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Abstract. We study the classical problem of privacy amplification, where
two parties Alice and Bob share a weak secret X of min-entropy k, and
wish to agree on secret key R of length m over a public communication
channel completely controlled by a computationally unbounded attacker
Eve.
Despite being extensively studied in the literature, the problem of de-
signing “optimal” efficient privacy amplification protocols is still open,
because there are several optimization goals. The first of them is (1)
minimizing the entropy loss L = k − m. Other important considera-
tions include (2) minimizing the number of communication rounds, (3)
maintaining security even after the secret key is used (this is called post-
application robustness), and (4) ensuring that the protocol P does not
leak some “useful information” about the source X (this is called source
privacy). Additionally, when dealing with a very long source X, as hap-
pens in the so-called Bounded Retrieval Model (BRM), extracting as
long a key as possible is no longer the goal. Instead, the goals are (5)
to touch as little of X as possible (for efficiency), and (6) to be able to
run the protocol many times on the same X, extracting multiple secure
keys.
Achieving goals (1)-(4) (or (2)-(6) in BRM) simultaneously has remained
open. In this work we improve upon the current state-of-the-art, by de-
signing a variety of new privacy amplification protocols, thereby achiev-
ing the following goals for the first time:
– 4-round (resp. 2-round) source-private protocol with optimal entropy

loss L = O(λ), whenever k = Ω(λ2) (resp. k > n
2

(1 − α) for some
universal constant α > 0).

– 3-round post-application-robust protocols with optimal entropy loss
L = O(λ), whenever k = Ω(λ2) or k > n

2
(1 − α) (the latter is also

source-private).
– The first BRM protocol capable of extracting the optimal number
Θ(k/λ) of session keys, improving upon the previously best bound
Θ(k/λ2). (Additionally, our BRM protocol is post-application-robust,
takes 2 rounds, and can be made source-private by increasing the
number of rounds to 4.)
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1 Introduction

We study the classical problem of privacy amplification [3,22,2,23] (PA),
in which two parties, Alice and Bob, share a weak secret X (of length
n bits and min-entropy k < n) and wish to agree on a close-to-uniform
secret key R of length m bits. We consider the active-adversary case,
in which the communication channel between Alice and Bob can be not
only observed, but also fully controlled, by a computationally unbounded
attacker Eve. The most natural quantity to optimize here is the entropy
loss L = k − m (for a given security level ε = 2−λ), but several other
parameters (described below) are important as well.

Aside from being clean and elegant, this problem arises in a number of
applications, such as biometric authentication, leakage-resilient cryptog-
raphy, and quantum cryptography. Additionally, the mathematical tools
used to solve this problem (such as randomness extractors [24]) have
found many other applications in other areas of cryptography and com-
plexity theory. Not surprisingly, PA has been extensively studied in the
literature, as we survey below.

In the easier “passive adversary” setting (in which Eve can observe,
but not modify), PA can be solved by applying a (strong) randomness ex-
tractor [24], which uses a uniformly random nonsecret seed S to extract
nearly uniform secret randomness from the weak secret X. A random-
ness extractor accomplishes passive-adversary PA in one message: Alice
sends the seed S to Bob, and both parties compute the extracted key
R = Ext(X;S). Moreover, it is known that the optimal entropy loss of
randomness extractors is L = Θ(log (1/ε)) [25], and this bound can be
easily achieved (e.g. using the Leftover Hash Lemma [16]).

Active Eve Setting: Number of Rounds vs. Entropy Loss. The
situation is more complex in the “active Eve” setting. Existing one-
message solutions [23,9] work for min-entropy k > n/2 and require large
entropy loss L > n−k. It was shown by [13,14] that k > n/2 is necessary,
and that the large entropy loss of n− k is likely necessary, as well. Thus,
we turn to protocols of two or more rounds.

Two rounds were shown to be sufficient by [14], who proved, noncon-
structively, the existence of two-round PA protocols with optimal entropy
loss L = Θ(log (1/ε)) for any k. (This was done using a strengthening of
extractors, called non-malleable extractors, whose existence was shown
in [14].) Constructively, no such protocols are known, and all known con-
structive results sacrifice either the number of rounds, or the entropy
loss, or the minimum entropy requirement. A protocol of [19, Theorem



1.9] (building on [27,17,6]) sacrifices the number of rounds: it achieves
L = O(log (1/ε)), but only in O(1 + log (1/ε) /

√
k) rounds. The protocol

of [19, Theorem 1.6] (building on [14]) sacrifices the minimum entropy
requirement: it achieves L = O(log (1/ε)) in two rounds, but only when
k = Ω(log2(1/ε)). Protocols of [10,7,18,20] make an incomparable min-
imum entropy requirement: they also achieve L = O(log (1/ε)) in two
rounds, but require that k > n/2 (with the exception of [20], who slightly
relaxed it to k > n

