stehlé, and R. Steinfeld. GGHLite: More efficient multilinear maps from
ideal lattices. In Proc. of EUROCRYPT, LNCS, pages 239–256. Springer, 2014.



26. A. Langlois, D. Stehlé, and R. Steinfeld. Improved and simplified security proofs in lattice-
based cryptography: using the Rényi divergence rather than the statistical distance, 2014.
Available on the webpages of the authors.

27. V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning with errors over
rings. J. ACM, 60(6):43, 2013.

28. D. Micciancio and C. Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller. In
Proc. of EUROCRYPT, volume 7237 of LNCS, pages 700–718. Springer, 2012.

29. D. Micciancio and O. Regev. Worst-case to average-case reductions based on gaussian mea-
sures. SIAM J. Comput, 37(1):267–302, 2007.

30. D. Micciancio and O. Regev. Lattice-based cryptography. In Post-Quantum Cryptography,
D. J. Bernstein, J. Buchmann, E. Dahmen (Eds), pages 147–191. Springer, 2009.

31. Moni Naor and Benny Pinkas. Efficient trace and revoke schemes. In Yair Frankel, editor,
FC 2000, volume 1962 of LNCS, pages 1–20. Springer, February 2000.

32. A. O’Neill, C. Peikert, and B. Waters. Bi-deniable public-key encryption. In Proc. of
CRYPTO, volume 6841 of LNCS, pages 525–542. Springer, 2011.

33. C. Peikert. Public-key cryptosystems from the worst-case shortest vector problem. In Proc.
of STOC, pages 333–342. ACM, 2009.

34. C. Peikert. An efficient and parallel Gaussian sampler for lattices. In Proc. of CRYPTO,
volume 6223 of LNCS, pages 80–97. Springer, 2010.

35. B. Pfitzmann. Trials of traced traitors. In Information Hiding, volume 1174 of LNCS, pages
49–64. Springer, 1996.

36. B. Pfitzmann and M. Waidner. Asymmetric fingerprinting for larger collusions. In ACM CCS
97, pages 151–160. ACM Press, April 1997.

37. D. H. Phan, R. Safavi-Naini, and D. Tonien. Generic construction of hybrid public key
traitor tracing with full-public-traceability. In Proc. of ICALP (2), volume 4052 of LNCS,
pages 264–275. Springer, 2006.

38. O. Regev. On lattices, learning with errors, random linear codes, and cryptography. In Proc.
of STOC, pages 84–93. ACM, 2005.

39. O. Regev. On lattices, learning with errors, random linear codes, and cryptography. J. ACM,
56(6), 2009.

40. O. Regev. The learning with errors problem, 2010. Invited survey in CCC 2010, available
at http://www.cims.nyu.edu/~regev/.

41. Thomas Sirvent. Traitor tracing scheme with constant ciphertext rate against powerful pi-
rates. In Workshop on Coding and Cryptography—WCC ’07, pages 379–388, April 2007.

42. Y. Watanabe, G. Hanaoka, and H. Imai. Efficient asymmetric public-key traitor tracing with-
out trusted agents. In CT-RSA 2001, volume 2020 of LNCS, pages 392–407. Springer.


