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Abstract. Most implementations of Yao’s garbled circuit approach for
2-party secure computation use the free-XOR optimization of Kolesnikov
& Schneider (ICALP 2008). We introduce an alternative technique called
flexible-XOR (fleXOR) that generalizes free-XOR and offers several ad-
vantages. First, fleXOR can be instantiated under a weaker hardness
assumption on the underlying cipher/hash function (related-key security
only, compared to related-key and circular security required for free-
XOR) while maintaining most of the performance improvements that
free-XOR offers. Alternatively, even though XOR gates are not always
“free” in our approach, we show that the other (non-XOR) gates can be
optimized more heavily than what is possible when using free-XOR. For
many circuits of cryptographic interest, this can yield a significantly (over
30%) smaller garbled circuit than any other known techniques (including
free-XOR) or their combinations.

1 Introduction

This work proposes efficiency improvements of two-party Secure Function Evalu-
ation (SFE). SFE allows two parties to evaluate any function on their respective
inputs x and y, while maintaining privacy of both x and y. SFE of some useful
functions today is borderline practical, and first uses of secure computation begin
to crop up in industry. The main obstacle in SFE’s wider adoption is the cost.
Indeed, SFE of most of today’s functions of interest is either completely out of
reach of practicality, or carries costs sufficient to deter would-be adopters, who
instead choose stronger trust models, entice users to give up their privacy with
incentives, or use similar crypto-workarounds. We believe that truly practical
efficiency is required for SFE to see use in real-life applications.
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Our results and motivation. We improve both the required assumptions and
efficiency, albeit not both simultaneously, of a commonly used SFE tool, Garbled
Circuit (GC).

On the practical side, our construction results in savings of GC size of over
30% (in garbled circuits typically analyzed in the literature) as compared to
the state-of-the-art GC variant using the free-XOR technique of Kolesnikov &
Schneider [15]. For a fundamental protocol, which has been studied and opti-
mized for over three decades, this is a significant improvement. We emphasize
that the fleXOR approach is more general than the specific instantiations we
show, and we expect better optimizations to be discovered later on. At the same
time, we prove that computing optimal instantiations (i.e. those minimizing the
GC size) is NP-complete.

On the theoretical side, we aim to remove the Random Oracle (RO) require-
ment of the free-XOR technique without sacrificing efficiency. We weaken the
RO assumption to that of correlation-robustness (CR) while retaining most of
the performance improvements associated with free-XOR (only 10 − 20% loss
for analyzed circuits).4 This choice is natural, motivated by several pragmatic
considerations:

(1) Perhaps most importantly, today an efficient GC protocol will almost
certainly use the OT extension of Ishai et al. [11]. Indeed, the orders of magnitude
efficiency improvement brought by the IKNP OT extension transformed the field
of secure computation. The OT extension, as well as its follow-up constructions,
requires CR hash functions. Thus, our choice allows to avoid the introduction of
any additional assumptions in most cases.

(2) Another important factor is the degree of analysis of the candidate imple-
mentations of the employed function. Cryptanalysts study at length related-key
attacks for real-world block ciphers/primitives, but, to our knowledge, key cir-
cularity attacks are less researched.

Further, the question of understanding and reducing/eliminating the RO as-
sumption associated with free-XOR is motivated by recent work. Choi et al. [5]
shows that circular-correlation robustness is a sufficient condition for free-XOR.
It also presents a black-box separation which demonstrates that CR is strictly
weaker than circular-correlation robustness (which, in turn, is weaker than RO).
Choi et al. [5] explicitly leave open the question: “is there a garbled-circuit vari-
ant where certain gates can be evaluated for free, without relying on assump-
tions beyond CPA-secure encryption?” Addressing this question, Applebaum [1]
showed that free-XOR can be realized in the standard model under the learning
parity with noise (LPN) assumption. While novel at the fundamental level, the
efficiency of the protocol of [1] is far from practical.

Our work raises and addresses related questions: Can the efficiency improve-
ment of free XOR be extended? Can it be achieved under weaker assumptions?

4 In fact, there is no penalty at all for formulas (circuits with fan-out 1). That is, our
approach matches the performance of free-XOR on formulas, but under the weaker
correlation-robustness assumption.
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Our metric: computation vs communication. In this work we focus on measuring
performance by the size of the GC, a very clean and expressive metric. Since
the associated computations are fast, we believe that in many (but not all, of
course) practical scenarios communication complexity of our constructions will
correlate with their total execution time. Indeed, in this work, we use aggressive
(2-row) garbled row reduction (GRR2) due to Pinkas et al. [19], which involves
computing polynomial interpolation. While more expensive than the standard
PRF or hash function garbling, GRR2 nevertheless is a very efficient technique
as evidenced by the performance experiments in [19]. GRR2 approach (denoted
PRF-SS in the performance tables in [19]) is about 1x-3x times slower than the
fastest experiment. However, note that a very fast 1Gbps network and a slow
2-core computer was used in [19]. Today, 1Gbps channel is still state-of-the-art,
but computational power of a typical machine grew by factor of 4-6, mainly due
to increased number of cores. Thus, we expect that today, the bottleneck of the
[19] experiments would be in the network traffic, and not in the CPU load. This
is even more likely to be so in the future, as historical hardware trends indicate
faster advances in computational power than in network speeds.

At the same time, of course, specific use cases may dictate an extremely
low-power CPU with an available fast network, which would imply different cost
structure of our protocols. However, as argued above, today and in the expected
future, communication performance is a good metric for our protocols.