2 (1− α) for some tiny but positive constant α). These
protocols also built the first constructive non-malleable extractors when
k > n/2. The result of [19, Theorem 1.8] (building on [10,18]) further
relaxes the entropy requirement to k > δn for any constant δ > 0. It
also achieves L = O(log (1/ε)) in two rounds, but the constant hidden
in the O-notation is g(δ) = 2(1/δ)c for some astronomical (and not even
exactly known) constant c.4 More generally, since some of the protocols
mentioned above hide relatively large (or, as in the last example, even
astronomical) constant factors, simpler protocols (such as [14] or [17])
may outperform asymptotically optimal ones for many realistic settings
of parameters.

To summarize, the landscape of existing PA protocols is rather com-
plex, even if we consider only the tradeoff between the min-entropy, the
entropy loss, and the number of rounds. The situation becomes even more
complex, if one adds additional highly desirable properties: source pri-
vacy, post-application robustness, and local computability. We consider
those next.

Source Privacy. Intuitively, this property demands that the tran-
script of the protocol (even together with the derived key R!) does not
reveal any “useful information” about the source X; or, equivalently (as
shown by [12]), that the transcript does not reveal any information at all
about the distribution of X (beyond a lower bound k on its min-entropy).
For the case of passive Eve, source privacy was considered by Dodis and
Smith [12], who showed that randomness extractors are indeed source-
private. For active Eve, the only work that considered this notion is the
elegant paper [4], which constructed a 4-round private protocol with en-
tropy loss L = O(log2(1/ε)). Thus, unlike for PA protocols without source
privacy,

(A) no source-private PA protocol is known which achieves either optimal
entropy loss L = O(log (1/ε)), or fewer than four rounds.

4 The value c depends on some existential results in additive combinatorics. However,
it appears safe to conclude that it is astronomical, which translates into “triply
astronomical” g(δ) = 2(1/δ)c

, even for δ = 0.49.



Post-Application Robustness. Informally, the basic authenticity no-
tion of PA protocols, called pre-application robustness by [9], simply states
that Eve cannot force Alice and Bob to agree on different keys RA 6= RB.
While easy to define, this property is likely insufficient for most applica-
tions of PA protocols, because in any two-party protocol, one party (say,
Bob) has to finish before the other party. In this case, Bob is not sure
if Alice ever received his last message, and must somehow decide to use
his derived key RB. In doing so, he might leak some partial information
about RB (possibly all of it!), and Eve might now use this partial (or full)
information to modify the last message that Bob originally sent to Alice.
Motivated by these considerations, [9] defined a strong property called
post-application robustness, which (intuitively) requires that Eve cannot
modify Bob’s last message and cause Alice to output RA 6= RB, even if
given Bob’s key RB.

The only protocols known to achieve post-application robustness are
in [9,14,10]. Of those, only the protocol of [10] achieves asymptotically
optimally entropy loss: for entropy k > δn, it achieves entropy loss
O((1/δ)c log (1/ε)) in O((1/δ)c) rounds for some astronomical constant
c mentioned in Footnote 4. Most protocols in [27,9,14,6,10,7,18,20,19] are
proven only for pre-application robustness (some works simply ignored
the distinction). In particular,

(B) no post-application robust, constant-round protocol with optimal en-
tropy loss is known (with the exception of protocol of [10] using as-
tronomical constants mentioned above).

Local Computability and Reusability. Local computability is of
interest when the length and the min-entropy of the source X is much
larger than the desired number of extracted bits m. In such a case, it
is desirable to compute the output without having to read all of the
source. This property is traditionally associated with the Bounded Re-
trieval Model (BRM) [15,8], where the random source X is made inten-
tionally huge, so that X still has a lot of entropy k even after the attacker
(“virus”) managed to download a big fraction of X over time. For histor-
ical reasons, we will also use the term “BRM”, but point out that local
computability seems natural in any scenario where k � m, and not just
the BRM application.

The right way to think about entropy loss in such a scenario is not
via the formula L = k −m, because entropy from X is not “lost”: much
entropy remains inX even after the protocol execution, because most ofX
is not even accessed. In fact, the PA protocol may be run multiple times on



the same X, to obtain multiple keys, until the entropy of X is exhausted.
Specifically focusing on m = Θ(log (1/ε)) (so that the extracted key can
be used to achieve ε security), “optimal” reusability means the ability to
extract Θ(k/ log (1/ε)) keys (assuming the entropy rate of X is constant).

