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Abstract. We present a round-efficient black-box construction of a gen-
eral MPC protocol that satisfies composability in the plain model. The
security of our protocol is proven in angel-based UC framework un-
der the minimal assumption of the existence of semi-honest oblivious
transfer protocols. When the round complexity of the underlying obliv-
ious transfer protocol is rot(n), the round complexity of our protocol is

max(Õ(log2 n), O(rot(n))). Since constant-round semi-honest oblivious
transfer protocols can be constructed under standard assumptions (such
as the existence of enhanced trapdoor permutations), our result gives

Õ(log2 n)-round protocol under these assumptions. Previously, only an
O(max(nε, rot(n)))-round protocol was shown, where ε > 0 is an arbi-
trary constant.

We obtain our MPC protocol by constructing a Õ(log2 n)-round CCA-
secure commitment scheme in a black-box way under the assumption of
the existence of one-way functions.

1 Introduction

Protocols for secure multi-party computation (MPC) enable mutually distrustful
parties to compute a functionality without compromising the correctness of the
outputs and the privacy of their inputs. In the seminal work of Goldreich et
al. [11], a general MPC protocol was constructed in a model with malicious
adversaries and a dishonest majority.1 (By “a general MPC protocol,” we mean
a protocol that can be used to securely compute any functionality.)

In this paper, we consider a black-box construction of a general MPC protocol
that guarantees composable security. Before stating our result, we explain black-
box constructions and composable security.

Black-Box Constructions. A construction of a protocol is black-box if it uses
the underlying cryptographic primitives only in a black-box way (that is, only
through their input/output interfaces). In contrast, if a construction uses the
codes of the underlying primitives, it is non-black-box.

1 In the following, we consider only such a model.



As argued in [17], constructing black-box constructions is important for both
theoretical and practical reasons. Theoretically, it is important because under-
standing whether non-black-box use of cryptographic primitives is necessary for a
cryptographic task is of great interest. Practically, it is important because black-
box constructions are typically more efficient than non-black-box ones in terms
of both communication complexity and computational complexity. In fact, since
known non-black-box constructions of general MPC protocols compute general
NP reductions to execute zero-knowledge proofs (this is where the codes of the
primitives are used), they are highly inefficient and hard to implement. Thus,
constructing black-box constructions of general MPC protocols is an important
step toward practical general MPC protocols.

Recently, a series of works studied black-box constructions of general MPC
protocols. Ishai et al. [17] showed the first construction of a general MPC pro-
tocol that uses the underlying low-level primitives (such as enhanced trapdoor
permutations and homomorphic public-key encryption schemes) in a black-box
way. Combined with the subsequent work of Haitner [15], which showed a black-
box construction of a (malicious) oblivious transfer protocol based on a semi-
honest oblivious transfer protocol, their work gives a black-box construction of
a general MPC protocol based on a semi-honest oblivious transfer protocol [16].
Subsequently, Wee [30] reduced the round complexity of [17] to O(log∗ n), and
Goyal [12] further reduced the round complexity to O(1).

These black-box protocols are proven to be secure in the stand-alone setting.
That is, the protocols of [17, 30, 12] are secure in the setting where a single
instance of the protocol is executed at a time.

Composable Security. Compared with the stand-alone setting, the concurrent
setting is more general and realistic. In the concurrent setting, many instances
of many different protocols are concurrently executed in an arbitrary schedule.
Thus, in the concurrent setting, adversaries can perform a coordinated attack
in which they choose messages in each instance based on the executions of the
other instances.

As a strong and realistic security notion in the concurrent setting, Canetti [2]
proposed universally composable (UC) security. The main advantage of UC secu-
rity is composability, which guarantees that when we compose many UC-secure
protocols, we can prove the security of the resultant protocol from the security
of its components. Thus, UC security enables us to construct secure protocols
in a modular way. Composability also guarantees that a protocol remains secure
even when it is concurrently executed with any other protocols in any schedule.
Thus, UC-secure protocols are secure in the concurrent setting. Canetti et al. [6]
constructed a UC-secure general MPC protocol in the common reference string
(CRS) model (i.e., in a model in which all parties are given a common public
string that is chosen by a trusted third party). Black-box constructions of UC-
secure general MPC protocols were shown in the FOT-hybrid model [18] and
in the FCOM-hybrid model [8] (i.e., in a model with the ideal oblivious transfer
functionality and in a model with the ideal commitment functionality).



UC security, however, turned out to be too strong to achieve in the plain
model. That is, even with non-black-box use of cryptographic primitives, we
cannot construct UC-secure general MPC protocols in a model with no trusted
setup [3, 4].

To achieve composable security in the plain model, Prabhakaran and Sahai
[29] proposed a variant of UC security called angel-based UC security. Roughly
speaking, angel-based UC security is the same as UC security except that the
adversary and the simulator have access to an additional entity—the angel—
that allows some judicious use of super-polynomial-time resources. Although
angel-based UC security is weaker than UC security, angel-based UC security
guarantees meaningful security in many cases. (For example, angel-based UC
security implies super-polynomial-time simulation (SPS) security [26, 1, 10, 27].
In SPS security, we allow the simulator to run in super-polynomial time; thus
SPS security guarantees that whatever an adversary can do in the real world
can also be done in the ideal world in super-polynomial time.) Furthermore,
it was proven that, like UC security, angel-based UC security guarantees com-
posability. Prabhakaran and Sahai [29] presented a general MPC protocol that
satisfies angel-based UC security in the plain model based on new assumptions.
Subsequently, Malkin et al. [24] constructed another general MPC protocol that
satisfies angel-based UC security in the plain model based on a new number-
theoretic assumption.

