
Faster Bootstrapping with Polynomial Error

Jacob Alperin-Sheriff1 and Chris Peikert1?

School of Computer Science, Georgia Institute of Technology

Abstract. Bootstrapping is a technique, originally due to Gentry (STOC
2009), for “refreshing” ciphertexts of a somewhat homomorphic encryp-
tion scheme so that they can support further homomorphic operations.
To date, bootstrapping remains the only known way of obtaining fully
homomorphic encryption for arbitrary unbounded computations.
Over the past few years, several works have dramatically improved the
efficiency of bootstrapping and the hardness assumptions needed to im-
plement it. Recently, Brakerski and Vaikuntanathan (ITCS 2014) reached
the major milestone of a bootstrapping algorithm based on Learning
With Errors for polynomial approximation factors. Their method uses the
Gentry-Sahai-Waters (GSW) cryptosystem (CRYPTO 2013) in conjunc-
tion with Barrington’s “circuit sequentialization” theorem (STOC 1986).
This approach, however, results in very large polynomial runtimes and
approximation factors. (The approximation factors can be improved, but
at even greater costs in runtime and space.)
In this work we give a new bootstrapping algorithm whose runtime
and associated approximation factor are both small polynomials. Unlike
most previous methods, ours implements an elementary and efficient
arithmetic procedure, thereby avoiding the inefficiencies inherent to the
use of boolean circuits and Barrington’s Theorem. For 2λ security under
conventional lattice assumptions, our method requires only a quasi-linear
Õ(λ) number of homomorphic operations on GSW ciphertexts, which
is optimal (up to polylogarithmic factors) for schemes that encrypt just
one bit per ciphertext. As a contribution of independent interest, we also
give a technically simpler variant of the GSW system and a tighter error
analysis for its homomorphic operations.

1 Introduction

Gentry’s bootstrapping paradigm [11, 10] allows for converting a “somewhat
homomorphic” encryption scheme (which supports only a bounded number of
homomorphic operations) into a fully homomorphic encryption one (which has no
such bound). The bounded nature of all known somewhat-homomorphic schemes
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is an artifact of “error” terms in their ciphertexts, which are necessary for security.
The error grows as a result of performing homomorphic operations, and if it
grows too large, the ciphertext will no longer decrypt correctly.

Bootstrapping “refreshes” a ciphertext—i.e., reduces its error—so that it can
support more homomorphic operations. This is accomplished by homomorphically
evaluating the decryption function on the ciphertext. The result is a ciphertext
that still encrypts the original encrypted message, and moreover, as long as the
error incurred in the homomorphic evaluation is smaller than the error in the
original ciphertext, the ciphertext is “refreshed.” To date, the bootstrapping
paradigm is the only known way of obtaining an unbounded FHE scheme, i.e.,
one that can homomorphically evaluate any efficient function using keys and
ciphertexts of a fixed size. (By contrast, leveled FHE schemes can evaluate
functions of any a priori bounded depth, and can be constructed without resorting
to bootstrapping [4].)

Bootstrapping has received intensive study, with progress often going hand-
in-hand with innovations in the design of homomorphic encryption schemes,
e.g., [12, 6, 4, 14, 13, 1, 15, 7]. Of particular interest is a recent major milestone
due to Brakerski and Vaikuntanathan (BV) [7], who gave a bootstrapping method
that incurs only polynomial error in the security parameter λ. This allows
security to be based on the learning with errors (LWE) problem [20] with inverse-
polynomial error rates, and hence on worst-case lattice problems with polynomial
approximation factors (via the reductions of [20, 19, 5]). The BV method is
centered around two main components:

1. the recent homomorphic cryptosystem of Gentry, Sahai, and Waters (GSW)
[15], specifically, the “quasi-additive” nature of its error growth under homo-
morphic multiplication; and

2. the “circuit sequentialization” property of Barrington’s Theorem [3], which
converts any depth-d circuit (of NAND gates) into a length-4d “branching
program,” which is essentially a fixed sequence of conditional multiplications.

Since decryption in homomorphic cryptosystems can be implemented in circuit
depth O(log λ), Barrington’s Theorem yields an equivalent branching program
of length 4d = poly(λ). Moreover, the quasi-additive error growth of GSW
multiplication means that homomorphic evaluation of the branching program
incurs only poly(λ) error, as demonstrated in [7].

The polynomial error growth of the BV bootstrapping algorithm is a terrific
feature, but the method also has two significant drawbacks: it comes at a high
price in efficiency, and the error growth is a large polynomial. Both issues arise
from the fact that in this context, Barrington’s Theorem yields a branching
program of large polynomial length. Existing analyses (e.g., [6, Lemma 4.5]) of
decryption circuits (for cryptosystems with 2λ security) yield depths of c log λ
for some unspecified but moderately large constant c ≥ 3, which translates to
a branching program of length at least λ2c ≥ λ6. (Even if the depth were to be
improved, there is a fundamental barrier of c ≥ 1, which yields length Ω(λ2).)
The branching program length is of course a lower bound on the number of



homomorphic operations required to bootstrap, and it also largely determines
the associated error growth and final lattice approximation factors.

Separately, Brakerski and Vaikuntanathan also show how to obtain better
lattice approximation factors through a kind of “dimension leveraging” technique,
but this comes at an even higher price in efficiency: if the original error growth
was λc for some constant c, then the technique involves running the bootstrapping
procedure with GSW ciphertexts of dimension n ≈ λc/ε, where the choice of
ε ∈ (0, 1) yields a final approximation factor of Õ(n3/2+ε). The high cost of
dimension leveraging underscores the importance of obtaining smaller error
growth and approximation factors via other means.