In the passive adversary case, optimal reusability is achievable with
locally computable randomness extractors [21,28]. In the active adver-
sary case, however, the story is again more complicated. The only prior
work to consider local computability in this setting is the work of [14].
Reusability has not been explicitly considered before, but it is easy to
see that the locally computable protocol of [14] allows the extraction of
Θ(k/ log2(1/ε)) keys. Thus,

(C) no prior locally computable protocol achieves optimal reusability.

1.1 Our Results

In this work, we solve open problems (A), (B), and (C), by designing sev-
eral new techniques for building PA protocols. Many of our techniques are
general transformations that convert a given protocol P into a “better”
protocol P ′. Given a wide variety of incomparable existing PA protocols
(surveyed above), this modular approach will often allow us to obtain
several improved protocols in “one go”.

Two Methods of Adding Source Privacy. Our first method (Sec-
tion 3.2) maintains the number of rounds at 2, at the expense of using
a strengthening of non-malleable extractors [14] (which we call adaptive
non-malleable extractors) to derive a one-time pad to mask the “non-
private” message which should be sent in the second round. (Given that
we already use non-malleable extractors however, we might as well com-
bine our protocol with the non-private protocol of [14] based on non-
malleable extractors with similar parameters; this is what we do to keep
things simple.) Our second method (Section 3.3), inspired by the spe-
cific protocol of [4], turns certain 2-round non-private protocols into 4-
round private protocols, using standard extractors and XOR-universal
hash functions. (The concrete protocol of [4] implicitly applied a very
particular variant of our transformation to the two-round protocol of [14],
but we get improved results using “newer” protocol [19].) In particular,
either one of these transformations will provide (with different trade-
offs) a positive answer to Open Question (A). For completeness, we also
observe (Section 3.1) that the 1-round PA protocols of [9] are already
source-private.



Pre- to Post-Application Robustness. We make a very simple
transformation which converts pre-application robust protocols to post-
application robust protocols, at the cost of one extra round, but with
almost no increase in the entropy loss. Although very simple, it immedi-
ately gives a variety of answers to Open Question (B) (and can also be
combined with our first transformation, since it preserves source privacy).

Overall, by applying our transformations above to different protocols
and in various orders, we get several improvements to existing protocols,
summarized in Table 1 (which includes various solutions to Questions
(A), (B), and more).

Result Entropy Rounds Entropy Loss Source
Pre-app Post-app Privacy

[14] k = Ω(log (1/ε)) 2 Θ(log (1/ε)) Θ(log (1/ε)) NO
(non-expl.)
This work k = Ω(log (1/ε)) 2 Θ(log (1/ε)) Θ(log (1/ε)) YES
(non-expl.)

[9] k > n
2 1 n− k − Θ(log (1/ε)) n

2 + Θ(log (1/ε)) YES5

[19] k = Ω(log2(1/ε)) 2 Θ(log (1/ε)) Θ(log2(1/ε)) NO

This work k = Ω(log2(1/ε)) 3 Θ(log (1/ε)) Θ(log (1/ε)) NO

[4] k = Ω(log2(1/ε)) 4 Θ(log2(1/ε)) Θ(log2(1/ε)) YES

This work k = Ω(log2(1/ε)) 4 Θ(log (1/ε)) Θ(log2(1/ε)) YES

This work k = Ω(log2(1/ε)) 5 Θ(log (1/ε)) Θ(log (1/ε)) YES

[20] k > n
2 (1− α) 2 Θ(log(1/ε)) n

2 (1− α) + Θ(log (1/ε)) NO

This work k > n
2 (1− α) 2 Θ(log(1/ε)) n

2 (1− α) + Θ(log (1/ε)) YES

This work k > n
2 (1− α) 3 Θ(log(1/ε)) Θ(log (1/ε)) YES

Table 1. Our improvement (also marked in RED) over prior PA protocols.

Achieving Local Computability and Optimal Reusability. While
only the work of [14] explicitly considered local computability, it is rea-
sonable to ask if other existing protocols can be modified to be locally
computable and reusable. To achieve optimal reusability, we focus on
protocols with optimal entropy loss, because they have the property that
the protocol transcript reduces the entropy of X by O(log (1/ε)), leaving
residual entropy of X high. They can be modified to extract a short key
of length Θ(log (1/ε)), which will give optimal reusability.

To achieve local computability, extractors used within a protocol can
be replaced with locally computable extractors. Indeed, the protocol of
[6] seems to amenable to such modification. However, it is not constant-
round. Most other constant-round protocols with optimal entropy loss [10,7,18,20]
use non-malleable extractors, and this approach fails, because no locally

5 We observe in this paper that this protocol is private.



computable (even non-constructive!) instantiations of non-malleable ex-
tractors are known.

