
New and Improved
Key-Homomorphic Pseudorandom Functions

Abhishek Banerjee1? and Chris Peikert1??

School of Computer Science, Georgia Institute of Technology

Abstract. A key-homomorphic pseudorandom function (PRF) family
{Fs : D → R} allows one to efficiently compute the value Fs+t(x) given
Fs(x) and Ft(x). Such functions have many applications, such as distribut-
ing the operation of a key-distribution center and updatable symmetric
encryption. The only known construction of key-homomorphic PRFs
without random oracles, due to Boneh et al. (CRYPTO 2013), is based
on the learning with errors (LWE) problem and hence on worst-case lat-
tice problems. However, the security proof relies on a very strong LWE
assumption (i.e., very large approximation factors), and hence has quite
inefficient parameter sizes and runtimes.
In this work we give new constructions of key-homomorphic PRFs that
are based on much weaker LWE assumptions, are much more efficient in
time and space, and are still highly parallel. More specifically, we improve
the LWE approximation factor from exponential in the input length to
exponential in its logarithm (or less). For input length λ and 2λ security
against known lattice algorithms, we improve the key size from λ3 to λ
bits, the public parameters from λ6 to λ2 bits, and the runtime from λ7

to λω+1 bit operations (ignoring polylogarithmic factors in λ), where
ω ∈ [2, 2.373] is the exponent of matrix multiplication. In addition, we
give even more efficient ring-LWE-based constructions whose key sizes,
public parameters, and incremental runtimes on consecutive inputs are all
quasi-linear Õ(λ), which is optimal up to polylogarithmic factors. To our
knowledge, these are the first low-depth PRFs (whether key homomorphic
or not) enjoying any of these efficiency measures together with nontrivial
proofs of 2λ security under any conventional assumption.

1 Introduction

A pseudorandom function (PRF) family [GGM84] F = {Fs : D → R} is a finite
set of (deterministic) functions with common domain D and range R (both

? Research supported by the second author’s grants.
?? This material is based upon work supported by the National Science Foundation under

CAREER Award CCF-1054495, by the US-Israel Binational Science Foundation
Grant 2010296, by the Alfred P. Sloan Foundation, and by the Defense Advanced
Research Projects Agency (DARPA) and the Air Force Research Laboratory (AFRL)
under Contract No. FA8750-11-C-0098. The views expressed are those of the authors
and do not necessarily reflect the official policy or position of the National Science
Foundation, the BSF, the Sloan Foundation, DARPA or the U.S. Government.

finite), for which a randomly chosen Fs ← F cannot be efficiently distinguished
from a uniformly random function U : D → R, given adaptive oracle access. The
index s of function Fs is often called its (secret) key or seed. The family F is key
homomorphic if the set of keys has a group structure and if there is an efficient
algorithm that, given Fs(x) and Ft(x) (but not s or t), outputs Fs+t(x).

Naor, Pinkas, and Reingold [NPR99] constructed, in the random oracle
model, a very simple key-homomorphic PRF family based on the decisional
Diffie-Hellman problem, and gave applications like distributing the operation of
a Key Distribution Center. Recently, Boneh et al. [BLMR13] constructed the
first key-homomorphic PRFs without random oracles, and described many more
applications (all of which are very efficient in their use of the PRF), including
symmetric-key proxy re-encryption, updatable encryption, and PRFs secure
against related-key attacks (cf. [BC10, LMR14]). The construction of Boneh et
al. is based on the (appropriately parameterized) learning with errors (LWE)
problem [Reg05], and builds upon ideas used in the non-key-homomorphic LWE-
based PRFs of Banerjee, Peikert, and Rosen [BPR12].

One drawback of the construction and proof from [BLMR13] is its rather
strong LWE assumption and, by consequence, large parameters and runtimes. For
example, to obtain a PRF of input length λ with exponential 2λ provable security
against known lattice attacks, the secret keys and public parameters respectively
need to be at least λ3 and λ6 bits, and the runtime to evaluate the function
is at least λ7 bit operations (to produce λ2 output bits), not counting some

polylogarithmic logO(1) λ factors. It is worth noting that among the several LWE-
based PRFs given in [BPR12], the most highly parallelizable “direct” construction
(which can be implemented in TC0 ⊆ NC1) relies on roughly the same strong
assumptions and so has similarly low efficiency as the one from [BLMR13].
However, the synthesizer-based construction (in TC1 ⊆ NC2) and sequential
GGM-based one from [BPR12] can be proved secure under much weaker LWE
assumptions, and hence can have much better parameters and runtimes. A natural
question, therefore, is whether there exist key-homomorphic PRFs with similar
security and efficiency characteristics.