1.1 Our Results

Our main result is a new bootstrapping method having substantially smaller
runtime and (polynomial) error growth than the recent one from [7]. The im-
provements come as a result of treating decryption as an arithmetic function,
in contrast to most earlier works which treated decryption as a boolean circuit.
This avoids the circuitous and inefficient path of constructing a shallow circuit
and then transforming it via Barrington’s Theorem into a branching program
of (large) polynomial length. Instead, we show how to directly evaluate the
decryption function in an elementary and efficient arithmetic form, using just
basic facts about cyclic groups. See the next subsection for a detailed overview.

Our method requires only a quasi-linear Õ(λ) number of homomorphic oper-
ations on GSW ciphertexts, to bootstrap essentially any LWE-based encryption
scheme with 2λ security under conventional assumptions. This performance is
quasi-optimal (i.e., ignoring polylogarithmic factors) for a system with bitwise en-
cryption (like GSW), because the decryption function must depend on at least λ
secret key bits. When instantiated with a GSW scheme based on ring-LWE [17],
in which the cost of each homomorphic operation is only Õ(λ) bit operations,
the total runtime of our algorithm is a respectable Õ(λ2) bit operations.1

Regarding error growth, the security of our basic scheme can be based on LWE
with error rates as large as 1/Õ(λ · n), where n = Ω̃(λ) is the LWE dimension
used in the GSW scheme. Taking n = Õ(λ) to be asymptotically minimal, this
translates to lattice approximation factors of Õ(n3), which is quite close to the
Õ(n3/2) factors that plain public-key encryption can be based upon (and quite
a bit smaller than for many other applications of LWE!). We emphasize that
these small factors are obtained directly from our construction with small LWE
dimensions. To further improve the assumptions at a (high) cost in efficiency, we
can let n = λ1/ε to directly yield Õ(n2+ε) factors for any ε ∈ (0, 1), or we can
use the successive dimension/modulus-reduction technique from [7] to obtain
Õ(n3/2+ε) factors.

Simpler GSW variant. As a contribution of independent interest, we also give a
variant of the GSW cryptosystem that we believe is technically simpler, along

1 Homomorphic operations in standard-LWE-based GSW are quite a bit more expensive,
due to matrix multiplications of dimensions exceeding λ.



with a tighter analysis of error terms under its homomorphic operations (see
Section 3). The entire scheme, security proof, and error analysis fit into just a few
lines of standard linear algebra notation, and our variant enjoys additional useful
properties like full “re-randomization” of error terms as a natural side effect.
The error analysis is also very clean and tight, due to the use of subgaussian
random variables instead of coarser measures like the `2 or `∞ norms. One nice
consequence of this approach is that the error in a homomorphic product of d
ciphertexts grows with

√
d, rather than linearly as in prior analyses. This is

important for establishing the small error growth of our bootstrapping method.

1.2 Technical Overview

Here we give an overview of the main ideas behind our new bootstrapping method.
We start by recalling in more detail the main ideas behind the work of Brakerski
and Vaikuntanathan [7], which uses the Gentry-Sahai-Waters (GSW) [15] homo-
morphic encryption scheme to obtain FHE from LWE with inverse-polynomial
error rates, and hence from lattice problems with polynomial approximation
factors.

The starting point is a simple observation about the GSW encryption scheme:
for encryptions C1,C2 of messages µ1, µ2 ∈ Z, the error in the homomorphic
product C1 d C2 of µ1 ·µ2 is “quasi-additive” and asymmetric in the ciphertexts’
respective errors e1, e2, namely, it is e1 ·poly(n)+µ1 ·e2, where n is the dimension
of the ciphertexts. (The error in the homomorphic sum C1 ‘ C2 is simply the
sum e1 + e2 of the individual errors.) This property has a number of interesting
consequences. For example, Brakerski and Vaikuntanathan use it to show that
the homomorphic product of many freshly encrypted 0-1 messages, if evaluated
sequentially in a right-associative manner, has error that grows at most linearly
in the number of ciphertexts. More generally, the homomorphic product of many
encrypted permutation matrices—i.e., 0-1 matrices in which each row and column
has exactly one nonzero entry—has similarly small error growth.

The next main idea from [7] is to use Barrington’s Theorem to express the
boolean decryption circuit of depth d = O(log λ) as a branching program of length
4d = poly(λ) over the symmetric group S5, or equivalently, the multiplicative
group of 5-by-5 permutations matrices. Their bootstrapping algorithm homo-
morphically (and sequentially) multiplies appropriate encrypted permutation
matrices to evaluate this branching program on a given input ciphertext, thereby
homomorphically decrypting it. Since evaluation is just a homomorphic product
of poly(λ) permutation matrices, the error in the final output ciphertext is only
polynomial, and the LWE parameters can be set to yield security assuming the
hardness of lattice problems for polynomial approximation factors.

Our Approach Our bootstrapping method retains the use of symmetric groups
and permutation matrices, but it works without the “magic” of Barrington’s
Theorem, by treating decryption more directly and efficiently as an arithmetic
function, not a boolean circuit. In more detail, the decryption function for



essentially every LWE-based cryptosystem can without loss of generality (via
standard bit-decomposition techniques) be written as a “rounded inner product”

between the secret key s ∈ Zdq and a binary ciphertext c ∈ {0, 1}d, as

Dec(s, c) = b〈s, c〉e2 ∈ {0, 1}.

Here the modular rounding function b·e2 : Zq → {0, 1} indicates whether its
argument is “far from” or “close to” 0 (modulo q), and the dimension d and
modulus q can both be made as small as quasi-linear Õ(λ) in the security
parameter via dimension/modulus reduction [6], while still providing provable 2λ

security under conventional lattice assumptions. Note that the inner product
itself is just a subset-sum of the Zq-entries of s indicated by c, and uses only the
additive group structure of Zq.