However, we observe that the 2-round, optimal entropy loss protocol
of [19, Theorem 1.6] does not use non-malleable extractors. Moreover, by
making all extractors in that protocol locally computable, we get a locally
computable, 2-round protocol. However, the security analysis of [19] uses
a very delicate and interdependent setting of various parameters for the
security proof to go through. Hence, it is not immediately clear if this
intricate proof will go though if one uses locally computable extractors.
Instead, we will develop a different, modular analysis underlying the key
ideas of [19], which will give us a rigorous 2-round solution to open prob-
lem (C), as well as have other benefits we describe shortly. Specifically,
we show a general transformation that turns certain (post-application)
secure 2-round protocols into 2-round protocols with optimal entropy loss
L = O(log (1/ε)) and residual min-entropy k′ = k − O(log (1/ε)) (Sec-
tion 5). The transformation uses two-source extractor of [26] to compress
the second message of the protocol to only O(log (1/ε)) bits. By applying
this transformation to the original (non-BRM) protocol of [14], we get
a protocol very similar to the protocol of [19], but with a much more
modular and easier-to-follow security analysis. On the other hand, by us-
ing the locally computable protocol of [14] instead (see Section 6), we
get a 2-round locally computable protocol with optimal residual entropy
(and, thus, reusability), solving open problem (C).6 Furthermore, we can
add source privacy by using our 2-to-4-round transformation mentioned
earlier, which can be done via local computation as well.

These results are summarized in Table 2.

Improving Entropy Loss of Post-Application Robust Proto-
cols. As another advantage of our modular approach, we note that
the transformation described in the previous paragraph is interesting not
only in the context of local computability. It also allows one to turn
post-application robust 2-round protocols with sub-optimal entropy loss L
into 2-round pre-application robust protocols with optimal entropy loss,
which then (using our pre-application to post-application transformation
described above) can be turned into 3-round post-application robust pro-
tocols with optimal entropy loss. Namely, we can obtain optimal entropy

6 Interestingly, the main limitation of the non-BRM protocol of [19] — high min-
entropy requirement k = Ω((log (1/ε))2) — is not an issue in the BRM model.
Thus, we can view our result as finding a “practical application scenario” for the
very elegant communication reduction technique developed by [19].



loss at the expense of one extra round. (For the BRM setting, no extra
round is needed, as we only extract “short” keys of length O(log (1/ε)).)

Result Rounds Residual Min-entropy # Keys Extracted Source Privacy

[14] 2 k − Θ(log2(1/ε)) Θ(k/ log2(1/ε)) NO
This work 2 k − Θ(log(1/ε)) Θ(k/ log(1/ε)) NO
This work 4 k − Θ(log(1/ε)) Θ(k/ log(1/ε)) YES

Table 2. Protocols in the Bounded Retrieval Model; each extracts Θ(log(1/ε)) bits
per key, is post-application robust, and requires k = Ω(log2(1/ε)). Entries in RED
mark our improvements.

2 Preliminaries

For a set S, we let US denote the uniform distribution over S. For an
integer m ∈ N, we let Um denote the uniform distribution over {0, 1}m,
the bit-strings of length m. For a distribution or random variable X we
write x← X to denote the operation of sampling a random x according
to X. For a set S, we write s← S as shorthand for s← US .

Entropy and Statistical Distance. The min-entropy of a random
variable X is defined as H∞(X) def= − log(maxx Pr[X = x]). We say that
X is an (n, k)-source if X ∈ {0, 1}n and H∞(X) > k. For X ∈ {0, 1}n, we
define the entropy rate of X to be H∞(X)/n. We also define average (aka
conditional) min-entropy of a random variable X conditioned on another
random variable Z as

H∞(X|Z) def= − log
(
Ez←Z

[
max
x

Pr[X = x|Z = z]
])

= − log
(
Ez←Z

[
2−H∞(X|Z=z)

])
,

where Ez←Z denotes the expected value over z ← Z.
The statistical distance between two random variables W and Z dis-
tributed over some set S is

∆(W,Z)
def
= max

T⊆S
(|W (T )− Z(T )|) =

1
2

∑
s∈S
|W (s)− Z(s)|.

Note that ∆(W,Z) = maxD(Pr[D(W ) = 1]− Pr[D(Z) = 1]), where D is
a probabilistic function. We say W is ε-close to Z, denoted W ≈ε Z, if
∆(W,Z) ≤ ε. We write ∆(W,Z|Y ) as shorthand for ∆((W,Y ), (Z, Y )).



We introduce some cryptographic primitives needed for our construc-
tions.