1.1 Overview of Our Approach

In a garbled circuit, each wire receives a pair (A,B) of (bitstring) labels which
conceptually encode true and false. Let us call A⊕B the offset of the wire.
The idea behind the free XOR technique is to ensure that all wires have the
same (secret) offset. Then the garbled gate can be evaluated by simply XOR-ing
the wire labels.

FleXOR. With the idea of “wire offsets” in mind, consider the case where an
XOR gate’s input wires do not have the same wire offset. Intuitively, the free-
XOR approach can be applied if we “translate” the incoming wire labels to
bring them to the desired output offset. Namely, let the two input wires have
wire labels (A,A⊕∆1) and (B,B ⊕∆2), and suppose we would like the output
wire labels to have offset ∆3. We then select random “translated” wire values
Ã, B̃. Let E be gate encryption function. Then we can garble this XOR gate
with the following ciphertexts:

EA(Ã); EA⊕∆1(Ã⊕∆3); EB(B̃); EB⊕∆2(B̃ ⊕∆3);

Now, the first two ciphertexts allow the evaluator to translate wire labels (A,A⊕
∆1) with offset ∆1 into new ones (Ã, Ã ⊕ ∆3) of the desired offset ∆3. Simi-

larly the last two ciphertexts permit (B,B ⊕ ∆2)  (B̃, B̃ ⊕ ∆3). Now, these
“translated“ wire labels share the same offset ∆3 and so the output labels
(Ã⊕ B̃, Ã⊕ B̃⊕∆3) can be obtained simply by XORing the “translated” labels.
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So far we did not save anything: this method requires 4 ciphertexts to garble
an XOR gate. However, we can reduce this cost with two simple observations:

– If we can arrange the wire label assignments so that ∆1 = ∆3, then the
first two ciphertexts are not needed at all (the labels on this wire already
have the correct offset). If ∆2 = ∆3, then the second two ciphertexts are not
needed. Indeed, ∆1 = ∆2 = ∆3, corresponds to the free-XOR case.

– Next, we can apply a standard garbled row-reduction technique (GRR)
of [19]. The idea is that ciphertexts 1 & 3 above can always be set to the

string 0λ, implicitly setting Ã = DA(0λ) and B̃ = DB(0λ), where D is the
gate decryption function. Hence, ciphertexts 1 & 3 never need to be sent.

As a result, we obtain a method to garble XOR gates that requires 0, 1, or at
most 2 ciphertexts total, depending on how many of {∆1, ∆2, ∆3} are unique.5

We call this method flexible-XOR, or fleXOR for short.

FleXOR application. We show how the fleXOR tool can be used to achieve the
two goals motivating this work.

Consider grouping circuit wires into equivalence classes, where wires in the
same equivalence class have the same offset. Since the arrangement of equiva-
lence classes affects the cost of garbling each XOR gate, we are interested in
assignments that minimize the total cost for all XOR gates.

If minimizing cost of XOR gates was the only constraint, then we could
simply place all wires into a single equivalence class, and our construction in fact
collapses to standard free-XOR. However, we consider additional constraints in
class assignment, which result in the following improvements over the state-of-
the-art GC (with free-XOR + GRR):

– Performance improvement. Recall, row reduction [19] is a technique for
“compressing” a standard garbled gate from a size of 4 ciphertexts down to
either 3 or 2. Free-XOR is compatible with the milder 3-ciphertext row re-
duction (which we call GRR3), but not with the more aggressive 2-ciphertext
variant (GRR2). The problem is that gates garbled under GRR2 will have
output wire labels with an unpredictable offset — it is not possible to force
them to use the global wire offset ∆ used by free-XOR. In contrast, our
fleXOR generalization does not force any specific wires to share the same
offset hence there is no inherent incompatibility with using GRR2. Never-
theless it is necessary to put some constraints on the class assignment (a
“safety” property that we define). We propose a heuristic algorithm for ob-
taining a safe assignment, and use it to obtain significant reduction in the
GC size, in the experiments we run.

5 Our high-level description does not indicate how to garble an XOR gate using just
one ciphertext in the case that ∆1 = ∆2 6= ∆3. This is indeed possible using similar
techniques (perform free XOR on the input wires, since they share a common offset,
and then, with one ciphertext, adjust the result to ∆3). However, our wire-ordering
heuristics never produce XOR gates with this property, hence we do not consider
this case throughout the writeup.
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– Weakened assumptions. In the free-XOR world, the non-XOR gates are
garbled by encrypting plaintexts X,X⊕∆ using combinations of keys Y, Y ⊕
∆. The appearance of a secret value ∆ as both a key and plaintext requires
a circularity assumption on the gate-level cipher [5]. With an appropriate
constraint (i.e. monotonicity property) on wire equivalence classes, we can
ensure that wire labels from the class indexed i are used as keys to encrypt
wire labels only from a class indexed j > i. Under this additional constraint,
our construction can be instantiated under a significantly weaker (related-key
only, not circular) hardness assumption than free-XOR. At the same time,
our experiments show only mild performance loss as compared to state-of-
the-art algorithms needing circularity assumption.

Recall that fleXOR easily collapses to free-XOR when grouping all wires in
the same class. We view this as an important feature of our scheme. In terms
of size of garbled circuits, free-XOR performs better in some settings while the
new fleXOR method performs better in others. By adopting and implementing
fleXOR, one can always have available both options, and seamlessly choose the
best method via appropriate choice of wire equivalence classes.