Embedding Zq into Sq. As a warm up, we first observe that the additive group Zq
embeds (i.e., has an injective homomorphism) into the symmetric group Sq, the
multiplicative group of q-by-q permutation matrices. (This is just a special case
of Cayley’s Theorem, which says that any finite group G embeds into S|G|.)
The embedding is very simple: x ∈ Zq maps to the permutation that cyclically
rotates by x positions. Moreover, any such permutation can be represented by
an indicator vector in {0, 1}q with its 1 in the position specified by x, and
its permutation matrix is obtained from the cyclic rotations of this vector. In
this representation, a sum x + y can be computed in O(q2) bit operations by
expanding x’s indicator vector into its associated permutation matrix, and then
multiplying by y’s indicator vector. This representation also makes the rounding
function b·e2 : Zq → {0, 1} trivial to evaluate: one just sums the entries of the
indicator vector corresponding to those values in Zq that round to 1.

These ideas already yield a new and simple bootstrapping algorithm that
appears to have better runtime and error growth than can be obtained using
Barrington’s Theorem. The bootstrapping key is an encryption of each coordinate
of the secret key s ∈ Zdq , represented as a dimension-q indicator vector, for a

total of d · q = Õ(λ2) GSW ciphertexts. To bootstrap a ciphertext c ∈ {0, 1}d,
the inner product 〈s, c〉 ∈ Zq is computed homomorphically as a subset-sum

using the addition method described above, in O(d · q2) = Õ(λ3) homomorphic
operations. The rounding function is then applied homomorphically, using just
O(q) = Õ(λ) additions.

Embedding Zq into smaller symmetric groups. While the above method yields
some improvements over prior work, it is still far from optimal. Our second
main idea is an efficient way of embedding Zq into a much smaller symmetric

group Sr for some r = Õ(1), such that the rounding function can still be efficiently
evaluated (homomorphically). We do so by letting the modulus q =

∏
i ri be

the product of many small prime powers ri of distinct primes. (We can use such
a q by modulus switching, as long as it remains sufficiently large to preserve
correctness of decryption.) Using known bounds on the distribution of primes, it



suffices to let the ri be maximal prime powers bounded by O(log λ), of which
there are at most O(log λ/ log log λ).

By the Chinese Remainder Theorem, the additive group Zq is isomorphic (via
the natural homomorphism) to the product group

∏
i Zri , which then embeds

into
∏
i Sri as discussed above. Therefore, we can represent any x ∈ Zq as a tuple

of O(log λ) indicator vectors of length ri = O(log λ) representing x (mod ri), and
can perform addition by operating on the indicator vectors as described above.
In this representation, the rounding function is no longer just a sum, but it can
still be expressed relatively simply as

bxe2 =
∑

v∈Zq s.t. bve2=1

[x = v],

where each equality test [x = v] returns 0 for false and 1 for true.2 In turn, each
equality test [x = v] is equivalent to the product of equality tests [x = v (mod ri)],
each of which can be implemented trivially in our representation by selecting the
appropriate entry of the indicator vector for x (mod ri). All of these operations
have natural homomorphic counterparts in our representation, so we get a
corresponding bootstrapping algorithm.

As a brief analysis, each coordinate of the secret key s ∈ Zdq is encrypted as∑
i ri = Õ(1) GSW ciphertexts, for a total of Õ(d) = Õ(λ) ciphertexts in the

bootstrapping key. Similarly, each addition or equality test over Zq takes Õ(1)

homomorphic operations, for a total of Õ(d+ q) = Õ(λ). Both of these measures
are quasi-optimal when relying on a scheme that encrypts one bit per ciphertext
(like GSW). By contrast, bootstrapping using Barrington’s Theorem requires at
least 4c log λ = λ2c homomorphic operations to evaluate the branching program,
where c log λ is the depth of the decryption circuit using NAND gates (of fan-in
2). To our knowledge, upper bounds on the constant c have not been optimized
or even calculated explicitly, but existing analyses like [6, Lemma 4.5] yield
c � 3, and the necessary dependence on λ inputs bits for 2λ security yields a
fundamental barrier of c ≥ 1.

Related Work on Branching Programs Several works have extended and
improved Barrington’s Theorem for the simulation of general circuits and formulas
via branching programs, e.g., [8, 9]. Of particular interest here is the thesis
of Sinha [22], which gave quasi-linear-size, log-width branching programs for
threshold functions (i.e., those which output 1 if at least some k of the n inputs
are 1) and “mod” functions (i.e., those which output 1 if the number of 1s in the
input is zero modulo some d). Similarly to our techniques, Sinha’s construction
uses the Chinese Remainder Theorem over many small primes in an essential
way.

Because decryption in LWE-based cryptosystems involves modular addition,
and can be implemented in constant depth (and polynomial size) by threshold

2 Note that we are not using any special property of the rounding function here; any
boolean function f : Zq → {0, 1} can be expressed similarly by summing over f−1(1).



gates, it might be possible to bootstrap in a quasi-linear number of homomorphic
operations by using Sinha’s results in place of Barrington’s Theorem. However,
we have not seen a way to make this work concretely.

Organization. The rest of the paper is organized as follows. In Section 2 we recall
some mathematical preliminaries on subgaussian random variables and symmetric
groups. In Section 3 we present our simplified GSW variant and analysis. In
Section 4 we extend this to a homomorphic encryption scheme for symmetric
groups. In Section 5.2 we describe and analyze our new bootstrapping algorithm.

Acknowledgments. We thank the anonymous CRYPTO reviewers for their helpful
comments, and for pointers to the additional works on branching programs.