Recently, several works constructed general MPC protocols with angel-based
UC security under standard assumptions. Canetti et al. [5] constructed a polynomial-
round general MPC protocol in angel-based UC security assuming the existence
of enhanced trapdoor permutations. Subsequently, Lin [20] and Goyal et al. [14]

reduced the round complexity to Õ(log n) under the same assumption. They
also showed that with enhanced trapdoor permutations that are secure against
quasi-polynomial-time adversaries, the round complexity of their protocols can
be reduced to O(1).

The construction of these MPC protocols are, however, non-black-box. That
is, in the protocols of [5, 20, 14], the underlying primitives are used in a non-
black-box way.

Black-Box Constructions of Composable Protocols. Lin and Pass [22]
showed the first black-box construction of a general MPC protocol that guar-
antees composable security in the plain model. The security of their protocol
is proven under angel-based UC security and based on the minimal assumption
of the existence of semi-honest oblivious transfer (OT) protocols. The round
complexity of their protocol is O(max(nε, rot(n))), where ε > 0 is an arbitrary
constant and rot(n) is the round complexity of the underlying semi-honest OT
protocols. Thus, with enhanced trapdoor permutations (from which we can con-
struct constant-round semi-honest OT protocols), their result gives an O(nε)-
round protocol. Subsequently, Kiyoshima et al. [19] constructed a constant-round
protocol from constant-round semi-honest OT protocols that are secure against



quasi-polynomial-time adversaries and one-way functions that are secure against
subexponential-time adversaries.

Summarizing the state-of-the-art, for composable protocols in the plain model,
we have

– logarithmic-round non-black-box constructions under a standard polynomial-
time hardness assumption [20, 14],

– a polynomial-round black-box construction under a standard polynomial-
time hardness assumption [22], and

– constant-round black-box or non-black-box constructions under standard
super-polynomial-time hardness assumptions [20, 14, 19].

Thus, for composable protocols based on standard polynomial-time hardness
assumptions, there exists a gap between the round complexity of the non-black-
box protocols (logarithmic rounds [20, 14]) and that of the black-box protocols
(polynomial rounds [22]). The following is therefore an important open question.

Does there exist a round-efficient black-box construction of a general
MPC protocol that guarantees composability in the plain model under
polynomial-time hardness assumptions?

1.1 Our Result

In this paper, we greatly narrow the gap between the round complexity of black-
box composable general MPC protocols and the round complexity of non-black-
box ones.

Main Theorem (Informal) Assume the existence of rot(n)-round semi-honest

oblivious transfer protocols. Then, there exists a max(Õ(log2 n), O(rot(n)))-round
black-box construction of a general MPC protocol satisfying angel-based UC se-
curity in the plain model.

Recall that, assuming the existence of enhanced trapdoor permutations, we have
a constant-round semi-honest OT protocol. Thus, under this assumption, our
main theorem gives a Õ(log2 n)-round protocol.

We prove our main theorem by constructing a Õ(log2 n)-round black-box
construction of a CCA-secure commitment scheme [5, 20, 22, 14, 19] from one-
way functions.

Theorem (Informal) Assume the existence of one-way functions. Then, there

exists a Õ(log2 n)-round black-box construction of a CCA-secure commitment
scheme.

Roughly speaking, a CCA-secure commitment scheme is a tag-based commit-
ment scheme (i.e., a commitment scheme that takes an n-bit string—a tag—as
an additional input) such that the hiding property holds even against adver-
saries that interact with the committed-value oracle during the interaction with
the challenger. The committed-value oracle interacts with the adversary as an



honest receiver in many concurrent sessions of the commit phase. At the end of
each session, if the commitment of this session is invalid or has multiple commit-
ted values, the oracle returns ⊥ to the adversary. Otherwise, the oracle returns
the unique committed value to the adversary.

Lin and Pass [22] showed that in angel-based UC security, an O(max(rcca(n),
rot(n)))-round general MPC protocol can be obtained in a black-box way from a
rcca(n)-round CCA-secure commitment scheme and a rot(n)-round semi-honest
OT protocol. Thus, we can prove our main theorem by combining the above
theorem with the result of [22].

1.2 Outline

In Section 2, we give an overview of our CCA secure commitment scheme. Due
to lack of space, we defer formal proofs to the full version.

2 Overview of Our CCA-Secure Commitment Scheme

Key elements for obtaining CCA-secure commitment schemes are concurrent
extractability and non-malleability. With these elements, we can show that the
committed-value oracle is useless for breaking the hiding property. Non-malleability
is used to show that the sessions between the adversary and the oracle are in-
dependent of the session between the adversary and the challenger. Then, con-
current extractability is used to show that the committed-value oracle can be
emulated in polynomial time by extracting the committed values from the ad-
versary.