Our results. In this work we answer the above question in the affirmative, by
giving new constructions of key-homomorphic PRFs that have substantially better
efficiency, and still enjoy very high parallelism. As compared with [BLMR13],
we improve the key size from λ3 to λ bits, the public parameters from λ6 to λ2

bits, and the runtime from λ7 to λω+1 bit operations (always omitting logO(1) λ
factors), where ω ∈ [2, 2.373] is the exponent of matrix multiplication. Functions
having these parameters can be implemented in TC1 ⊆ NC2, though seemingly
not in TC0 or NC1.

We also give even more efficient key-homomorphic PRFs based on the
ring-LWE problem [LPR10, LPR13]. Compared with the ring-based analogue

of [BLMR13], and again ignoring logO(1) λ factors, here our keys and public
parameters are only λ bits (improving upon λ3 and λ4, respectively), and the run-
time is only λ2 bit operations to produce λ output bits (from λ5 to produce λ2).
In addition, the incremental computation of our PRF on successive inputs (e.g.,

in a counter-like mode) has runtime only λ. See Figure 1 for a full comparison
with [BPR12, BLMR13].

To our knowledge, ours are the first low-depth PRFs (whether key homo-
morphic or not) having nontrivial proofs of exponential 2λ security under any
conventional assumption along with quasi-optimal Õ(λ) key sizes or incremen-
tal runtimes, or quasilinear Õ(λ) nonincremental runtime per output bit. For
example, the GGM construction [GGM84] can have small keys and quasilinear
nonincremental runtime per output bit (using a quasi-optimal PRG), but it is
highly sequential. The Naor-Reingold constructions [NR95, NR97], which are
highly parallel, have at least quadratic λ2 key sizes and runtime per output
bit, even assuming exponential security of the underlying hard problems. And
factoring-based constructions [NRR00] fare much worse due to subexponential-
time factoring algorithms.

In their parallelism and underlying LWE assumptions, our functions are
qualitatively very similar to the synthesizer- and GGM-based ones from [BPR12]
(see Figure 1); however, the constructions and proofs are completely different.
Instead, our construction can be seen as a substantial generalization of the one
of Boneh et al. [BLMR13], in that theirs is an instantiation of ours with a linear-
depth “left spine” tree. By contrast, our construction can be securely instantiated
with any binary tree, thanks to a new proof technique that may be of use
elsewhere. The shape of the tree determines the final parameters and parallelism
of the resulting function: roughly speaking, its “left depth” determines the
strength of the LWE assumption in the proof, while its “right depth” determines
its parallelism. Interestingly, a complete binary tree turns out to be very far from
optimal for the parameters we care about. Optimal trees can be found efficiently
using dynamic programming, and provide input lengths that are roughly the
square of those yielded by complete binary trees. This is all discussed in detail in
the next section, where we present and analyze our construction.

Other related work. Our construction is reminiscent of those from several recent
works on fully homomorphic encryption, attribute-based encryption, and garbled
circuits, e.g., [GSW13, BV14, BGG+14]. In particular, these works obtain rela-
tively good LWE assumptions and parameters by appropriately scheduling “bit
decomposition” operations to ensure small noise growth, usually at the expense
of increased sequentiality. Our work also falls within this theme, though our proof
techniques are completely different.

Organization. In Section 2 we give our construction and a detailed analysis of its
security and efficiency. In Section 3 we give the proof of the security theorem,
first providing an overview of the key ideas in Section 3.1, and giving the formal
proof in Section 3.3 (after recalling some necessary technical background in
Section 3.2).