1.2 Organization of Paper

After discussing related work (Section 1.3) and preliminaries (Section 2), we
set up the required technical details. In Section 3, we formalize the notion of
gate cipher and show that it can be instantiated with RO and correlation-robust
(CR) functions. In Section 4, we explicitly write our circuit garbling scheme in
the recent “garbling schemes” convention [3], and provide a proof of security with
a concrete reduction to the security of the underlying gate cipher. In Section 5 we
explicitly integrate garbled row reductions from [19] into the garbling protocols
and prove security via concrete reductions.

Once this set up is in place, in Section 6 we present two algorithms for
assigning wire classes. One, achieving what we call monotone ordering, allows us
to avoid circularity in key applications. The second, more performance-oriented,
achieving what we call safe ordering, allows our garbling protocols to generate
GC up to and over 30% smaller than currently best known.

In Section 7, we provide detailed performance comparison of both of our
heuristic algorithms.

1.3 Related work

Garbled circuit is a general and an extremely efficient technique of secure com-
putation, requiring only one round of interaction in the semi-honest model. Due
to this generality and practicality, GC and related protocols have been receiving
a lot of attention in the literature.

The basic GC is so simple and minimal that it has proven hard to improve.
Most of the GC research considers its application to solving problems at hand,
such as set intersection, auction design, etc. A much smaller number of papers
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deal with technical improvements to GC-based two-party SFE, such as OT ex-
tension [11, 14] or cut-and-choose improvements for malicious case [10, 16, 17].

Our work belongs to a third category, aiming to improve and understand
the garbling scheme itself. Since the original paper of Yao over 30 years ago,
only a few works fit into this category. Beaver et al. [2] introduced the point-
and-permute idea, which allows the evaluator to decrypt just a single ciphertext
in the garbled gate. Naor et al. [18] introduced 3-row garbled row reduction
optimization. Kolesnikov and Schneider [15] introduced the popular free-XOR
technique allowing XOR gates to be evaluated without cost. Pinkas et al. [19]
introduced 2-row GRR and observed that GRR3 is compatible with free-XOR.
Choi et al. and Appelbaum helped clarify the underlying assumptions for free-
XOR, now seen as a natural part of GC. Choi et al. [5] weakened the free-
XOR assumption, by defining a sufficient gate cipher property, circular security.
Applebaum [1] showed how to implement free-XOR in the standard model (using
the LPN assumption, and hence not competitive with today’s standard GC).

In related but incomparable work, Kolesnikov and Kumaresan [13] obtained
approximately 3x factor performance improvement over state-of-the-art GC by
evaluating slices of information-theoretic GC of Kolesnikov [12]. Their protocol
has linear number of rounds and is not secure against malicious evaluator. We
also mention, but do not discuss in detail multi-party SFE such as [9, 8, 6].

Bellare et al. [3] introduced the garbling schemes abstraction, which we use
here.

2 Preliminaries

2.1 Code-based Games

We use the convention of code-based games [4]: A game G starts by executing
the Initialize procedure. Then the adversary A is invoked and allowed to query
the procedures that comprise the game. When the adversary halts, the Finalize
procedure is called with the output of the adversary. The output of the Finalize
procedure is taken to be the outcome of the game, whose random variable we
denote by GA(λ), where λ is the global security parameter.

2.2 Garbling Schemes

Bellare, Hoang, and Rogaway [3] introduce the notion of a garbling scheme as
a cryptographic primitive. We refer the reader to their work for a complete
treatment and give a brief summary here.6 A garbling scheme consists of the
following algorithms: Garble takes a circuit f as input and outputs (F, e, d) where
F is a garbled circuit, e is encoding information, and d is decoding information.
Encode takes an input x and encoding information e and outputs a garbled input
X. Eval takes a garbled circuit F and garbled input X and outputs a garbled

6 Their definitions apply to any kind of garbling, but we specify the notation for circuit
garbling.
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output Y . Finally, Decode takes a garbled output Y and decoding information
d and outputs a plain circuit-output (or an error ⊥).

Our work uses the prv.sim (privacy), obv.sim (obliviousness), and aut (au-
thenticity) security definitions from [3], which we state below. In the prv.sim and
obv.sim games, the Initialize procedure chooses β ← {0, 1}, and the Finalize(β′)

procedure returns β
?
= β′. In all three games, the adversary can make a single

call to the Garble procedure, which is defined below. Additionally, the function
Φ denotes the information about the circuit that is allowed to be leaked by the
garbling scheme; the function S is a simulator, and G denotes a garbling scheme.

prv.simG,Φ,S :

Garble(f, x):

if β = 0

(F, e, d)← Garble(1λ, f)
X ← Encode(e, x)

else (F,X, d)← S(1λ, f(x), Φ(f))
return (F,X, d)

obv.simG,Φ,S :

Garble(f, x):

if β = 0

(F, e, d)← Garble(1λ, f)
X ← Encode(e, x)

else (F,X)← S(1λ, Φ(f))
return (F,X)

autG:
Garble(f, x):

(F, e, d)← Garble(1λ, f)
X ← Encode(e, x)
return (F,X)

Finalize(Y ):

return Decode(d, Y ) 6∈ {⊥, f(x)}

We then define the advantage of the adversary in the three security games:

Advprv.simG,Φ,S (A, λ) :=

∣∣∣∣Pr[prv.simAG,Φ,S(λ) = 1]− 1

2

∣∣∣∣ ;
Advobv.simG,Φ,S (A, λ) :=

∣∣∣∣Pr[obv.simAG,Φ,S(λ) = 1]− 1

2

∣∣∣∣ .
AdvautG (A, λ) := Pr[autAG(λ) = 1];

3 Our Gate-Level Cipher Abstraction

Yao’s technique conceptually garbles each gate with “boxes locked via two keys.”
We adopt the approach used by [19] and elsewhere, in which gates are gar-
bled as H(wi‖wj‖T ) ⊕ wk, where wi, wj are wire labels on input wires, T is a
tweak/nonce, wk is a wire label of an output wire, and H is a key-derivation
function. We now describe more specifically what property is needed of H.