2 Preliminaries

For a nonnegative integer n, we let [n] = {1, . . . , n}. For an integer modulus q,
we let Zq = Z/qZ denote the quotient ring of integers modulo q, and (Zq,+) its
additive group.

2.1 Subgaussian Random Variables

In our constructions it is very convenient to analyze the behavior of “error”
terms using the standard notion of subgaussian random variables. (For further
details and full proofs, see [23].) A real random variable X (or its distribution) is
subgaussian with parameter r > 0 if for all t ∈ R, its (scaled) moment-generating
function satisfies E[exp(2πtX)] ≤ exp(πr2t2). By a Markov argument, X has
Gaussian tails, i.e., for all t ≥ 0, we have

Pr[|X| ≥ t] ≤ 2 exp(−πt2/r2). (1)

(If E[X] = 0, then Gaussian tails also imply subgaussianity.) Any B-bounded
centered random variable X (i.e., E[X] = 0 and |X| ≤ B always) is subgaussian
with parameter B

√
2π.

Subgaussianity is homogeneous, i.e., X is subgaussian with parameter r, then
cX is subgaussian with parameter c · r for any constant c ≥ 0. Subgaussians also
satisfy Pythagorean additivity : if X1 is subgaussian with parameter r1, and X2

is subgaussian with parameter r2 conditioned on any value of X1 (e.g., if X1

and X2 are independent), then X1 +X2 is subgaussian with parameter
√
r21 + r22.

By induction this extends to the sum of any finite number of variables, each of
which is subgaussian conditioned on any values of the previous ones.

We extend the notion of subgaussianity to vectors: a random real vector x is
subgaussian with parameter r if for all fixed real unit vectors u, the marginal
〈u,x〉 ∈ R is subgaussian with parameter r. In particular, it follows directly from
the definition that the concatenation of variables or vectors, each of which is
subgaussian with common parameter r conditioned on any values of the prior ones,
is also subgaussian with parameter r. Homogeneity and Pythagorean additivity
clearly extend to subgaussian vectors as well, by linearity.



2.2 Symmetric Groups and Zq-Embeddings

Here we recall some basic facts about symmetric groups, which can be found in
most abstract algebra textbooks, e.g., [16]. Let Sr denote the symmetric group
of order r, i.e., the group of permutations (bijections) π : {1, . . . , r} → {1, . . . , r}
with function composition as the group operation. The group Sr is isomorphic
to the multiplicative group of r-by-r permutation matrices (i.e., 0-1 matrices
with exactly one nonzero element in each row and each column), via the map
that associates π ∈ Sr with the permutation matrix Pπ = [eπ(1) eπ(2) · · · eπ(r)],
where ei ∈ {0, 1}r is the ith standard basis vector. For the remainder of this
work we identify permutations with their associated permutation matrices.

The additive cyclic group (Zr,+) embeds into the symmetric group Sr via
the injective homomorphism that sends the generator 1 ∈ Zr to the “cyclic shift”
permutation π ∈ Sr, defined as π(i) = i+ 1 for 1 ≤ i < r and π(r) = 1.3 Clearly,
this embedding and its inverse can be computed efficiently. Notice also that the
permutation matrices in the image of this embedding can be represented more
compactly by just their first column, because the remaining columns are just
the successive cyclic shifts of this column. Similarly, such permutation matrices
can be multiplied in only O(r2) operations, since we only need to multiply one
matrix by the first column of the other.

For our efficient bootstrapping algorithm, we need to efficiently embed a
group (Zq,+), for some sufficiently large q of our choice, into a symmetric group
of order much smaller than q (e.g., polylogarithmic in q). This can be done as
follows: suppose that q = r1r2 · · · rt, where the ri are pairwise coprime. Then by
the Chinese Remainder Theorem, the ring Zq is isomorphic to the direct product
of rings Zr1 × Zr2 × · · · × Zrt , and hence their additive groups are isomorphic as
well. Combining this with the group embeddings of (Zri ,+) into Sri , we have an
(efficient) group embedding from (Zq,+) into Sr1 × Sr2 × · · · × Srt .4

Importantly for our purposes, q can be exponentially large in terms of maxi ri
above. This can be shown using lower bounds on the second Chebyshev function

ψ(x) :=
∑
pk≤x

log p = log
(∏
p≤x

pblogp xc
)
,

where the first summation is over all prime powers pk ≤ x, and the second is
over all primes p ≤ x; note that pblogp xc is the largest power of p not exceeding x.
Therefore, the product q of all maximal prime powers ri = pblogp xc ≤ x is
exp(ψ(x)). Asymptotically, it is known that ψ(x) = x±O(x/ log x), and we also
have the nonasymptotic bound ψ(x) ≥ 3x/4 for all x ≥ 7 [21, Theorem 11]. In
summary:

Lemma 2.1. For all x ≥ 7, the product of all maximal prime powers ri ≤ x is
at least exp(3x/4).

3 This is just a special case of Cayley’s theorem, which says that any group G embeds
into the symmetric group S|G|.

4 The latter group can be seen as a subgroup of Sr for r =
∑
i ri, but it will be more

efficient to retain the product structure.



For any given lower bound q0 ≥ 191 > exp(21/4), we can therefore efficiently find
a q ≥ q0 whose maximal prime-power divisors are all at most x = 4

3 log q0 ≥ 7.

3 GSW Cryptosystem

Here we present a variant of the Gentry-Sahai-Waters homomorphic encryption
scheme [15] (hereafter called GSW), which we believe is simpler to understand
at a technical level. We also give a tighter analysis of its error growth under
homomorphic operations.

We first recall some standard background (see, e.g., [18] for further details).
For a modulus q, let ` = dlog2 qe and define the “gadget” (column) vector
g = (1, 2, 4, . . . , 2`−1) ∈ Z`q. Note that the penultimate entry 2`−2 of g is in the
interval [q/4, q/2) mod q. It will be convenient to use the following randomized
“decomposition” function.