Reference KH? Expan Sequen Key Params Time/Out Out

this work Y 1 λ− 1 λ [λ] λ2 [λ] λω [λ] λ [λ]

this work Y log4 λ log4 λ λ [λ] λ2 [λ] λω [λ] λ [λ]

[BLMR13] Y λ− 1 1 λ3 [λ3] λ6 [λ4] λ5 [λ3] λ2 [λ2]

[BPR12, GGM] N 1 λ λ [λ] λ2 [λ] λ2 [λ] λ [λ]

[BPR12, synth] N log2 λ log2 λ λ3 [λ2] 0 [0] λω−1 [λ] λ2 [λ]

[BPR12, direct] N λ 1 λ5 [λ3] 0 [0] λ4 [λ2] λ2 [λ2]

Fig. 1. Example instantiations of our key-homomorphic PRF (for input length λ and
provable 2λ security against the best known lattice algorithms) as compared with prior
lattice-based PRFs. “KH” denotes whether the construction is key homomorphic, while
“Expan” and “Sequen” are respectively the expansion and sequentiality (as defined in
Equations (2.4), (2.7)) of the tree T used in the instantiation (or, for prior constructions,
their close analogues). Omitting polylogarithmic logO(1) λ factors, “Key” and “Params”
are respectively the bit lengths of the secret key and public parameters; “Time/Out”
is the best known runtime (in bit operations) per output bit, where ω ∈ [2, 2.373] is
the exponent of matrix multiplication; and “Out” is the output length in bits. The
quantities in brackets refer to the ring-based construction given in Section 2.4.

2 Construction and Analysis

In this section we define and analyze our key-homomorphic PRF, and compare it
with prior LWE-based constructions. The construction involves various parameters
(e.g., matrix dimension n, modulus q, tree T) which are all chosen so that the
algorithms are polynomial-time in the security parameter λ. As in [BLMR13], we
work in a model where the PRF family is defined with respect to some random
public parameters that are known to all parties, including the adversary. These
parameters may be generated by a trusted party, or by the user along with the
secret key.

We first recall some standard background. For an integer modulus q ≥ 1, let
Zq = Z/qZ denote the quotient ring of integers modulo q. For an integer p ≤ q,
define the modular “rounding” function b·ep : Zq → Zp as bxep = bpq · xe, and

extend it coordinate-wise to vectors and matrices over Zq. Let ` = dlog qe and
define the “gadget” (column) vector

g = (1, 2, 4, . . . , 2`−1) ∈ Z`q,

and the (deterministic) “binary decomposition” function g−1 : Zq → {0, 1}`
as follows: identifying each a ∈ Zq with its integer residue in {0, . . . , q − 1},
let g−1(a) = (x0, x1, . . . , x`−1) ∈ {0, 1}` where a =

∑`−1
i=0 xi2

i is the binary

representation of a. Note that by definition, 〈g,g−1(a)〉 = a for all a ∈ Zq, which
explains our choice of notation.1

Similarly, for vectors and matrices over Zq we define the function G−1 : Zn×mq →
{0, 1}n`×m by applying g−1 entry-wise. Notice that for all A ∈ Zn×mq we have

G ·G−1(A) = A, where G = gt ⊗ In = diag(gt, . . . ,gt) ∈ Zn×n`q (2.1)

is the block matrix with n copies of gt as diagonal blocks, and zeros elsewhere.
For a full (but not necessarily complete) binary tree T—i.e., one in which

every non-leaf node has two children—let |T | denote the number of its leaves.
If |T | ≥ 1 (i.e., T is not the empty tree), let T.l, T.r respectively denote the left
and right subtrees of T (which may be empty trees).

We now define our function families.

Definition 2.1. Given matrices A0,A1 ∈ Zn×n`q and a full binary tree T of at

least one node, define the function AT : {0, 1}|T | → Zn×n`q recursively as

AT (x) =

{
Ax if |T | = 1

AT.l(xl) ·G−1(AT.r(xr)) otherwise,
(2.2)

where in the second case we parse x = xl‖xr for xl ∈ {0, 1}|T.l|, xr ∈ {0, 1}|T.r|.