3.1 Definitions

We define two security games formally. They are parameterized by a KDF

H : {0, 1}∗ → {0, 1}λ+1. Game kdf.rkH,n includes the boxed statement, and
kdf.circH,n excludes the boxed statement.
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Initialize:
∆1, . . . ,∆n ← {0, 1}λ
∆0 := ∆∞ := 0λ

β ← {0, 1}

Finalize(β′):

return β′
?
= β

Fn(X,Y, a, b, c, T ):

return ⊥ if T previously used in any Fn query

or {a, b} ⊆ {0,∞} or c ≤ max{a, b}
if β = 0 then Z := H(X ⊕∆a, Y ⊕∆b, T )⊕ (∆c‖0)

else Z ← {0, 1}λ+1

return Z

Briefly, the games proceed as follows. The challenger generates n random
(secret) wire offsets {∆i}i, where n is a parameter of the game. The values
∆0 := ∆∞ := 0λ are set as a convenience.

The adversary can then make queries of the form H(X⊕∆a, Y ⊕∆b, T )⊕∆c,
provided that at least one of {∆a, ∆b} is unknown (i.e., a, b 6∈ {0,∞}), and
the tweak values T are never reused. The result of this expression should be
indistinguishable from random.

In the kdf.rk variant of the game, there is an additional “monotonicity” re-
striction, that c > max{a, b}, which prevents the adversary from invoking “key
cycles” among the secret ∆i values. It is in this setting that having two values
∆0 and ∆∞ is convenient. A query of the form H(X,Y ⊕ ∆i, T ) can be made
via a = 0, b = i, c = ∞, so that the monotonicity condition is satisfied (c = 0,
for example, would break monotonicity).

Definition 1. Let H : {0, 1}∗ → {0, 1}λ+1 be a KDF, A be a PPT adversary,
and the games kdf.rkH,n, kdf.circH,n be defined as above. We then define the
advantage of the adversary in these games as:

Advkdf.rkH,n (A, λ) :=

∣∣∣∣Pr[kdf.rkAH,n(λ) = 1]− 1

2

∣∣∣∣ ;
Advkdf.circH,n (A, λ) :=

∣∣∣∣Pr[kdf.circAH,n(λ) = 1]− 1

2

∣∣∣∣
Single-key vs. Dual-key. In our main construction, we garble XOR gates using
only one key (wire label) and non-XOR gates using two keys (wire labels). We
let H2 be a synonym for H, and define shorthand:

H1(K,T )
def
= H2(K,K, T )[1..λ]

We take only the first λ bits of the output for H1 because we do not need the
1 extra bit in our construction when using H1 (the extra bit is used for the
permute bit, which is easier to handle for XOR gates).

Since H1 takes a shorter input than H2, it is conceivable that H1 could be
implemented more efficiently than H2 in practice (e.g., invoking a hash func-
tion with a smaller input and hence fewer iterations). However, this kind of
optimization not the focus of our work.
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3.2 Instantiation from a Random Oracle

Lemma 1. Let H : {0, 1}∗ → {0, 1}λ+1 be a random oracle. Then for all A,
we have Advkdf.circH,n (A, λ) ≤ 16n(qA + qC)2/2λ, where qA, qC are the number of
queries made to the random oracle (locally) and to the Fn procedure, respectively,
by A (and n is the parameter of the security game).

3.3 Instantiation from Correlation-Robustness

The free-XOR approach was formally proven secure in the RO model, and be-
lieved secure under some (unspecified) variant of correlation-robustness [11].
Choi et al [5] showed that the most natural variant of correlation-robustness
(called 2-correlation-robust) was in fact insufficient for free-XOR. Below we have
translated their definition to the framework of code-based games. We then show
that 2-correlation-robustness is sufficient for kdf.rk security.

Definition 2 (adapted from [5]). Let H : {0, 1}∗ → {0, 1}λ+1 be a hash
function.7 Define Adv2corrH (A, λ) := |Pr[2corrAH(λ) = 1]− 1

2 |, where 2corrH is the
game defined as follows:

Initialize:
∆← {0, 1}λ
β ← {0, 1}

Finalize(β′):

return β
?
= β′

Fn(X,Y, T ):

return ⊥ if this query previously made
if β = 0 then Z1 := H(X ⊕∆, Y ⊕∆, T )

Z2 := H(X ⊕∆, Y, T )
Z3 := H(X, Y ⊕∆, T )

else Z1, Z2, Z3 ← {0, 1}λ
return Z1, Z2, Z3

Lemma 2. For all probabilistic polynomial-time A, we have Advkdf.rkΣ,n (A, λ) ≤
n · Adv2corrR (A′, λ), where A′ has comparable runtime to A.