Before constructing our CCA-secure commitment scheme, we first construct
two building blocks: (i) a commitment scheme CECom′ that is concurrently ex-
tractable without over-extraction and (ii) a one-one CCA-secure commitment
scheme CCACom1:1. The former guarantees concurrent extractability and the
latter guarantees (slightly strong) non-malleability.

2.1 Building Block 1: Concurrently Extractable Commitment
Scheme without Over-Extraction

A commitment scheme is concurrently extractable if a rewinding extractor can
extract the committed values from any committer even in the concurrent setting,
and a concurrently extractable commitment scheme is concurrently extractable
without over-extraction if the extractor outputs ⊥ whenever the commitment
is invalid.2 (Basic extractability, in contrast, allows the extractor to output an
arbitrary value when the commitment is invalid.) There exists a commitment
scheme CECom that is concurrently extractable with over-extraction based on
the existence of one-way functions [25].

2 A commitment is valid if there exists a valid decommitment of this commitment;
otherwise, it is invalid. A commitment is accepted if the receiver does not abort in
the commit phase; otherwise, it is rejected.



To construct a commitment scheme that is concurrently extractable without
over-extraction, we start from the following scheme (in which the cut-and-choose
technique is used in the same way as in the previous works of black-box protocols
[7, 8, 30, 22, 19]).

1. Let v be the value to be committed. Then, the committer computes an
(n+ 1)-out-of-10n Shamir’s secret sharing s = (s1, . . . , s10n) of value v and
commits to each sj in parallel by using CECom.

2. Then, the receiver sends a random subset Γ ⊂ [10n] of size n.
3. The committer reveals sj for every j ∈ Γ and decommits the corresponding

commitments.
4. The receiver accepts the commitment if and only if the decommitments are

valid for every j ∈ Γ .

For j ∈ [10n], let the j-th column be the j-th CECom commitment. The use
of the cut-and-choose technique guarantees that when the receiver accepts a
commitment, the CECom commitments are valid in “most” columns. Then, since
we can extract the committed value of CECom whenever the CECom commitment
is valid, we can extract sj in most columns on an accepted commitment. We can
therefore recover v from the extracted values of the CECom commitments by
using the error-correcting property of Shamir’s secret sharing scheme.3

Unfortunately, although the above scheme is concurrently extractable with-
out over-extraction, we cannot prove its hiding property. This is because the
receiver requests the committer to open adaptively-chosen CECom commitments
(in other words, the receiver performs a selective opening attack).

We therefore modify the scheme in the following way. At the beginning of
the scheme, we let the receiver commit to Γ by using a statistically binding
commitment scheme Com. Now, since the receiver no longer choose the subset
adaptively, we can prove the hiding property by a standard technique. Further-
more, at first sight, the hiding property of Com seems to guarantee that the
scheme remains to be concurrently extractable without over-extraction.

In the modified scheme, however, we cannot prove that the scheme is con-
currently extractable without over-extraction. This is because we can no longer
show that most of the CECom commitments are valid in an accepted commit-
ment. Consider, for example, that there exists a cheating committer C∗ such
that receiving a Com commitment to Γ at the beginning, C∗ somehow generates
an invalid CECom commitment in the j-th column for every j 6∈ Γ and commits
to 0 in the j-th column for every j ∈ Γ . Then, although C∗ seems to break the
hiding property of Com, we do not know how to use C∗ to break the hiding prop-
erty of Com. To see this, observe the following. Recall that since CECom is an
extractable commitment scheme with over-extraction, the extractor of CECom
may output an arbitrary value when the CECom commitment is invalid. Thus,
when we extract the committed values of CECom from C∗, the extracted value
may be 0 in every column. Hence, although C∗ behaves differently in CECom
based on the value of Γ , we cannot detect it.

3 Recall that Shamir’s secret sharing is also a codeword of Reed-Solomon code.



To overcome this problem, we use the commitment scheme wExtCom that
was introduced by Goyal et al. [13]. The commit phase of wExtCom consists of
three stages: commit, challenge, and reply. In the commit stage, the committer
commits to random a0, a1 ∈ {0, 1}n such that a0 ⊕ a1 = v; in the challenge

stage, the receiver sends a random bit ch ∈ {0, 1}; in the reply stage, the
committer reveals ach and decommits the corresponding commitment. We note
that wExtCom is extractable only in a weak sense—extractions may fail with
probability at most 1/2—but wExtCom is extractable without over-extraction.
That is, the extractor may output ⊥ with probability at most 1/2, but when the
extractor outputs v 6= ⊥, the commitment is valid and its committed value is v.
We also note that wExtCom satisfies the following property: After the commit

stage, if the committer returns a valid reply with probability 1/poly(n) for both
ch = 0 and ch = 1, then the committed value can be extracted with probability
1 in expected polynomial time.

With wExtCom, we modify our scheme as follows: After committing to s with
CECom, the committer commits to (sj , dj) for each j ∈ [10n] in parallel with
wExtCom, where (sj , dj) is a decommitment of the j-th CECom commitment.
Then, we show that in most columns on an accepted commitment, the wExtCom
commitment is valid and its committed value is a valid decommitment of the
corresponding CECom commitment. Toward this end, we observe the following.