Construction 2.1 (Key-Homomorphic PRF). The function family

FA0,A1,T,p =
{
Fs : {0, 1}|T | → Zn`p

}
is parameterized by matrices A0,A1 ∈ Zn×n`q , a binary tree T , and a modulus
p ≤ q, which may all be considered public parameters. A member of the family
is indexed by some s ∈ Znq , and is defined as

Fs(x) :=
⌊
st ·AT (x)

⌉
p
. (2.3)

For security based on LWE, we take A0,A1 and the secret key s to be uniformly
random over Zq; see Theorem 2.1 below for a formal security statement. Similarly
to LWE, it may also be possible to prove security when the entries of s are drawn
from the LWE error distribution (see [ACPS09]). However, most applications of
key-homomorphic PRFs need to use uniformly random secret keys anyway, so
we do not pursue this question further.

Because rounding is nearly linear, i.e., ba + bep = baep + bbep + e for some
e ∈ {0,±1}, it is easy to see that the family FA0,A1,T,p defined above is “almost”

1 These are just particular definitions of g,g−1 that we fix for convenience. Our
constructions and proofs only require that g−1 be deterministic, and that g−1(a) be
a “short” integer vector such that 〈g,g−1(a)〉 = a for all a ∈ Zq. Alternatives include
using a signed ternary decomposition, or a larger (or mixed-radix) base; the bounds
in the security theorem are easily adapted to such choices.

additively key homomorphic, as defined in [BLMR13]. That is, for any keys Fs, Ft

in the family, we have

Fs+t(x) = Fs(x) + Ft(x) + et,

where ‖e‖∞ ≤ 1. As long as the entries of the error term e are sufficiently
smaller than the output modulus p, this near-homomorphism is sufficient for
all the applications described in [BLMR13], and for obtaining security against
related-key attacks [LMR14].

Notice that the vast majority of the cost of computing Fs(x) is in computing
AT (x), which can done “publicly” without any knowledge of the secret key s.2

This property can be very important for the efficiency of certain applications,
such as the homomorphic evaluation of Fs given an encryption of s. In addition,
notice that if AT (x) has been computed and all the intermediate matrices saved,
then AT (x′) can be incrementally computed much more efficiently for an x′ that
differs from x in just a single bit. Specifically, one only needs to recompute the
matrices for the internal nodes of T on the path from the leaf corresponding
to the changed bit to the root. As in [BPR12], this can significantly speed up
successive evaluations of Fs on related inputs, e.g., in a counter-like mode using
a Gray code.

Relation to [BLMR13]. Our key-homomorphic PRF can be viewed as a substantial
generalization of the one of Boneh et al. [BLMR13]. Specifically, their construction
can be obtained from ours by instantiating it with a tree T that consists of a “left
spine” with leaves for all its right children. Because all the right subtrees are just
leaves, the only matrices ever decomposed with G−1 are A0 and A1. Therefore, we
can replace them in the public parameters by the binary matrices Bb = G−1(Ab),

yielding the construction Fr(x) = brt ·
∏|x|
i=1 Bxiep from [BLMR13].3

The use of a “left-spine” tree T (as in [BLMR13]) yields an instantiation
which is maximally parallel—in our language (defined below), it has sequentiality
s(T) = 1. The major drawback is that it also has maximal expansion e(T) =
|T | − 1. In our security theorem (Theorem 2.1 below), the LWE approximation
factor and modulus q grow exponentially with e(T), so using a tree with large
expansion leads to a very strong hardness assumption, and therefore large secret
keys and public parameters. By contrast, using trees T with better expansion-
sequentiality tradeoffs allows us obtain much better key sizes and efficiency. See
the discussion in the following subsections and Figure 1 for further details.

2 For a few choices of the tree T , it can be faster to compute st ·AT (x) left-to-right
without explicitly computing AT (x), but such trees are rare and yield bad parameters.

3 Here we have ignored the small detail that in our construction, the matrix Ax1

corresponding to the leftmost leaf in the tree is not decomposed, so our instantiation
is actually Fs(x) = bst ·Ax1 ·

∏|x|
i=2 Bxie. However, it is easy to verify that in the

construction of [BLMR13], the secret key may be of the form rt = stG for some
s ∈ Znq . Then rtBx1 = stAx1 , which corresponds to our construction.