Claim (Adapted from [18]). There is a randomized, efficiently computable func-
tion g−1 : Zq → Z` such that x← g−1(a) is subgaussian with parameter O(1),
and always satisfies 〈g,x〉 = a.

For vectors and matrices over Zq, define the randomized function G−1 : Zn×mq →
Zn`×m by applying g−1 independently to each entry. Notice that for any A ∈
Zn×mq , if X← G−1(A) then X has subgaussian parameter O(1) and

G ·X = A, where G = gt ⊗ In = diag(gt, . . . ,gt) ∈ Zn×n`q (2)

is the block matrix with n copies of gt as diagonal blocks, and zeros elsewhere.

3.1 Cryptosystem and Homomorphic Operations

The GSW scheme is parameterized by a dimension n, a modulus q with ` =
dlog2 qe, and some error distribution χ over Z which we assume to be subgaussian.
Formally, the message space is the ring of integers Z, though for bootstrapping
we only work with ciphertexts encrypting messages in {0, 1} ⊂ Z. The ciphertext
space is C = Zn×n`q . For simplicity we present just a symmetric-key scheme,
which is sufficient for our purposes (it can be converted to a public-key or even
attribute-based scheme, as described in [15]).

Our GSW variant differs from the original scheme described in [15] in two
main ways:

1. In [15], a ciphertext is a square binary matrix C ∈ {0, 1}n`, a secret key
is a “structured” mod-q vector s ∈ Zn`q (having large entries), and s is an
“approximate mod-q eigenvector” of C, in the sense that stC ≈ µst (mod q),
where µ ∈ Z is the message.
In our variant, a ciphertext is a rectangular mod-q matrix C ∈ Zn×n`q , a
secret key is some (unstructured, short) integer vector s ∈ Zn, and stC ≈
µ·stG (mod q), i.e., s and Gts are corresponding left- and right- “approximate
singular vectors” of C.



The difference between these two variants turns out to be purely syntactic,
in that we can efficiently and “losslessly” switch between them (without
needing the secret key). However, we believe that our variant leads to simpler
notation and easier-to-understand operations and analysis.

2. The second difference is more substantial: our homomorphic multiplication
procedure uses the randomized G−1(·) operation from Claim 3. This yields a
few important advantages, such as a very tight and simple error analysis using
subgaussianity (see Lemma 3.3), and the ability to completely re-randomize
the error in a ciphertext (see Corollary 3.4).

We now describe the scheme formally.

GSW.Gen(): choose s̄← χn−1 and output secret key s = (s̄, 1) ∈ Zn.

GSW.Enc((s̄, 1), µ ∈ Z): choose C̄ ← Z(n−1)×n`
q and e ← χm, let bt = et −

s̄tC̄ (mod q), and output the ciphertext

C =

(
C̄
bt

)
+ µG ∈ C,

where G is as defined in Equation (2). Notice that stC = et+µ ·stG (mod q).
GSW.Dec(s,C ∈ C): let c be the penultimate column of C, and output µ =
b〈s, c〉e2, where b·e2 : Zq → {0, 1} indicates whether its argument is closer
modulo q to 0 or to 2`−2 (the penultimate entry of g).5

Homomorphic addition is defined as C1 ‘ C2 = C1 + C2.
Homomorphic multiplication is defined as C1 d C2 ← C1 ·G−1(C2), and

is right associative. Notice that this is a randomized procedure, because G−1

is randomized.

The IND-CPA security of the scheme follows immediately from the assumed
hardness of LWEn−1,q,χ, where the entries of the secret are drawn from the error
distribution χ (which is no easier than for a uniformly random secret; see [2,
Lemma 2]). This is because a fresh ciphertext is just µG plus a matrix of n`
independent LWE samples under secret s̄, which are pseudorandom by assumption
and hence hide µG.

3.2 Analysis

Here we analyze the scheme’s correctness and homomorphic operations.

Definition 3.1. We say that a ciphertext C is designed to encrypt message
µ ∈ Z (under a secret key s) if it is a fresh encryption of µ, or if C = C1 ‘ C2

where C1,C2 are respectively designed to encrypt µ1, µ2 ∈ Z and µ = µ1 + µ2,
or similarly for homomorphic multiplication.

5 Note that we can decrypt messages in Z ∩ [− q
2
, q
2
), or any other canonical set of

representatives of Zq, by “decoding” stC to the nearest multiple of stG. The above
decryption algorithm will be sufficient for our purposes.



Definition 3.2. We say that a ciphertext C that is designed to encrypt µ ∈ Z
(under s) has error vector et ∈ Zn` if stC− µ · stG = et (mod q).

For convenience later on, we also say the matrix µG is designed to encrypt
µ, and has error 0. (This is essentially implied by the above definitions, since
µG is indeed a fresh encryption of µ, assuming that zero is in the support of χ.)
The next claim on the correctness of decryption follows immediately from the
fact that s = (s̄, 1) and the penultimate column of G is (0, . . . , 0, 2`−2), where
2`−2 ∈ [q/4, q/2) mod q.

Claim. If C is designed to encrypt some µ ∈ {0, 1} ⊂ Z, and has error vector et

whose penultimate coordinate has magnitude less than q/8, then GSW.Dec(s,C)
correctly outputs µ.

We now analyze the behavior of the error terms under homomorphic operations.

Lemma 3.3. Suppose C1,C2 are respectively designed to encrypt µ1, µ2 ∈ Z
and have error vectors et1, e

t
2. Then C1‘C2 has error vector et1+et2, and C1dC2

has error vector et1X + µ1e
t
2, where X ← G−1(C2) is the matrix used in the

evaluation of d. In particular, for any values of Ci, ei, µi, the latter error vector
is of the form et + µ1e

t
2, where the entries of e are independent and subgaussian

with parameter O(‖e1‖).