– If a cheating committer generates an accepting commitment with non-negligible
probability, then in wExtCom of more than 9n columns, the cheating com-
mitter returns a valid reply with non-negligible probability for both ch = 0
and ch = 1. (If the cheating committer returns a valid reply with non-
negligible probability for both ch = 0 and ch = 1 in wExtCom of at most
9n columns, then there are n columns in which the wExtCom commitment
is accepted with probability at most 1/2 + negl(n). Thus, the probability
that all wExtCom commitments are accepted is negligible, and therefore the
commitment is accepted with at most negligible probability. )

– Thus, from the property of wExtCom, we can extract the committed values
of wExtCom without over-extraction in most columns.

– Then, from the property of the cut-and-choose technique, we can show that
in most columns of an accepted commitment, the wExtCom commitment is
valid and its committed value is a valid decommitment of the correspond-
ing CECom commitment. Note that since the committed values of wExtCom
commitments can be extracted without over-extraction, we can show that
the cheating committer cannot give invalid wExtCom commitments in many
columns.

Then, since this implies that most of the CECom commitments are valid whenever
the commitment is accepted, we can extract the committed value of the scheme
without over-extraction as before, i.e., by extracting the committed values of
CECom commitments and using the error-collecting property of Shamir’s secret
sharing scheme.

A formal description of our concurrently extractable commitment scheme
CECom′ is shown in Fig. 1. (For technical reasons, we set the number of columns



to 40n.) In Appendix A, we give a formal proof for the fact that in most columns
on an accepted commitment, the wExtCom commitment is valid and its com-
mitted value is a valid decommitment of the CECom commitment. The formal
proof is more complicated than the above proof sketch because we execute the
wExtCom commitments in parallel and thus the columns are not independent of
each other. The proof of this fact is the most complicated part of the analysis
of CECom′: Given this fact, we can show the concurrent extractability by using
the technique used in the previous works [7, 8, 30, 22, 19].

To commit to v ∈ {0, 1}n, the committer C does the following with the
receiver R.

Step 1. R commits to a random sublet Γ ⊂ [40n] of size n by using Com.
Step 2. C computes an (n + 1)-out-of-40n Shamir’s secret sharing s =

(s1, . . . , s40n) of value v. Then, for each j ∈ [40n] in parallel, C commits
to sj by using CECom. Let (sj , dj) be the decommitment of the j-th
commitment.

Step 3. For each j ∈ [40n] in parallel, C commits to (sj , dj) by using
wExtCom.

Step 4. R decommits the Step 1 commitment to Γ .
Step 5. For each j ∈ Γ , C decommits the j-th Step 3 commitment to

(sj , dj). Then, for each j ∈ Γ , R checks whether the decommitment is
valid and whether the decommitted value (sj , dj) is a valid decommit-
ment of the j-th Step 2 commitment.

Fig. 1. A concurrently commitment scheme CECom′.

2.2 Building Block 2: One-One CCA-Secure Commitment Scheme

A one-one CCA-secure commitment scheme, which is closely related to a non-
malleable commitment scheme, is one that is CCA secure w.r.t. a restricted class
of adversaries that execute only a single session with the committed-value oracle
and immediately receive the answer from the oracle at the end of the session.4

We construct a black-box O(log n)-round one-one CCA-secure commitment
scheme by simplifying the CCA-secure commitment scheme of [22] and using the
DDN log n trick [9, 23], which transforms a concurrent non-malleable commit-
ment scheme for tags of length O(log n) to a non-malleable commitment scheme
for tags of length O(n) without increasing the round complexity. In the following,
we assume the familiarity to the scheme of [22]. Roughly speaking, the scheme of

4 In contrast, a non-malleable commitment scheme is one that is CCA secure w.r.t. a
restricted class of adversaries that execute a single session with the oracle and receive
the answer after completing the interactions with the challenger and the oracle.



[22] consists of polynomially-many rows—each row is a parallel execution of (a
part of) the trapdoor commitment scheme of [28]—and a cut-and-choose phase,
which forces the committer to give valid and consistent trapdoor commitments
in every row. If we reduce the number of rows from poly(n) to `(n) in the scheme
of [22], where `(n) is the length of the tags, the resultant scheme is no longer
CCA secure. It is easy to verify, however, that the scheme is parallel CCA secure,
i.e., it is CCA secure w.r.t. a restricted class of adversaries that give a single par-
allel query to the oracle and receive the answers immediately. (This is because
when the adversaries give only a single parallel query, the recursive rewinding
does not occur in the extraction and thus we require only a single rewinding
opportunity.) Then, we set `(n) := O(log n) and apply the DDN log n trick to
the above parallel CCA-secure commitment scheme. It is not hard to see that
the resultant scheme is one-one CCA secure.

2.3 CCA-Secure Commitment Scheme from the Building Blocks

Given CECom′ and CCACom1:1, we construct a CCA-secure commitment scheme
CCACom roughly as follows, where the committer commits to a value v with tag
tag.