2.1 Security

In our security proof, the modulus q and underlying LWE error rate, and hence also
the dimension n needed to obtain a desired level of provable security, are largely
determined by a certain parameter of the tree T which we call the expansion e(T).
Essentially, the expansion is the maximum number of terms of the form G−1(·)
that are ever consecutively multiplied together when we unwind the recursive
definition of AT , or AT ′ for related trees T ′ considered in the security proof.
Formally, the expansion of T is defined by the recurrence

e(T) =

{
0 if |T | = 1

max{e(T.l) + 1 , e(T.r)} otherwise.
(2.4)

This is simply the “left depth” of the tree, i.e., the maximum length of a root-to-
leaf path, counting only edges from parents to their left children.

We can now state our main security theorem.

Theorem 2.1. Let T be any full binary tree, χ be some distribution over Z
that is subgaussian with parameter r > 0 (e.g., a bounded or discrete Gaussian
distribution with expectation zero), and

q ≥ p · r
√
|T | · (n`)e(T) · λω(1). (2.5)

Then over the uniformly random and independent choice of A0,A1 ∈ Zn×n`q , the
family FA0,A1,T,p with secret key chosen uniformly from Znq is a secure PRF
family, under the decision-LWEn,q,χ assumption.

An outline of the proof, which contains all the main and new ideas, is given
in Section 3.1; the formal proof appears in in Section 3.3.

Notice that the modulus-to-noise ratio for the underlying LWE problem
is q/r ≈ (n log q)e(T), i.e., exponential in the expansion e(T). Known reduc-
tions [Reg05, Pei09, BLP+13] (for r ≥ 3

√
n) guarantee that such an LWE

instantiation is at least as hard as (quantumly) approximating various lat-
tice problems in the worst case to within ≈ q/r factors on n-dimensional lat-
tices. Known algorithms for achieving such factors take time exponential in
n/ log(q/r) = Ω̃(n/e(T)), so in order to obtain provable 2λ security against the
best known lattice algorithms, the best parameters we can use are

n = e(T) · Θ̃(λ) and log q = e(T) · Θ̃(1). (2.6)

These parameters determine the runtimes and key sizes of the construction, as
analyzed below.

We conclude this discussion of security by remarking that, as in [BPR12,
BLMR13], and in contrast with essentially all lattice-based encryption schemes, it
is possible that our PRF is actually secure for much smaller parameters than our
proof requires. For example, taking q = poly(n) even for large e(T), with p|q to
ensure that rounding produces “unbiased” output, may actually be secure—but

we do not know how to prove it. (We also do not know of any effective attacks
against such parameters.) The reason for this possibility is that the function
itself does not actually expose any low-error-rate LWE samples to the attacker;
they are used only in the proof as part of a thought experiment. Whether any of
the constructions from this work or [BPR12, BLMR13] can be proved secure for
smaller parameters under a standard assumption is a fascinating open question.
For the remainder of the paper, we deal only with parameters for which we can
prove security under (ring-)LWE.

2.2 Size, Time, and Depth

Here we briefly analyze the secret key and public parameter sizes, runtime, and
circuit depth of our PRFs, always normalizing to 2λ provable security under
standard lattice assumptions. In some cases these quantities are not very practical
(or even asymptotically good), especially when the tree T has large expansion.
In Section 2.4 we give a much more efficient construction using ring-LWE, which
can be quasi-optimal in key size, public parameters, and depth (simultaneously).

The secret key, which is a uniformly random element of Znq , has size Θ(n log q),

which is e(T)2 · Θ̃(λ) by Equation (2.6). The public parameters, being two n×n`
matrices over Zq, are Θ(n2 log2 q) = e(T)4 · Θ̃(λ2) bits.

For runtime, computing AT (x) from scratch takes one decomposition with
G−1 and one (n× n`)-by-(n`× n`) matrix multiplication over Zq per internal
node of T . (As mentioned above, incremental computation of AT (x) on related
inputs can be much faster.) Using näıve matrix multiplication, this is a total
of Θ(|T | · n3 log2 q) ring operations in Zq, which translates to e(T)6 · Θ̃(λ4) bit
operations by Equation (2.6) (even using quasi-linear-time multiplication in Zq,
which is needed only when log q 6= Õ(1)). This can be improved somewhat
using asymptotically faster matrix multiplication, but still remains a rather large
Ω(|T | · nω log2 q), where ω ≥ 2 is the exponent of matrix multiplication.