Importantly, the error in C1 d C2 is quasi-additive and asymmetric with
respect to the errors in C1,C2: while the first error vector et1 is multiplied by a
short (subgaussian) matrix X, the second error vector et2 is only multiplied by
the (scalar) message µ1, which we will ensure remains in {0, 1}.

Proof. The first claim is immediate, by linearity. For the second claim, because
G ·X = C2 we have

st(C1 d C2) = stC1 ·X
= (et1 + µ1 · stG)X

= et1X + µ1(et2 + µ2 · stG)

= (et1X + µ1e
t
2) + µ1µ2 · stG.

As observed in [7], the asymmetric noise growth allows for performing a long
chain of homomorphic multiplications while only incurring a polynomial-factor
error growth, because d is defined to be right associative. For convenience of
analysis, in such a chain we always include the fixed ciphertext G, which is
designed to encrypt µ = 1 and has zero error, as the rightmost ciphertext in the
chain. This ensures that the error vector of the output ciphertext is subgaussian
and essentially independent of the errors in the input ciphertexts (apart from
their lengths), which leads to a simpler and tighter analysis. (In [7] a weaker
independence guarantee was achieved by a separate “partial re-randomization”
procedure, which requires additional public key material.)



Corollary 3.4. Suppose that Ci for i ∈ [k] are respectively designed to encrypt
µi ∈ {0,±1} and have error vectors eti. Then for any fixed values of these
variables,

C←
ô

i∈[k]
Ci d G = C1 d (C2 d (· · · (Ck d G) · · · ))

has an error vector whose entries are mutually independent and subgaussian with
parameter O(‖e‖), where et = (et1, . . . , e

t
k) ∈ Zkn` is the concatenation of the

individual error vectors.

Proof. By Lemma 3.3, the error vector in C is
∑
i e
t
iXi, where each etiXi is

a fresh independent vector that has mutually independent coordinates and is
subgaussian with parameter O(‖ei‖). The claim then follows by Pythagorean
additivity.

4 Homomomorphic Encryption for Symmetric Groups

Brakerski and Vaikuntanathan [7] showed how to use the GSW encryption
scheme to homomorphically compose permutations of five elements (i.e., to
homomorphically compute the group operation in the symmetric group S5)
with small additive noise growth; the use of S5 comes from its essential role in
Barrington’s theorem [3]. In [7], the homomorphic composition of permutations
is intertwined with the evaluation of a branching program given by Barrington’s
theorem. Here we give, as a “first-class object,” a homomorphic cryptosystem for
any symmetric group Sr. The ability to use several different small values of r,
along with a homomorphic equality test that we design, will be central to our
bootstrapping algorithm.

4.1 Encryption Scheme

We now describe our (symmetric-key) homomorphic encryption scheme for sym-
metric groups, called HEPerm. Let C denote the ciphertext space for an appropri-
ate instantiation of the GSW scheme, which we treat as a “black box.” A secret
key sk for HEPerm is simply a secret key for the GSW scheme.

– HEPerm.Enc(sk, π ∈ Sr): let P = (pi,j) ∈ {0, 1}r×r be the permutation
matrix associated with π. Output an entry-wise encryption of P, i.e., the
ciphertext

C = (ci,j) ∈ Cr×r, where ci,j ← Enc(sk, pi,j).

(Decryption follows in the obvious manner.) As with the GSW system, we say
that a ciphertext C ∈ Cr×r is designed to encrypt a permutation π ∈ Sr (or its
permutation matrix Pπ) if its C-entries are designed to encrypt the corresponding
entries of Pπ. For convenience, we let J ∈ Cr×r denote the ciphertext that
encrypts the identity permutation with zero noise, which is built in the expected
way from the fixed zero-error GSW ciphertexts that encrypt 0 and 1.

We now show how to homomorphically compute two operations: the standard
composition operation for permutations, and an equality test.



Homomorphic composition Cπ e Cσ: on ciphertexts Cπ = (cπi,j),C
σ = (cσi,j) ∈

Cr×r encrypting permutations π, σ ∈ Sr respectively, we compute one en-
crypting the permutation π ◦ σ by homomorphically evaluating the näıve
matrix-multiplication algorithm.That is, output C = (ci,j) ∈ Cr×r where

ci,j ←
ð

`∈[r]
(cπi,` d cσ`,j) ∈ C. (3)

Just like d, we define e to be right associative.
Homomorphic equality test Eq?(Cπ = (cπi,j), σ ∈ Sr): given a ciphertext en-

crypting some permutation π ∈ Sr and a permutation σ ∈ Sr (in the clear),
output a ciphertext c ∈ C encrypting 1 if π = σ and 0 otherwise, as

c←
ô

i∈[r]
cπσ(i),i d g,

where g ∈ C denotes the fixed zero-error encryption of 1. (Recall that d is
right associative.)

Observe that for the above two operations, the GSW ciphertext(s) in the
output are designed to encrypt the appropriate {0, 1}-message. For Compose this
is simply by correctness of the matrix-multiplication algorithm. For Eq? this is
because the output ciphertext is designed to encrypt 1 if and only if every cσ(i),i
is designed to encrypt 1, which is the case if and only if Cπ is in fact designed to
encrypt σ. All that remains is to analyze the behavior of the error terms, which
we do next.

4.2 Analysis

Recalling that the GSW scheme is parameterized by n and q, denote its space of
error vectors by E = Zm where m = ndlog2 qe. The Euclidean norm on Er = Zmr
is defined in the expected way. In what follows it is often convenient to consider
vectors and matrices over E , i.e., each entry is itself a (row) vector in E = Zm,
and we switch between Eh×w and Zh×wm as is convenient.