Extractors. An extractor [24] can be used to extract uniform random-
ness out of a weakly-random value which is only assumed to have sufficient
min-entropy. Our definition follows that of [11], which is defined in terms
of conditional min-entropy.

Definition 1 (Extractors). An efficient function Ext : {0, 1}n×{0, 1}d →
{0, 1}m is an (average-case, strong) (k, ε)-extractor, if for all X,Z such
that X is distributed over {0, 1}n and H∞(X|Z) ≥ k, we get

∆( (Z, Y,Ext(X;Y )) , (Z, Y, Um) ) 6 ε

where Y ≡ Ud denotes the coins of Ext (called the seed). The value L =
k −m is called the entropy loss of Ext, and the value d is called the seed
length of Ext.

Message Authentication Codes. One-time message authentication
codes (MACs) use a shared random key to authenticate a message in the
information-theoretic setting.

Definition 2 (One-time MACs). A function family {MACR : {0, 1}d →
{0, 1}v} is an ε-secure one-time MAC for messages of length d with
tags of length v if for any w ∈ {0, 1}d and any function (adversary)
A : {0, 1}v → {0, 1}d × {0, 1}v,

Pr
R

[MACR(W ′) = T ′ ∧W ′ 6= w | (W ′, T ′) = A(MACR(w))] ≤ ε,

where R is the uniform distribution over the key space {0, 1}`.

XOR-universal hash functions. We recall the definition of XOR-
universal-hashing [5].

Definition 3 (ρ-XOR-Universal Hashing). A family H of (deter-
ministic) functions h : {0, 1}u → {0, 1}v is a called ρ-XOR-universal
hash family, if for any x1 6= x2 ∈ {0, 1}u and any a ∈ {0, 1}v we have
Prh←H[h(x1) ⊕ h(x2) = a] ≤ ρ. When ρ = 1/2v, we say that H is (per-
fectly) XOR-universal. The value log |H| is called the seed length of H.



2.1 Privacy Amplification

We define a privacy amplification protocol (PA, PB), executed by two
parties Alice and Bob sharing a secret X ∈ {0, 1}n, in the presence of an
active, computationally unbounded adversary Eve, who might have some
partial information E about X satisfying H∞(X|E) > k. Informally, this
means that whenever a party (Alice or Bob) does not reject, the key R
output by this party is random and statistically independent of Eve’s
view. Moreover, if both parties do not reject, they must output the same
keys RA = RB with overwhelming probability. The formal definition is
given below.

Definition 4. An interactive protocol (PA, PB), executed by Alice and
Bob on a communication channel fully controlled by an active adversary
Eve, is a (k,m, ε)-privacy amplification protocol if it satisfies the follow-
ing properties whenever H∞(X|E) ≥ k:

1. Correctness. If Eve is passive, then Pr[RA = RB ∧ RA 6=⊥
∧ RB 6=⊥] = 1.

2. Robustness. We start by defining the notion of pre-application ro-
bustness, which states that even if Eve is active, Pr[RA 6= RB ∧ RA 6=⊥
∧ RB 6=⊥] 6 ε. The stronger notion of post-application robustness is de-
fined similarly, except Eve is additionally given the key RA the moment
she completed the left execution (PA, PE), and the key RB the moment she
completed the right execution (PE , PB). For example, if Eve completed the
left execution before the right execution, she may try to use RA to force
Bob to output a different key RB 6∈ {RA,⊥}, and vice versa.

3. Extraction. Given a string r ∈ {0, 1}m ∪ {⊥}, let purify(r) be ⊥ if
r =⊥, and otherwise replace r 6=⊥ by a fresh m-bit random string Um:
purify(r) ← Um. Letting E′ denote Eve’s view of the protocol, we require
that

∆(RA, purify(RA) | E′) ≤ ε and ∆(RB, purify(RB) | E′) ≤ ε

Namely, whenever a party does not reject, its key looks like a fresh random
string to Eve.

The quantity k−m is called the entropy loss and the quantity log(1/ε)
is called the security parameter of the protocol.

Source Privacy. Following Bouman and Fehr [4], we now add the
source privacy requirement for privacy amplification protocols. To de-
fine this property, we let FullOutput(X,E) denote the tuple (E′, RA, RB),



where Alice and Bob share a secret X and output keys RA and RB, re-
spectively, and Eve starts with initial side information E and ends with
final view E′ at the end of the protocol.

Definition 5 (Source Privacy). An interactive protocol (PA, PB), exe-
cuted by Alice and Bob on a communication channel fully controlled by an
active adversary Eve, is (k, ε)-private, if for any two distributions (X0, E)
and (X1, E), where H∞(X0|E) ≥ k and H∞(X1|E) > k, we have

∆(FullOutput(X0, E),FullOutput(X1, E)) ≤ ε

Our definition is stronger than the definition of [4], who only required
that the final transcript E′ does not reveal any information about X.