4 Baseline Construction

We now present our “basic” fleXOR garbling scheme. It requires some auxiliary
information about the circuit, defined below:

Definition 3. A wire ordering for a boolean circuit C is a function L that
assigns an integer to each wire in C. Without loss of generality, we assume that
im(L) = {1, . . . , L} for some integer L, and we denote |L| = L. We say that L

is monotone if:

1. for each XOR gate, with input wires i & j and output wire k: L(k) ≥
max{L(i),L(j)}, and

7 H may be drawn from a family of hash functions, but for simplicity we refer to H
as a single function.
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Garble(1λ, C,L) :

for ` = 1 to |L|: ∆` ← {0, 1}λ
for each input bit i corresponding to wire j of C:
bj ← {0, 1}
w0
j ← {0, 1}

λ; w1
j := w0

j ⊕∆L(j)

for v ∈ {0, 1}: e[i, v] := w
v⊕bj
j ‖bj

for each gate g in C, in topological order:
let i, j denote g’s input wires
let k denote g’s output wire
if g is an XOR gate:

if L(i) 6= L(k):

w̃0
i ← {0, 1}

λ; w̃1
i := w̃0

i ⊕∆L(k)

for b ∈ {0, 1}: c0,b := H1(wbi , g‖0‖b)⊕ w̃
b
i

else for b ∈ {0, 1}: w̃bi := wbi ; c0,b := ⊥
if L(j) 6= L(k):

w̃0
j ← {0, 1}

λ; w̃1
j := w̃0

j ⊕∆L(k)

for b ∈ {0, 1}: c1,b := H1(wbj , g‖1‖b)⊕ w̃
b
j

else for b ∈ {0, 1}: w̃bj := wbj ; c1,b := ⊥
w0
k := w̃0

i ⊕ w̃
0
j ; w1

k := w̃1
i ⊕ w̃

0
j ;

bk := bi ⊕ bj
else g computes logic G : {0, 1}2 → {0, 1}:
bk ← {0, 1}
w0
k ← {0, 1}

λ; w1
k := w0

k ⊕∆L(k)

for a, b ∈ {0, 1}2:
v := bk ⊕G(a⊕ bi, b⊕ bj)
ca,b = H2(wai , w

b
j , g‖a‖b)⊕ w

v
k‖v

F [g] := (c00, c01, c10, c11)
for each output bit i corresponding to wire j of C:

for v ∈ {0, 1}: d[i, v] := H1(w
v⊕bj
j , out‖j‖v)

return (F, e, d)

Encode(e, x) :

for i = 1 to |x|: X[i] := e[i, xi]
return X

Eval(F,X) :

for each input wire i in C:
w∗
i ‖b

∗
i ← X[i]

for each gate g in C, in topological order:
let i, j denote g’s input wires
let k denote g’s output wire
parse F [g] as (c00, c01, c10, c11)
if g is an XOR gate:

if c01 = ⊥ then w̃∗
i := w∗

i

else w̃∗
i := H1(w∗

i , g‖0‖b
∗
i )⊕ c0,b∗i

if c11 = ⊥ then w̃∗
j := w∗

j

else w̃∗
j := H1(w∗

j , g‖1‖b
∗
j )⊕ c1,b∗j

w∗
k := w∗

i ⊕ w
∗
j ; b∗k := b∗i ⊕ b

∗
j

else:
w∗
k‖b

∗
k := H2(w∗

i , w
∗
j , g‖b

∗
i ‖b

∗
j )⊕ cb∗i ,b∗j

for each output bit i in C:
let j be the corresponding wire
Y [i] := H1(w∗

j , out‖j‖b
∗
j )

return Y

Decode(Y, d) :

for i = 1 to Y.len:
if Y [i] = d[i, 0] then yi = 0
elsif Y [i] = d[i, 1] then yi = 1
else return ⊥

return y

Fig. 1. Our baseline garbling scheme

2. for each non-XOR gate, with input wires i & j and output wire k: L(k) >
max{L(i),L(j)}.

We now give the complete description of our garbling scheme. Following [3],
the scheme consists of 4 algorithms: Garble, Encode, Eval, Decode. We make one
syntactic change, and allow Garble to accept as input auxiliary information L,
which is a wire ordering of the given circuit.

The scheme is described formally in Figure 1. It follows the typical Yao
approach for garbling a circuit. Briefly, for each wire i, the garbler chooses two
wire labels w0

i , w
1
i such that w0

i ⊕ w1
i = ∆L(i). We use the point-and-permute

bit optimization of [18], where a permute bit bi is chosen so that wbii encodes

false on wire i, and w1⊕bi
i encodes true. Non-XOR gates are garbled in the

usual way.
XOR gates use the approach described in the introduction. Namely, suppose

an XOR gate has input wires i, j and output wire k. If L(i) = L(k), then no
action is required for wire i in this gate (and no ciphertexts are included in the
garbled circuit). Otherwise, we choose “adjusted” wire labels w̃0

i , w̃
1
i whose offset

is the target value ∆L(k) and provide two ciphertexts that allow the evaluator

to obtain w̃bi from wbi . The same logic applies for input wire j, and finally a “free
XOR” is performed on these adjusted wire labels.

10



Theorem 1. Let G[H] denote our garbling scheme (Figure 1), where H is a
KDF. Let Φ denote the side information function that leaks the circuit topology,
distinction between XOR vs non-XOR gates (but not distinctions among non-
XOR gates), and the wire ordering function L used. Then, for all probabilistic
polynomial-time A, there exists a polynomial-time simulator S such that:

Advprv.simG[H],Φ,S(A, λ) ≤ Advkdf.circH,|L| (A′, λ)

where A′ has runtime essentially the same as A. Furthermore, when the wire
ordering function L is monotone, we have:

Advprv.simG[H],Φ,S(A, λ) ≤ Advkdf.rkH,|L|(A′, λ)

5 Incorporating Row Reductions

Row-reduction optimizations were introduced by Naor et al. [18] and later for-
malized and extended by Pinkas et al. [19]. They describe two flavors of row
reduction, which we discuss and adapt to our fleXOR technique.