1. The receiver commits to a random subset Γ ⊂ [10n] of size n by using
CCACom1:1 with tag tag.

2. The committer computes an (n+ 1)-out-of-10n Shamir’s secret sharing s =
(s1, . . . , s10n) of value v and commits to each sj in parallel by using a normal
statistically binding commitment scheme Com.

3. For η(n) := rcec(n) + 1 times in sequence (where rcec(n) is the round com-
plexity of CECom′), the committer does the following: the committer com-
mits to sj for every j ∈ [10n] by using CECom′ in parallel. Each parallel
commitment is called a row.

4. The receiver decommits the commitment of the first step and reveals Γ .
5. For every j ∈ Γ , the committer decommits all of the η(n) commitments

whose committed values are sj .

Our scheme differs from the previous CCA-secure commitment schemes [5,
22, 20, 14] in that it uses a one-one CCA-secure commitment scheme instead of
a non-malleable commitment scheme; furthermore, our scheme uses a one-one
CCA-secure commitment scheme in the reverse order. That is, whereas the pre-
vious schemes (implicitly or explicitly) use non-malleable commitment schemes
from the committer to the receiver, our scheme uses a one-one CCA secure com-
mitment scheme from the receiver to the committer. (Very recently, the same
strategy is used in [19].)

Using a one-one CCA-secure commitment scheme in the reverse order is cru-
cial in showing the simulation-soundness of the cut-and-choose phase. We say
that the adversary (or the challenger) cheats if in an accepted commitment there
exists a row whose committed shares disagree with s in more than n indexes.
Using the one-one CCA security of CCACom1:1, we can show that the adversary



cannot cheat in every session of the right interaction (i.e., the interaction between
the adversary and the oracle) even when the adversary receives a commitment in
which the challenger cheats in the left interaction (i.e., the interaction between
the adversary and the challenger). Roughly speaking, this is because the adver-
sary can emulate the cheating challenger in polynomial time by making a single
query to the committed-value oracle of CCACom1:1 and receiving Γ ; therefore,
from one-one CCA security of CCACom1:1, the commitment that the adversary
receives on the left is useless for breaking the hiding property of CCACom1:1 on
the right, and thus the adversary cannot cheat on the right from the property of
the cut-and-choose technique. Note that non-malleability is insufficient for this
argument since the hiding property of CCACom1:1 need to hold even when the
adversary receives the answer from the oracle immediately after completing the
query to the oracle. We also note that CECom′ must be concurrently extractable
without over-extraction since otherwise the adversary may give invalid commit-
ments in more than n indexes without being detected in the cut-and-choose
phase. (As explained in Section 2.1, the existence of such an adversary does not
contradict the one-one CCA security of CCACom1:1 if over-extraction can occur.)

Given the simulation-soundness of the cut-and-choose phase, we can show the
CCA security of CCACom by, as in the analysis of previous CCA-secure commit-
ment schemes [5, 22, 20], rewinding the adversary and emulating the committed-
value oracle in polynomial time. Toward this end, we consider a series of hybrid
experiments in which the commitment that the adversary receives on the left
is gradually changed as follows: In the i-th hybrid experiment (i ∈ [η(n)]), we
switch the committed value from sj to 0 for every j 6∈ Γ in the i-th row, where
Γ is extracted by brute force. Note that the (i − 1)-st hybrid and the i-th hy-
brid differ only in the i-th row. The problem is that the adversary accesses the
committed-value oracle, which runs in super-polynomial time. Then, to show the
indistinguishability between the (i−1)-st hybrid and the i-th hybrid, we observe
the following. Since there are rcec + 1 rows (in particular, the number of rows
is bigger than the number of rounds in CECom′), we can extract the committed
shares in a row on every right session without disturbing the hiding property
of CECom′ in the i-th row on the left. (Here, we use a technique used in [21].
Roughly speaking, we extract the committed shares from a row that contains no
message of the CECom′ commitment of the i-th row on the left.) Recall that, since
CECom′ is concurrently extractable without over-extraction, we can extract the
committed shares without over-extraction. Then, since the simulation-soundness
guarantees that these shares agree with s in at least 9n indexes, we can compute
v from these shares by using the error-correcting property of Shamir’s secret
sharing. Therefore we can emulate the oracle in polynomial time by rewinding
the adversary (without disturbing the hiding property of CECom′ in the i-th
row) and computing v as above. Thus, the indistinguishability of the (i − 1)-st
hybrid and the i-th hybrid follows from the hiding property of CECom′. Then, we
consider another hybrid experiment: This experiment is the same as the η(n)-th
hybrid except that the committed value of the j-th Com commitment in Step
2 is switched from sj to 0 for every j 6∈ Γ . From the same argument as above,



this hybrid is indistinguishable from the η(n)-th hybrid. Then, since in this hy-
brid the adversary does not receive any information about v, the CCA security
follows.

We note that the actual argument is more complicated. For example, we
need to show the simulation-soundness even for the adversary accessing the
committed-value oracle. To solve this problem, we increase the number of rows
(i.e., η(n)) and emulate the oracle in polynomial time without disturbing the
one-one CCA security of CCACom1:1. To show that the oracle can be emulated,
we require the simulation soundness; thus, there seems to be a circular argument,
i.e., we require the simulation soundness to show the simulation soundness. In
the formal analysis, we show that this issue can be avoided. For details, see the
full version.