3 New Private Protocols

3.1 One Round Private Protocol

Dodis et al [9] gave a construction of robust extractors using which they
gave one-round (k,m, ε)-secure privacy amplification protocols for k >
n/2 +O(log (1/ε)). We argue the source privacy of their protocols in the
full version[1], and thus get the following result.

Theorem 1. For k > n/2, there is an explicit polynomial-time, one-
round (k, 2ε + 2−n/2)-private, (k,m, ε)-secure privacy amplification pro-
tocol with pre-application robustness and entropy loss k −m = n − k +
O(log (1/ε)). We get post-application robustness at the cost of increasing
the entropy loss to n/2 +O(log (1/ε)).

3.2 Two Round Private Protocol with Optimal Entropy Loss

In this section, we give a two round protocol that achieves optimal entropy
loss O(log (1/ε)) for pre-application robustness. For post-application ro-
bustness, the entropy loss is about n/2, but we show how to improve it
to O(log (1/ε)) in Section 4 at the cost of 1 additional round.

Our Two Round Private Protocol. Our protocol (Protocol 1) makes
the protocol of [14] private, using the same idea as [4]: we apply a one-
time pad P ′ to the tag sent by Bob in the second round, T ′, where the
pad P ′ is derived from X. We make use of an adaptive non-malleable
extractor, where the adversary A is allowed to see Y,Z, and addition-
ally either anmExt(X;Y ) or R ≡ Um before producing the modified



Alice: X Eve: E Bob: X

Sample random Y
Y −−−−−−−−−−−→ Y ′

Sample random W ′, S′ 6= Y ′

K′ = anmExt(X;Y ′)
T ′ = MACK′ (W ′)
P ′ = anmExt1..`(X;S′)
C′ = T ′ ⊕ P ′

Set final RB = Ext(X;W ′)
(W,S,C)←−−−−−−−−−−− (W ′, S′, C′)

If Y = S reject
K = anmExt(X;Y )
P = anmExt1..`(X;S)
If C ⊕ P 6= MACK(W ) reject
Set final RA = Ext(X;W )

Protocol 1: New 2-round Source-Private Protocol for H∞(X|E) > n/2

seed Y ′, and still anmExt(X;Y ) should be statistically close to R given
anmExt(X;Y ′), Y, Z.

Using this, our protocol achieves the following result.

Theorem 2. Let 2−n/4 < ε < 1/n, and ε′ = ε/7. Given a (τ, ε′)-
adaptive non-malleable extractor, for k > τ + Θ(log (1/ε)) and output
length Θ(log (1/ε)), there exists an explicit polynomial-time, two-round
(k, ε)-private, (k,m, ε)-secure privacy amplification protocol with pre-application
robustness and entropy loss O(log (1/ε)). Furthermore, we get post-application
robustness with entropy loss to τ +O(log (1/ε)).

We can instantiate the above result using our construction (resp. exis-
tential proof) of adaptive non-malleable extractors to obtain the following
results. The details can be found in the full version [1].

Corollary 1. There exists a universal constant α > 0, such that for
k > n/2(1−α), there exists an explicit polynomial-time, two-round (k, ε)-
private, (k,m, ε)-secure privacy amplification protocol with pre-application
robustness and entropy loss O(log (1/ε)). We get post-application robust-
ness at the cost of increasing the entropy loss to n/2(1−α)+O(log (1/ε)).

Corollary 2. For k = Ω(log (1/ε)), there exists a two-round (k, ε)-private,
(k,m, ε)-secure privacy amplification protocol with post-application ro-
bustness and entropy loss k −m = O(log (1/ε)).

3.3 Privacy using Extractors and XOR-Universal Hashing

In this section, we use a ρ-XOR universal hash function family to con-
struct a 4-round protocol for private privacy amplification, given any 2



round privacy amplification protocol of the form Protocol 2, where the
string sent in the first round is sampled independent of X. We note that
all known 2 round protocols in the literature are of this generic form.

Alice: X Eve: E Bob: X

Sample random Y Sample random W ′

Y −−−−−−−−−−−→ Y ′

K′ = f1(X, Y ′)
T ′ = f2(K′,W ′)
Set final RB = g(X,W ′)

(W,T )←−−−−−−−−−−− (W ′, T ′)

K = f1(X, Y )
If T 6= f2(K,W ) reject
Set final RA = g(X,W )

Protocol 2: A Generic 2-round Privacy Amplification Protocol

Let ` = log (1/ε). LetH be a ε-XOR universal family of hash functions
from {0, 1}|T | to {0, 1}2`, and let Ext : {0, 1}n × {0, 1}d 7→ {0, 1}2` be a
(k − 2`− 2|K| − |RB|, ε) extractor. Using these, our protocol is depicted
as Protocol 3.