The following lemma describes the behavior of errors under the homomorphic
composition operation e. Note that working with vectors and matrices over
E lets us write a statement that is syntactically very similar to the one from
Lemma 3.3, with a very similar proof.

Lemma 4.1. Let Cπ,Cσ ∈ Cr×r respectively be designed to encrypt permutation
matrices Pπ,Pσ ∈ {0, 1}r×r with error matrices Eπ,Eσ ∈ Er×r. Then for any
fixed values of these variables, Cπ e Cσ has error matrix E + Pπ · Eσ ∈ Er×r,
where the Z-entries of E are mutually independent, and those in its ith row are
subgaussian with parameter O(‖eπi ‖), where eπi is the ith row of Eπ.

Proof. Let C ← Cπ e Cσ. It suffices to show that for all i, j, its (i, j)th entry
ci,j ∈ C has error

ei,j + eσπ−1(i),j ∈ E = Zm,



where all the Z-entries of all the ei,j ∈ Zm are mutually independent and subgaus-
sian with parameter O(‖eπi ‖), and eσ`,j is the (`, j)th entry of Eσ. This follows
directly from Equation (3) and Lemma 3.3: the error in each ciphertext cπi,` d cσ`,j
is pπi,` · eσ`,j plus a fresh vector whose entries are independent and subgaussian

with parameter O(‖eπi,`‖). Since pπi,` = 1 for ` = π−1(i) and 0 otherwise, the
claim follows by Pythagorean additivity of independent subgaussians.

Similarly to a multiplication chain of GSW ciphertexts, we can perform a
(right-associative) chain of compositions while incurring only small error growth.
For convenience of analysis, we always include the fixed zero-error ciphertext
J ∈ Cr×r (which encrypts the identity permutation) as the rightmost ciphertext
in the chain. The following corollary follows directly from Lemma 4.1 in the same
way that Corollary 3.4 follows from Lemma 3.3.

Corollary 4.2. Suppose that Ci ∈ Cr×r for i ∈ [k] are respectively designed to
encrypt permutation matrices Pi ∈ {0, 1}r×r and have error matrices Ei ∈ Er×r.
Then for any fixed values of these variables,

C←
õ

i∈[k]
Ci e J = C1 e (C2 e (· · · (Ck e J) · · · ))

has an error matrix whose Z-entries are mutually independent, and those in its
ith row are subgaussian with parameter O(‖ei‖), where eti ∈ Ekr is the ith row of
the concatenated error matrices [E1 | · · · | Ek].

Finally, since the Eq? procedure simply performs a chain of (right-associative)
multiplications of GSW ciphertexts, Corollary 3.4 applies.

4.3 Optimizations for Zr Embeddings

For bootstrapping, we use the above scheme only to encrypt elements in the
cyclic subgroup Cr ⊆ Sr that embeds the additive group (Zr,+). As described in
the preliminaries, an element π ∈ Cr can be represented more compactly as an
indicator (column) vector p ∈ {0, 1}r (rather than a matrix in {0, 1}r×r), and
its associated permutation matrix Pπ is made up of the r cyclic rotations of p.
In addition, the composition of two permutations represented in this way as p,q
is given by the matrix-vector product Pπ · q, which may be computed in O(r2)
operations, rather than O(r3) as in the general case. All of this translates directly
to encrypted permutations in the expected way, i.e., ciphertexts are entry-wise
encryptions in Cr of indicator vectors, etc.

Similarly, the equality test Eq? can be performed more efficiently when we
restrict to the subgroup Cr: given r ciphertexts encrypting the entries of an
indicator vector in {0, 1}r and an s ∈ Zr, just output the ciphertext in the
position corresponding to s.

Since our bootstrapping scheme uses Zr embeddings only for r = O(log λ),
these optimizations lead to polylogarithmic factor improvements in runtime and
error, but no more.



5 Bootstrapping

We now describe our bootstrapping procedure.

5.1 Specification and Usage

We start by specifying the abstract preconditions and output guarantees of our
bootstrapping algorithm, and describe how to use it (with some additional pre-
and post-processing) to bootstrap known LWE-based encryption schemes.

The scheme to be bootstrapped must have binary ciphertexts in {0, 1}d and
secret keys in Zdq for some dimension d and modulus q that should be made as

small as possible (q, d = Õ(λ) are possible), and a decryption function of the
form Decs(c) = f(〈s, c〉) ∈ {0, 1} for some arbitrary function f : Zq → {0, 1}. We
rely on an appropriate instantiation of the GSW cryptosystem, as described in
further detail in Section 5.2 below.

BootGen(s ∈ Zdq , sk) takes as input a secret key vector s ∈ Zdq from the scheme
to be bootstrapped, and a secret key sk for GSW. It outputs a bootstrapping
key bk, which appropriately encrypts s under sk.

Bootstrap(bk, c ∈ {0, 1}d) takes as input the bootstrapping key bk and a cipher-

text vector c ∈ {0, 1}d (which decrypts under the secret key s). It outputs a
GSW ciphertext which decrypts (under sk) to the same bit as c does (under
s), but with less error.

Pre- and post-processing. We can bootstrap all known LWE-based bit-encryption
schemes using the above algorithms as follows. In all LWE-based encryption
schemes, decryption can be expressed as a “rounded inner product” b〈s, c〉e2 for
some appropriate rounding function b·e2 : Zq → {0, 1}, as required. Note that a
GSW ciphertext can trivially be put in this form by just taking its penultimate
column (see GSW.Dec in Section 3.1). As for the other conditions we need (binary
ciphertexts and small d, q), LWE encryption schemes are not always presented in
a way that fulfills them, but fortunately there are standard transformations that
do so, as we now describe. (See [6, 5] for further details.)