5.1 Optimization 1: Mild Row Reduction

In the first variant of row reduction, Naor et al. describe how to reduce standard
4-ciphertext garbled gates to 3 ciphertexts. Conceptually, this is done by fixing
one of the ciphertexts to be the all-zeroes string. The idea is that if, say, c00
is known to always consist of all zeroes, then it does not actually need to be
included in the garbled output.

For example, when garbling a non-XOR gate we see that ciphertext c00 will
be zero if the appopriate output wire label (concatenated with its permute bit)
is chosen to be H2(w0

i , w
0
j , g‖00), which is the value that would be used to mask

that wire label.

Hence, instead of choosing wire labels and permute bits uniformly, we choose
one wire label to be an output of the KDF H and set the other label so that
the two labels have the desired offset. We can use this idea with our XOR gates
as well, following the ideas described in the introduction. Recall that to garble
an XOR gate, we choose random “adjusted” wire labels for each input wire
(whose offset requires adjusting). Instead of choosing these adjusted wire labels
uniformly, we choose them to be the appropriate output of the KDF.

The formal description of this optimization is given in the full version. When
garbling XOR gates, the ciphertexts c00, c10 are always empty (implicitly set to
all zeroes). Hence, XOR gates require 0, 1, or 2 ciphertexts. For non-XOR gates,
the ciphertext c00 is always empty (implicitly set to all zeroes), so these gates
require 3 ciphertexts.

That this optimization requires no additional properties of the wire ordering,
and it achieves essentially identical security to our baseline construction:

11



Theorem 2. Let G1[H] denote our “optimization #1” garbling scheme de-
scribed above. Let Φ be as in Theorem 1. Then, for all probabilistic polynomial-
time A, there exists a polynomial-time simulator S such that:

Advprv.simG1[H],Φ,S(A, λ) ≤ Advkdf.circH,|L| (A′, λ)

where A′ has runtime essentially the same as A. Furthermore, when the wire
ordering function L is monotone, we have:

Advprv.simG1[H],Φ,S(A, λ) ≤ Advkdf.rkH,|L|(A′, λ)

5.2 Optimization 2: Aggressive Row Reduction

The second variant of row reduction reduces each garbled gate from 4 to 2
ciphertexts. Here we consider applying this optimization to the non-XOR gates
in our scheme. This optimization has the effect of setting both output wire
labels (and hence, their offset) implicitly. Superficially, this seems at odds with
our approach, in which we always choose wire labels to have some desired offset.

However, suppose that g is a non-XOR gate with output wire k. If we process
this gate before any other wire i with L(i) = L(k), then we can indeed set the
offset ∆L(k) implicitly based on the result of the row-reduction applied to this
gate. If we process the gates in a topological order, one can capture this property
by requiring that L(k) > L(j) for every wire j that influences k (i.e. j has to
be processed before k). We will also require that no other non-XOR gate in the
circuit has output wire k′ with L(k) = L(k′), though XOR gates can safely have
this property.

The necessary properties on the wire ordering are summarized in the following
definition:

Definition 4. We say that L is safe if:

1. for each non-XOR gate g with output wire k, and each wire j that influences8

g, we have L(k) > L(j).
2. for each value `, there is at most one non-XOR gate whose output wire k

satisfies L(k) = `.

Note that a wire ordering may be any combination of safe/non-safe, monotone/non-
monotone.

We say that a topological ordering of gates in a circuit C is safety-respecting
of L if for every non-XOR gate g with output wire k, g appears earlier in the
ordering than any other gate g′ with output wire k′ satisfying L(k) = L(k′).

Assuming that L is safe, we can garble all non-XOR gates using only two
ciphertexts, plus 4 additional bits. XOR gates still require 0, 1, or 2 ciphertexts
as in the previous section.

8 A wire j influences a wire k if there is a directed path in the circuit that contains
wire j before wire k.
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Our approach for row-reduction is the same as [19], but we give a short
overview here in the interest of completeness. For simplicity, we assume that all
non-XOR gates compute boolean-AND logic. Briefly, for each (a, b), we compute
Vab = H2(wai , w

b
j , g‖a‖b). Hence, only one Vab value is accessible to the evaluator.

If the evaluator obtains Vab with (a, b) = (bi, bj), then the evaluator has true
on both input wires and hence this Vab should allow the evaluator to obtain the
“true” output wire label w1⊕bk

k . All other Vab values should allow the evaluator

to obtain the “false” label wbkk .
To make this work, let P be the degree-2 polynomial that passes through

the 3 points of the form (2a+ b, Vab), for the (a, b) pairs which are supposed to
yield wbkk . Then let Q be the degree-2 polynomial that passes through the points
(4, P (4)), (5, P (5)), and the point (2a + b, Vab) for the “other” pair (a, b). The
idea is that we can give the evaluator the values P (4) and P (5). When combined
with his unique Vab value, he can interpolate to obtain either the polynomial P
or Q, depending on the output logic of the gate. Hence, we can set the two wire
labels to be points on P and Q respectively, say, P (−1) and Q(−1).

The formal description of this optimization is given in the full version. We
must also account for the permute bits, which require 4 extra bits. Overall, each
AND-gate requires 2λ+4 bits, while XOR-gates still require 0, λ, or 2λ bits. We
require the garbling procedure to process gates in a safety-respecting topological
order, which ensures that ∆` gets set (while garbling an AND-gate) before it is
used when later garbling an XOR gate.