Comparison with the CCA-secure commitment scheme of [19]. The above CCA-
secure commitment scheme is based on the CCA-secure commitment scheme
of [19], which is constructed from one-way functions that are secure against
subexponential-time adversaries. The scheme of [19] is the same as the above
scheme except for the following.

– There is only a single row, and CECom is used instead of CECom′ (i.e., a
concurrently extractable scheme with over-extraction is used).

– The underlying commitment schemes Com, CECom, and CCACom1:1 are se-
cure against subexponential-time adversaries. In particular, Com is hiding
against T1-time adversaries but is completely broken in time o(T2), CECom
is hiding against T2-time adversaries but is completely broken in time o(T3),
and CCACom1:1 is one-one CCA secure against T3-time adversaries, where
(T1, T2, T3) is a hierarchy of running times such that T3 � T2 � T1 � nω(1).
This is where subexponentially hard one-way functions are required.

The high-level strategy for proving CCA security is the same, i.e., showing the
simulation soundness from one-one CCA security of CCACom1:1 and then con-
sidering hybrid experiments in which committed values of CECom and Com are
gradually switched. The proof of [19] is, however, different from ours in the
following.

– In the proof of the simulation soundness, the issue of over-extraction is solved
by extracting the committed values of CECom by brute force. (Note that
even when the committed values of CECom are extracted by brute force,
the one-one CCA security of CCACom1:1 still holds since the committed
values of CECom are extractable in time o(T3) and one-one CCA security of
CCACom1:1 holds against T3-time adversaries.)

– When the committed values of CECom are switched, the indistinguishability
follows immediately from the fact that CECom is hiding against T2-time
adversaries and the running time of the committed-value oracle is o(T2). (The
committed-value oracle computes its output by extracting the committed
values of Com by brute force. Thus, its running-time is o(T2).)



Thus, the proof of [19] heavily depends on the subexponentially hard security
of the underlying commitment schemes. Roughly speaking, we weaken the as-
sumption of [19] by doing the following.

– To show the simulation soundness without subexponentially hard security,
we replace CECom with CECom′, which is concurrently extractable without
over-extraction.

– To show the indistinguishability when we switch the committed values of
CECom′, we increase the number of rows so that the committed-value ora-
cle can be emulated in polynomial time by rewinding the adversary while
preserving the hiding property of CECom′.

Overall, despite of the similarity of the high-level structure between the scheme
of [19] and ours, the details of the security proofs have a lot of difference.
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A Formal Proof

In this section, we give a formal proof for the fact that in most columns on
an accepted commitment of CECom′, the wExtCom commitment is valid and its
committed value is a valid decommitment of the CECom commitment. This is
the most complicated part of the analysis of CECom′: Given this fact, we can
show the concurrent extractability by using the technique used in the previous
works [7, 8, 30, 22, 19].

Lemma 1. Let C∗ be any cheating committer that concurrently executes many
sessions of the commit phase of CECom′. Then, the following holds except with
negligible probability: In more than 38n columns on every accepted session, the
wExtCom commitment is valid and its committed value is a valid decommitment
of the CECom commitment.



Proof. First, we give some definitions. In each session, for j ∈ [40n], the j-th col-
umn is the pair of the j-th CECom commitment in Step 2 and the j-th wExtCom
commitment in Step 3. We say that a column is consistent if in the column
the committed value of the wExtCom commitment is a valid decommitment of
the CECom commitment; otherwise, the column is inconsistent. We say that C∗

cheats in a session if (i) every wExtCom commitment is accepted, (ii) the j-th
column is consistent for every j ∈ Γ , and (iii) there exist at least 2n inconsistent
columns.

To prove the lemma, it suffices to show that in every session the probability
that C∗ cheats is negligible.

Assume for contradiction that for infinitely many n, there is a session in
which C∗ cheats with probability at least 1/poly(n). In the following, we fix
any such n. Then, since the number of sessions is at most poly(n), there is an
i∗ ∈ [poly(n)] such that in the i∗-th session, C∗ cheats with probability at least
1/nc for a constant c.

Then, let us consider an adversary B against the hiding property of Com. For
random subsets Γ0, Γ1 ⊂ [40n] of size n, B tries to distinguish a Com commitment
to Γ0 from a Com commitment to Γ1 as follows. B internally invokes C∗ and
honestly emulates the interaction between C∗ and honest receivers except that
in the i∗-th session, B does the following.

– In Step 1, B receives a Com commitment from the external committer (the
committed value is either Γ0 or Γ1) and forwards the commitment to C∗ as
the Step 1 commitment.