Alice: X Eve: E Bob: X

Sample random Y, h Sample random W ′, S′

Y −−−−−−−−−−−→ Y ′

W,S ←−−−−−−−−−−− W ′, S′

h −−−−−−−−−−−→ h′

K′ = f1(X, Y ′)
T ′ = f2(K′,W ′)
C′ = h′(T ′)⊕ Ext(X;S′)
Set final RB = g(X,W ′)

C ←−−−−−−−−−−− C′

K = f1(X, Y )
T = f2(K,W )
If C 6= h(T )⊕ Ext(X;S) reject
Set final RA = g(X,W )

Protocol 3: A Generic 4-round Private Privacy Amplification Protocol

Theorem 3. Let Protocol 2 be a 2-round (k − u,m, ε)-secure privacy
amplification protocol with pre- (resp. post-) application robustness for
k − |T | − 2|K| − |RB| > 2`. Then Protocol 3 is a 4-round (k,m,O(

√
ε))-

secure (k,O(
√
ε))-private privacy amplification protocol with pre- (resp.

post-) application robustness.



For a proof, refer to the full version. We apply this generic trans-
formation to Li’s recent 2 round (k, ε)-secure privacy amplification pro-
tocol for k = Ω(log2(1/ε)), that achieves entropy loss O(log (1/ε)) for
pre-application robustness, and O(log2(1/ε)) for post-application robust-
ness [19]. We get the following result.

Corollary 3. For k = Ω(log2(1/ε)), there exists an explicit polynomial-
time, 4-round (k, ε)-private, (k,m, ε)-secure privacy amplification pro-
tocol with pre-application robustness and entropy loss L = k − m =
O(log (1/ε)). We get post-application robustness with entropy loss O(log2(1/ε)).

In Section 4, we will see how to get a 5-round private privacy am-
plification protocol with post-application robustness and entropy loss
O(log (1/ε)).

4 From Pre-application to Post-application Robustness

In this section, we show a generic transformation from a t-round privacy
amplification protocol P that achieves pre-application robustness to a
(t+ 1)-round protocol P ′ that achieves post-application robustness. The
transformation can be described as follows.

Let ` = log (1/ε). Without loss of generality, assume that the last
message in P was sent from Bob to Alice. Let R̃A, R̃B denote the first u
bits of the keys computed by Alice and Bob, respectively (Set R̃A = ⊥
if Alice rejects, and R̃B = ⊥ if Bob rejects). We need a (k − O(`), ε)-
extractor Ext : {0, 1}n×{0, 1}d → {0, 1}m and an ε-secure one-time MAC
for d-bit messages, whose key length is u. Using these, the (t+ 1)-round
protocol is depicted as Protocol 4.

Alice: X Eve: E Bob: X

· · ·
Protocol P
←−−−−−−−−−−−

Sample random S
T = MAC eRA

(S)

Set RA = Ext(X;S)
S, T −−−−−−−−−−−→ S′, T ′

If T ′ 6= MAC eRB
(S′) reject

Set final RB = Ext(X;S′)

Protocol 4: (t + 1)-round Privacy Amplification Protocol P ′ with post-
application robustness.



Theorem 4. If Protocol P is (k,m, ε)-secure privacy amplification pro-
tocol with pre-application robustness and residual entropy k−O(log (1/ε)),
then Protocol P ′ is a (k,m−O(log (1/ε)), O(ε)) secure privacy amplifica-
tion protocol with post-application robustness. Additionally, if P is (k, ε)
private, then P ′ is (k,O(ε)) private.

For a proof of this theorem, refer to the full version [1].
Using this result, we can get optimal entropy loss for post-application

robustness for several protocols as described in the full version [1].

5 Increasing Residual Entropy

We now consider the task of preserving as much entropy as possible in
the weak source X, which is a natural goal and has implications in the
Bounded Retrieval Model (see section 6). Formally, the residual entropy of
an interactive protocol is minE′ (H∞(X |E′)) where E′ is the adversary’s
view after the protocol. We refer to H∞(X |E)−minE′ (H∞(X |E′)) as
the loss in residual entropy. Our main result is the following transfor-
mation achieving loss in residual entropy O(log(1/ε), i.e. linear in the
security parameter, which is optimal up to constant factors.

Theorem 5. Assume that there is a 2-round (k,m, ε)-secure privacy am-
plification protocol with post-application robustness in which the first mes-
sage is independent of the (n, k)-source X and we have log n = O(log(1/ε)),
ε ≥ 2−m/C , and k ≥ C log(1/ε) for sufficiently large C.