Theorem 3. Let G2[H] denote our “optimization #2” garbling scheme de-
scribed above. Let Φ be as in Theorem 1. Then, for all probabilistic polynomial-
time A, there exists a polynomial-time simulator S such that:

Advprv.simG2[H],Φ,S(A, λ) ≤ (n+ 1) · Advkdf.circH,|L| (A′, λ)

where A′ has runtime essentially the same as A. Furthermore, when the wire
ordering function L is monotone, we have:

Advprv.simG2[H],Φ,S(A, λ) ≤ (n+ 1) · Advkdf.rkH,|L|(A′, λ)

5.3 GRR2-Salvaging

In general, it is not possible to combine fleXOR garbling with aggressive row
reduction if the wire ordering is non-safe. Nevertheless, we observe that it is
possible to garble one non-XOR gate in each L-equivalence class using aggressive
row reduction. Roughly speaking, for each value `, we identify the topologically
first non-XOR gates g whose output wire i satisfies L(i) = `. We ensure that g is
processed before any other such gates, garble it with GRR2, and use the result
to implicitly set ∆`. The remaining gates in g’s equivalence class can then be
garbled using GRR3.

This approach slightly generalizes our construction in the previous section.
It provides a modest reduction in size, which we discuss in Section 7.
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6 Optimizing the Choice of Wire Orderings

We have identified two types of wire orderings for use with our fleXOR construc-
tion: monotone and safe ordering. In this section, we consider the problem of
optimizing the choice of wire ordering: i.e., a safe/monotone wire ordering that
minimizes the size of the fleXOR-garbled circuit. In particular, we need only con-
sider the total size of garbled XOR gates. An XOR gate with input wires i and
j and output wire k, requires two ciphertexts if L(i) 6= L(k) and L(j) 6= L(k),
requires one ciphertext if only one of the inequalities holds, and is “free” (no
ciphertexts) if L(i) = L(j) = L(k).

6.1 Monotone Orderings

We start by showing that the problem of finding an optimal monotone ordering
of a circuit is NP-complete. In particular, we prove the following theorem in the
full version, via a simple reduction to 3SAT.

Theorem 4. The following problem is NP-complete: Given a circuit C and in-
teger N , determine whether there is a monotone wire ordering of C for which
garbling the XOR gates using the fleXOR scheme requires at most N ciphertexts.

It is, however, easy to find at least some monotone wire ordering, using an
elementary linear-time algorithm. First, assign each input wire i to L(i) = 1.
Then process the gates in topological order and assign to each output wire the
minimum L allowed by the monotonicity condition. We mention this simple
approach only because it can be computed on the fly at basically no expense, in
the same pass that garbles the circuit. This may be important in memory-critical
applications where circuits are processed via streaming.

In Figure 2, we propose a better heuristic for monotone orderings, inspired
by the following observation. Note that it is only the non-XOR gates which
necessarily increase the wire ordering number between input and output wires
of a gate. Define the non-XOR-depth of a wire i in a circuit C as the maximum
number of non-XOR gates among all directed paths from i to an output wire.
The non-XOR-depth of every gate in a circuit can be computed via a simple
dynamic programming approach. Then, we define a wire-ordering function L so
that L(i) + non-XOR-depth(i) is constant for all wires i. Hence, wires closer to
the outputs receive higher wire-ordering. This heuristic is in fact optimal, and
results in all XOR gates free, when the circuit has fan-out 1 (i.e., the circuit
encodes a formula). It is also not hard to prove that it minimizes the size of the
range of the wire-ordering function hence (intuitively) increasing the likelihood
of the input and output wires of an XOR gate being in the same class.

We further refine this heuristic by revisiting each XOR gate one more time,
in topological order, and reducing the order of each output wire to maximum of
orders of its input wires (if this is not already the case). If done in topological
order, this does not affect the monotonicity of the ordering.
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for every wire i:
compute non-XOR-depth[i]

set Λ = 1 + num wires in circuit
for each wire i:

set L[i] := Λ− non-XOR-depth[i]
for each XOR gate g in topo. order:

denote g’s inputs wires by i, j
denote g’s output wire by k
if L[k] > max{L[i],L[j]}

set L[k] := max{L[i],L[j]}

Fig. 2. Monotone wire ordering heuristic

for each input wire i:
set L[i] := 1

set count := 2
for each gate g, in topo. order:

denote g’s output wire by k
if g is an XOR gate:

set L[k] := 1
else:

set L[k] := count
count := count+ 1

Fig. 3. Safe wire ordering heuristic

Proposition 5 The algorithm of Figure 2 computes a monotone wire ordering
in linear time.

We implemented both heuristic algorithms for monotone orderings, and tested
them on a wide range of circuits. In general, our second heuristic algorithm out-
performs the elementary one by 20-40% (in terms of average cost per XOR gate).

6.2 Safe Orderings

The constraints for safe wire ordering are fairly strict, making it challenging to
devise good heuristic algorithms that minimize the number ciphertexts needed
to garble XOR gates. Nevertheless, we introduce a simple and intuitive algorithm
that performs well in practice as demonstrated in our analysis in the following
section.

Since the output wires of non-XOR gates must have distinct L-values in
a safe ordering, our idea is to assign such wires values incrementally, and in
topological order, starting from 2. Then, for each XOR gate, we let the L-value
of its output wire be 1 (see Figure 3). The resulting ordering will always satisfy
the definition of a safe ordering. In particular, if wire i influences a non-XOR
gate with output wire j, then L(i) < L(j), either by the topological constraint
(when wire i emanates from a non-XOR gate), or because L(i) = 1 < L(j)
(when i emanates from an XOR gate).