– When Step 3 is accepted (i.e., all the wExtCom commitments are accepted),
B does the following repeatedly: B rewinds C∗ to the point that the next-
message is the challenge bits of wExtCom in the i∗-th session; then B sends
new random challenge bits and honestly interacts with C∗ until the end of
Step 3 (i.e., until receiving the replies in wExtCom). After collecting other
nc+3 accepted transcripts of Step 3, B outputs 1 if the following hold:

(i) from these nc+3+1 accepted transcript (the first one and the subsequent
nc+3 ones), B can extract the committed values of wExtCom in at least
39n columns,

(ii) in at least n columns of these columns, the extracted values are not valid
decommitments of the corresponding CECom commitments, and

(iii) for every j ∈ Γ1, either the extraction of the j-th column fails or the
extracted value of the j-th column is a valid decommitment of the cor-
responding CECom commitment.

Otherwise, B outputs 0. In the following, the first transcript that B generates
in Step 3 is called the main thread and other nc+3 accepted transcripts are
called the look-ahead threads.

If B rewinds C∗ more than n3c+4 times, B terminates and outputs fail.
First, we show that an expected polynomial-time adversary B′ successfully

distinguishes Com commitments, where B′ is the same as B except that B′ does
not terminate after B′ rewinds C∗ more than n3c+4 times. When B′ receives a



commitment to Γ0, since the internal C
∗ receives no information of Γ1, the prob-

ability that B′ outputs 1 is exponentially small. (This is because when Condition
(i) and Condition (ii) hold, the probability that Condition (iii) holds is expo-
nentially small.) Thus, it remains to show that when B′ receives a commitment
to Γ1, the probability that B′ outputs 1 is at least 1/poly(n). Let extract be the
event that B′ extracts the committed values of wExtCom commitments from at
least 39n columns, and let cheat be the event that C∗ cheats in the i∗-th session
on the main thread. Then, to show that B′ outputs 1 with probability at least
1/poly(n), it suffices to show that

Pr [cheat ∧ extract] ≥ 1

poly(n)
. (1)

(Recall the we can extract the committed values of wExtCom without over-
extraction.) Let ρ be a prefix of a transcript between C∗ and honest receivers
such that after ρ, a honest receiver sends challenge bits of wExtCom in the
i∗-th session. Let prefixρ be the event that a prefix of the main thread is ρ.
Then, since the probability that C∗ cheats in the i∗-th session is at least 1/nc,
from an average argument, we have Pr

[
cheat | prefixρ

]
≥ 1/2nc with probability

at least 1/2nc over the choice of ρ (i.e., when we obtain ρ by emulating the
interaction between C∗ and honest receivers). Let ∆ be the set of prefixes such
that Pr

[
cheat | prefixρ

]
≥ 1/2nc holds. Then, since we have

∑
ρ∈∆ Pr

[
prefixρ

]
≥

1/2nc, we have

Pr [cheat ∧ extract] ≥
∑
ρ∈∆

Pr
[
cheat ∧ extract | prefixρ

]
· Pr

[
prefixρ

]
≥ min

ρ∈∆

(
Pr

[
cheat ∧ extract | prefixρ

])
·
∑
ρ∈∆

Pr
[
prefixρ

]
≥ 1

2nc
min
ρ∈∆

(
Pr

[
cheat ∧ extract | prefixρ

])
. (2)

Thus, to show Equation (1), it suffices to show that for any ρ ∈ ∆, we have

Pr
[
cheat ∧ extract | prefixρ

]
≥ 1

poly(n)
. (3)

In the following, we fix any ρ∗ ∈ ∆. Then, we have

Pr
[
cheat | prefixρ∗

]
≥ 1

2nc
. (4)

Thus, from Equation (4), we have

Pr
[
cheat ∧ extract | prefixρ∗

]
= Pr

[
cheat | prefixρ∗

]
· Pr

[
extract | prefixρ∗ ∧ cheat

]
≥ 1

2nc
Pr

[
extract | prefixρ∗ ∧ cheat

]
(5)

Thus, to show Equation (3), it suffices to show that

Pr
[
extract | prefixρ∗ ∧ cheat

]
≥ 1

poly(n)
. (6)



Recall that when cheat occurs, Step 3 of the i∗-th session is accepted on the
main thread. Thus, for any j ∈ [40n], when cheat occurs and the challenge bit
of wExtCom in the j-th column is b ∈ {0, 1} on the main thread, we can extract
the committed value of the the j-th column if in the nc+3 look-ahead threads
there is an accepted transcript of wExtCom such that the challenge bit of the
j-th column is 1− b. Then, to show Equation (6), we show that when Step 3 of
the i∗-th session is accepted on the main thread with prefix ρ∗, the probability
that the challenge bit of wExtCom is b is “high” for any b ∈ {0, 1} in “most”
columns. Let chj be a random variable for the challenge bit of wExtCom in the
j-th column of the i∗-th session on the main thread, and let accept be the event
that every wExtCom commitment is accepted in the i∗-th session on the main
thread. (We have Pr [accept] ≥ Pr [cheat] from the definitions.) Then, for any
j ∈ [40n] and b ∈ {0, 1},

Pr
[
chj = b | accept ∧ prefixρ∗

]
=

Pr
[
chj = b ∧ accept ∧ prefixρ∗

]
Pr

[
accept ∧ prefixρ∗

]
≥

Pr
[
chj = b ∧ cheat ∧ prefixρ∗

]
Pr

[
prefixρ∗

]
=

Pr
[
cheat

∣∣ chj = b ∧ prefixρ∗

]
Pr

[
chj = b ∧ prefixρ∗

]
Pr

[
prefixρ∗

]
= Pr

[
cheat

∣∣ chj = b ∧ prefixρ∗

]
Pr [chj = b] . (7)