Then there is a 2-round (k′,m′, ε′)-secure privacy amplification pro-
tocol with residual entropy ≥ k′ − O(log(1/ε′)) provided that k′ ≥ k +
C ′ log(1/ε) and ε′ ≥ ε1/C′ for sufficiently large C ′, and m′ = k′−O(log(1/ε′))
for pre-application robustness or m′ = k′ − k − O(log(1/ε′)) for post-
application robustness.

To achieve the transformation of Theorem 5, we need the following
notion of a receipt protocol, which is essentially a 2-round message au-
thentication protocol in which the party who speaks first chooses the
message. Such protocols can be defined as follows.

Definition 6. A (k, `, ε)-receipt protocol (for messages of length d) is a
function Receipt : {0, 1}d × {0, 1}r × {0, 1}n → {0, 1}` that satisfies the
following: for Y ≡ Ur, every µ ∈ {0, 1}d, every X such that H∞(X|E) ≥
k, and every µ′ 6= µ, Y ′ chosen by an adversary given µ, Y,E,

H∞(Receipt(µ, Y,X) | Y, Receipt(µ′, Y ′, X)) ≥ log(1/ε).



The main ingredient in proving Theorem 5 is the following, the proof
of which is deferred to the full version [1].

Theorem 6. Assume that there exists a polynomial-time (k, `, ε)-receipt
protocol for d-bit messages such that Alice communicates ≤ ` bits and
2−C` ≤ ε ≤ 1/(C`) for sufficiently large C.

Then for any r ≤ log(1/ε)/100, there exists a polynomial-time (k, r, 2−Ω(r))-
receipt protocol for d-bit messages where Alice communicates O(`) bits.

Finally, we obtain the following corollary by instantiating Theorem
5 using the 2-round privacy amplification protocol with post-application
robustness due to Dodis and Wichs [14, Cor. 4].

Corollary 4. For k = Ω(log2(1/ε)), there exists an explicit polynomial-
time 2-round (k,m, ε)-secure privacy amplification protocol with post-application
robustness that achieves m = Ω(log(1/ε)) and residual entropy k−O(log(1/ε)).

6 Applications to the Bounded Retrieval Model

In the Bounded Retrieval Model (BRM) [8,15], Alice and Bob share an
(intentionally) very large secret key X. The idea is that the size of X
makes it infeasible for an attacker Eve to learn the entire string, even if
she has infiltrated either Alice or Bob’s storage device, because of limits
on the amount of data that can be transmitted out of the device. Thus
as in previous sections we assume that Eve has some adversarially chosen
side information E about X, but that k := H∞(X|E) is not too small.
Specifically here we think of k = αn for some constant 0 < α < 1.

Since reading the entire string X would be prohibitively inefficient,
any function used by Alice or Bob that takes X as input must only read
a small number of positions, i.e. it must be locally computable. Dodis and
Wichs observe [14, Sec. 5] that their privacy amplification protocol has
the property that each function taking X as input is a standard extrac-
tor. These can be replaced with the constructions of locally computable
extractors due to Vadhan [28], and thus the protocol works in the BRM.

One downside of the [14] protocol is that the second message (which
depends on X) has length Ω(log2(1/ε)), and thus the loss in residual
entropy is Ω(log2(1/ε)) = Ω(m2). It would be more desirable to have loss
in residual entropy O(m), as then Alice and Bob could derive a total of
Ω(k/m) secret keys, as opposed to only O(k/m2) keys.

Corollary 4 shows that the loss in residual entropy can be reduced to
O(m). This protocol remains locally computable and thus applicable to



the BRM, because still every function that takes X as input is a stan-
dard extractor and can be replaced by a locally computable extractor. In
summary, we have the following.

Theorem 7. For k = Ω(log2(1/ε)), there exists an explicit polynomial-
time 2-round (k,m = Ω(log(1/ε)), ε)-secure privacy amplification pro-
tocol in the BRM with post-application robustness and residual entropy
k −O(log(1/ε)), thus allowing a total of Ω(k/m) keys to be derived.

By relaxing the number of rounds to four, we can obtain a BRM
protocol that additionally has source privacy by instead plugging the [14,
Cor. 4] protocol into the transformation of Theorem 3.

Theorem 8. For k = Ω(log2(1/ε)), there exists an explicit polynomial-
time 4-round (k,m = Ω(log(1/ε)), ε)-secure (k, ε)-private privacy ampli-
fication protocol in the BRM with post-application robustness and residual
entropy k − O(log(1/ε)), thus allowing a total of Ω(k/m) keys to be de-
rived.
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