First, since we do not need to perform any further homomorphic operations
on the ciphertext, we can use dimension- and modulus-reduction [6] to get a
ciphertext c̄ (over Zq) of dimension Õ(λ) and modulus q = Õ(λ), while preserving
correct decryption. These steps can be implemented with 2λ security under
conventional lattice assumptions.6 Then, we can obtain a binary ciphertext c using
“bit decomposition:” let G be as defined in Section 3, and for the ciphertext c̄
over Zq under secret key s̄, let c be a {0, 1}-vector such that Gc = c̄, and let
s = Gts̄ so that 〈s, c〉 = 〈s̄, c̄〉 ∈ Zq. (The secret key s is therefore the one we
need to provide to BootGen.)

6 To make the modulus quasi-linear, we need to use randomized (subgaussian) rounding
in the modulus-reduction step.



After bootstrapping, the output is a GSW ciphertext C encrypted under sk
(which is just an integer vector). If desired, we can convert this ciphertext back
to one for the original LWE cryptosystem, simply by taking the penultimate
column of C. We can also key-switch from sk back to the original secret key s.
(As usual in bootstrapping, going “full circle” in this way requires an appropriate
circular security assumption.)

5.2 Procedures

Our algorithms rely on instantiations of GSW and HEPerm with parame-
ters n,Q, χ. Importantly, the ciphertext modulus Q is not the modulus q of
the scheme we are bootstrapping, but rather some Q � q that is sufficiently
larger than the error in Bootstrap’s output ciphertext. Let C denote the GSW
ciphertext space.

Our procedures need q to be of the form q =
∏
i∈[t] ri where the ri are

small and powers of distinct primes (and hence pairwise coprime). Specifically,
using Lemma 2.1 we can choose q = Õ(λ) to be large enough by letting it
be the product of all maximal prime-powers ri that are bounded by O(log λ),
of which there are t = O(log λ/ log log λ). Let φ be the group embedding of
(Zq,+) ∼= (Zr1 × · · · × Zrt ,+) into S = Sr1 × · · · × Srt described in Section 2.2,
and let φi denote the ith component of this embedding, i.e., the one from Zq
into Sri .

BootGen(s ∈ Zdq , sk): given secret key s ∈ Zdq for the scheme to be bootstrapped
and a secret key sk for HEPerm, embed each coordinate sj ∈ Zq of s as
φ(sj) ∈ S and encrypt the components under HEPerm. That is, generate
and output the bootstrapping key

bk = {Ci,j ← HEPerm.Enc(sk, φi(sj)) : i ∈ [t], j ∈ [d]}.

Recalling that we are working with embeddings of Zri , each Ci,j ∈ Cri can be
represented as a tuple of ri GSW ciphertexts encrypting an indicator vector
(see Section 4.3). Because t, ri = O(log λ) and d = Õ(λ), the bootstrapping
key consists of Õ(λ) GSW ciphertexts.

Bootstrap(bk, c ∈ {0, 1}d): given a binary ciphertext c ∈ {0, 1}d, do the following:
Inner Product: Homomorphically compute an encryption of

v = 〈s, c〉 =
∑

j : cj=1

sj ∈ Zq

using the encryptions of the sj ∈ Zq as embedded into the permutation
group S, via a chain of compositions. Formally, for each i ∈ [t] compute
(recalling that e is right associative, and J is the fixed HEPerm encryption
of the identity permutation)

Ci ←
õ

j s.t. cj=1

Ci,j e J. (4)

Again, because we are working with embeddings of Zri , each Ci ∈ Cri .



Round: Homomorphically map v ∈ Zq to f(v) ∈ Z2 = {0, 1}: for each

x ∈ Zq such that f(x) = 1, homomorphically test whether v
?
= x by

homomorphically multiplying the GSW ciphertexts resulting from all the

equality tests v
?
= x (mod ri). Then homomorphically sum the results of

all the v
?
= x tests.

Formally, compute and output the GSW ciphertext (recalling that d is
right associative, and G is the fixed GSW encryption of 1)

C←
ð

x∈Zq s.t. f(x)=1

(
ô

i∈[t]
Eq?(Ci, φi(x)) d G

)
. (5)

Note that since we are working with embeddings of Zri , each Eq?(Ci, φi(x))
is just some GSW ciphertext component of Ci ∈ Cri (see Section 4.3).

Because t, ri = O(log λ) and d = Õ(λ) and by Equations (4) and (5),
Bootstrap performs Õ(λ) homomorphic multiplications and additions on
GSW ciphertexts.

5.3 Analysis

The following is our main theorem. The proof is deferred to the full version due
to space limitations.

Theorem 5.1. The above bootstrapping scheme can be instantiated to be correct
(with overwhelming probability) and secure assuming that the decisional Shortest
Vector Problem (GapSVP) and Shortest Independent Vectors Problem (SIVP)
are (quantumly) hard to approximate in the worst case to within Õ(n2λ) factors
on n-dimensional lattices.

Because all known (quantum) algorithms for poly(n)-factor approximations
to GapSVP and SIVP on n-dimensional lattices take 2Ω(n) time, for 2λ hardness
we can take n = Θ(λ), yielding a final approximation factor of Õ(n3). This
comes quite close to the O(n3/2+ε) factors obtained in [7], but without any
expensive “dimension leveraging:” we use GSW ciphertexts of dimension only
n = O(λ), rather than some large polynomial in λ. Alternatively, at the cost of a
larger dimension n = λ1/ε, but without using the successive dimension-reduction
procedure from [7], we can obtain factors as small as Õ(n2+ε) for any constant
ε > 0.
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