(Here, we use Pr
[
chj = b ∧ prefixρ∗

]
= Pr [chj = b] · Pr

[
prefixρ∗

]
.) Below, we

show that in at least 39n columns of the i∗-th session, for any b ∈ {0, 1} we have

Pr
[
cheat

∣∣ chj = b ∧ prefixρ∗

]
≥ 1

160nc+1
. (8)

Let

A :=

{
j ∈ [40n]

∣∣∣ ∃bj ∈ {0, 1} s.t. Pr
[
cheat | chj = bj ∧ prefixρ∗

]
<

1

160nc+1

}
.



Then we have

Pr
[
cheat

∣∣∣ prefixρ∗

]
≤ Pr

∧
j∈A

chj = 1− bj

+ Pr

cheat∧
∨

j∈A

chj = bj

 ∣∣∣∣∣ prefixρ∗


≤ 2−|A| +

∑
j∈A

Pr
[
cheat ∧ chj = bj | prefixρ∗

]
= 2−|A| +

∑
j∈A

Pr
[
cheat | chj = bj ∧ prefixρ∗

]
Pr [chj = bj ]

≤ 2−|A| +
∑
j∈A

Pr
[
cheat | chj = bj ∧ prefixρ∗

]
< 2−|A| + 40n · 1

160nc+1

≤ 2−|A| +
1

4nc
. (9)

Then, from Equations (4) and (9), we have |A| = O(log n) and therefore |A| ≤ n.
Thus, in at least 39n columns, for any b ∈ {0, 1} we have Equation (8). Then,
from Equations (7) and (8) and from Pr [chj = b] = 1/2, for any j ∈ [40n] \ A
and any b ∈ {0, 1}, we have

Pr
[
chj = b | accept ∧ prefixρ∗

]
≥ 1

320nc+1
.

Then, since the distributions of the look-ahead threads are the same as that
of the main thread, we have that under the condition that prefixρ∗ and cheat
occur, for any j ∈ [40n] \A, the adversary B′ requires another 320nc+1 accepted
transcripts on average to extract the committed value of wExtCom in the j-th
columns. Since B′ collects nc+3 accepted transcripts, for any j ∈ [40n] \ A the
adversary B′ extracts the committed value of wExtCom in the j-th column except
with probability 320nc+1/nc+3 = 320/n2 under the condition that prefixρ∗ and
cheat occur. (Here, we use Markov’s inequality.) Then, from the union bound,
except with probability 39n · 320/n2 = 12480/n, for every j ∈ [40n] \ A the
adversary B′ extracts the committed value of wExtCom in the j-th column.
Thus, we have

Pr
[
extract | prefixρ∗ ∧ cheat

]
≥ 1− 12480

n
. (10)

Then, from Equations (5) and (10), we have

Pr
[
cheat ∧ extract | prefixρ∗

]
≥ 1

2nc
·
(
1− 12480

n

)
≥ 1

4nc
. (11)

Then, since ρ∗ is any prefix in ∆, from Equations (2) and (11) we have

Pr [cheat ∧ extract] ≥ 1

2nc
· 1

4nc
=

1

8n2c
.



Thus, we have Equation (1). We therefore conclude that B′ outputs 1 with
probability at least 1/8n2c when B′ receives a commitment to Γ1. Thus, B′

successfully distinguishes a commitment to Γ1 from a commitment to Γ0.
Now, we are ready to show that B breaks the hiding property of Com. Clearly,

the running time of B is at most poly(n). Note that, to show that B can distin-
guish Com commitments, it suffices to show that the output of B is the same as
that of B′ except with probability 1/n2c+1. (This is because B′ outputs 1 with
negligible probability when B′ receives a commitment to Γ0 whereas B′ outputs
1 with with probability 1/8n2c when B′ receives a commitment to Γ1.) Recall
that the output of B differs from that of B′ if and only if B′ rewinds C∗ more
than n3c+4 times. Let ρ be any prefix of a transcript between C∗ and honest
receivers such that after ρ, the next message is the challenge bits of wExtCom in
the i∗-th session. Let T (n) be a random variable for the number of rewinding in
B′. Then, we have

E
[
T (n) | prefixρ

]
≤ Pr

[
accept | prefixρ

]
· nc+3

Pr
[
accept | prefixρ

] = nc+3 .

Thus, we have

E [T (n)] =
∑
ρ

Pr
[
prefixρ

]
E
[
T (n) | prefixρ

]
≤ nc+3

∑
ρ

Pr
[
prefixρ

]
≤ nc+3 .

Then, from Markov’s inequality, B′ rewinds C∗ more than n3c+4 times with
probability at most nc+3/n3c+4 = 1/n2c+1. Thus, the output of B is the same
as that of B′ except with probability 1/n2c+1, and therefore B distinguishes a
commitment to Γ1 from a commitment to Γ0.

ut