Proposition 6 The algorithm of Figure 3 computes a safe wire ordering in
linear time.

6.3 Other Constraints for Wire Orderings

Here we considered safe and monotone orderings separately, but we note that
it is possible (and interesting) to consider their combination i.e. optimization
problems for orderings that are both safe and monotone. We leave open the
problem of designing good heuristics for this problem.

As mentioned earlier, using a trivial wire ordering (all wires assigned the
same index) causes fleXOR construction to collapse to free-XOR.
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fleXOR
circuit GRR2 free-XOR monotone safe best

DES 2.0 (2.0) 2.79 (0.0) 2.84 (0.93) 1.89 (0.38) 1.89

AES 2.0 (2.0) 0.64 (0.0) 0.76 (0.15) 0.72 (0.37) 0.64

SHA-1 2.0 (2.0) 1.82 (0.0) 2.02 (0.75) 1.39 (0.45) 1.39

SHA-256 2.0 (2.0) 2.05 (0.0) 2.26 (0.76) 1.56 (0.60) 1.56

Hamming distance 2.0 (2.0) 0.50 (0.0) 0.67 (0.20) 0.50 (0.20) 0.50

minimum in set 2.0 (2.0) 0.87 (0.0) 1.01 (0.41) 0.87 (0.41) 0.87

32 × 32 fast mult 2.0 (2.0) 0.90 (0.0) 1.15 (0.36) 0.94 (0.49) 0.90

1024-bit millionaires 2.0 (2.0) 1.00 (0.0) 1.08 (0.25) 1.00 (0.50) 1.00

Fig. 4. Comparison of standard garbling (with GRR2 row reduction), free-XOR, and
fleXOR instantiations. The main number in each cell shows average number of cipher-
texts per gate; the number in the parentheses shows average number of ciphertexts per
XOR gate only.

Most 2PC protocols based on garbled circuits require only what is provided
by the “garbling schemes” abstraction of [3] which we use here. The fleXOR
construction is thus automatically compatible with these protocols. However,
some protocols [20, 16] “break the abstraction boundary” of garbling schemes
and include optimizations that take advantage of specific properties of free-XOR.
In particular, they only require that either the input wires or output wires all
share a common offset (sometimes across several garbled circuits); they do not
require anything of the internal wires. It is easy to include such a constraint on
input/output wires in a fleXOR wire ordering, allowing fleXOR to be compatible
with these protocols as well.

7 Performance Comparison

In this section we empirically evaluate the performance of our fleXOR approach
against free-XOR and standard (GRR2) garbling. We obtained several circuits
of interest [21, 7] and evaluated the performance of our garbling schemes on
them. As outlined in the introduction, our primary metric is the size (number of
ciphertexts) needed to garble a circuit. The results are summarized in Figure 4.

Eliminating the circularity assumption. As discussed earlier, fleXOR avoids the
strong circular-security assumption of free-XOR, when instantiated with a mono-
tone wire ordering. Weakening the assumption does come at a cost, since not all
XOR gates are free as a result. Comparing the 2nd and 3rd colums in Figure 4
illustrates the cost savings of circularity. In general, we show that the circularity
assumption can be eliminated with a typical increase in garbled circuit size of
around 10% (and never more than 20% in our analysis).

We used the heuristic method of Figure 2 for finding good monotone wire
orderings (it performed better than the elementary method, on all circuits we
tried). The numbers for free-XOR and for fleXOR+monotone both reflect mild

16



(GRR3) row reduction for the non-XOR gates, except that we apply GRR2-
salvaging (Section 5.3) for fleXOR. The gain from GRR2-salvaging varies con-
siderably, but is sometimes noticeable. For example, the numbers in Figure 4
reflect a savings from GRR2-salvaging of 3976 ciphertexts for SHA256, but only
40 for the AES circuit.

Beating (and matching) free-XOR efficiency. As discussed earlier, fleXOR is
compatible with aggressive (GRR2) row reduction when it is instantiated with
a safe wire ordering. We used the heuristic of Figure 3 to compute good safe
orderings for all circuits. The last column of Figure 4 shows the size of the
resulting garbled circuits. We point out that the fleXOR-garbled circuit was
larger than the free-XOR garbled circuit in only two cases: For the AES circuit
(which contained a significantly higher proportion of XOR gates than any other
circuit we obtained), the fleXOR garbling was 12% larger than free-XOR; for
the fast multiplication circuit, fleXOR was 5% larger. Our best performance
was from the DES circuit, whose fleXOR-garbled circuit was 32% smaller than
free-XOR.

Again we emphasize that any implementation of fleXOR matches the perfor-
mance of free-XOR when assigning all wires the same index in the wire order-
ing. Hence, any implementation of fleXOR would easily be able to be provide
whichever of the two wire orderings — safe fleXOR or free-XOR — was prefer-
able, on a per-circuit basis, to realize the column labeled “best” in Figure 4.

(Sub)Optimality. Finally, we emphasize that we did not attempt to find optimal
orderings for any circuit (which is NP-hard in general), only “good enough”
wire orderings found by our simple heuristics. Hence, fleXOR has potential to
produce garbled circuits even smaller than the ones reflected in our empirical
results here. It is also possible that the circuits themselves could be optimized
for fleXOR, similar to how some circuits are currently optimized for free-XOR
(i.e., to minimize the number of non-XOR gates).
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