For certain trees T our construction is highly parallelizable, i.e., it can be
computed by a low-depth circuit. First, notice that each Zq-entry of st·AT (x) (and
hence each Zp-entry of the PRF output) can be computed independently. This
is because each column of AT (x) can be computed independently, by induction
and the fact that G−1 works independently on the columns of AT.r(xr). Next,
since linear operations over Zq can be computed by depth-one arithmetic circuits
(with unbounded fan-in), the circuit depth of our construction is proportional
to the maximum nesting depth of G−1(·) expressions when we fully unwind
the definition of AT . We call this the sequentiality s(T) of the tree T , which is
formally defined by the recurrence

s(T) =

{
0 if |T | = 1

max{e(T.l) , e(T.r) + 1} otherwise.
(2.7)

This is simply the “right depth” of the tree, i.e., the maximum length of a
root-to-leaf path, counting only edges from parents to their right children.

2.3 Instantiations

Here we discuss some interesting instantiations of the tree T and the efficiency
properties of the resulting functions; see Figure 1 for a summary. Generally
speaking, for a given tree size |T | (the PRF input length) there is a tradeoff
between expansion e(T) and sequentiality s(T). Flipping this around, given
bounds e, s we are interested in obtaining a largest possible tree T such that
e(T) ≤ e and s(T) ≤ s; let t(e, s) denote the size of such a tree. At first blush, it
may be surprising that under the simplifying restriction e = s, a complete binary
tree of depth s is very far from optimal! To see this, notice that

t(e, s) =

{
1 if e = 0 or s = 0

t(e− 1, s) + t(e, s− 1) otherwise.
(2.8)

The base cases follow from the fact that only a single leaf satisfies the bounds,
and in the recursive case, the first and second terms respectively denote the sizes
of the optimal left and right subtrees. It is easy to verify that this recurrence is
simply the one that defines the binomial coefficients:

t(e, s) =

(
e+ s

e

)
=

(
e+ s

s

)
.

One can also efficiently construct an optimal tree for given e, s using dynamic
programming.

For example, if we restrict to e = s, then by Stirling’s approximation we
get that t(e, s) =

(
2s
s

)
≈ 4s/

√
sπ. Said another way, we can get a PRF with

input length |T | where the expansion and sequentiality are both ≈ log4(|T |). By
contrast, a complete binary tree with these parameters has size only 2s ≈

√
|T |.

By Theorem 2.1 and Equation (2.6), this means we can get a PRF with input
length λ and security 2λ having sequentiality O(log λ) and secret keys of quasi-
optimal bit length Õ(λ).

By ignoring parallelism, one can reduce the expansion even further by letting T
be a “right spine” with leaves for all its left children. Then e(T) = 1 and
s(T) = |T | − 1, yielding even better parameters: the underlying LWE assumption
has a nearly polynomial nω(1) approximation factor, and for security level 2λ

we still obtain secret keys of quasi-optimal bit length Õ(λ); moreover, here the
hidden factors are at least a log λ factor smaller than in the case above.

2.4 Ring Variant

Due to the several matrix multiplications (of dimension at least n) involved in
computing AT (x), our LWE-based construction is not very practically efficient.
Fortunately, we can obtain a much more efficient analogue based on the ring-LWE
problem [LPR10]. Here we just describe the construction and analyze its efficiency.
The proof of security based on ring-LWE proceeds in essentially the same way as
the one for our main construction, and is therefore omitted.

For concreteness, let R ∼= Z[X]/(Xn + 1) where n is a power of two, which
is known as the 2nth cyclotomic ring. (The construction and analysis may be
generalized to arbitrary cyclotomic rings using the tools developed in [LPR13].)
For a modulus q, let Rq = R/qR ∼= Zq[X]/(Xn+1), and define a suitable “gadget”
vector g ∈ R`q and deterministic function g−1 : Rq → R`, so that g−1(a) is “short”

and 〈g,g−1(a)〉 = a for all a ∈ Rq. (E.g., we may let g = (1, 2, 4, . . . , 2`−1) ∈ R`q
and define g−1(a) so that each of its R-entries has {0, 1}-coefficients with respect
to an appropriate “short” Z-basis of R.) Extend g−1 to row vectors over Rq by
applying g−1 entry-wise.

Construction 2.2. Fix some row vectors a0,a1 ∈ R`q, and for a binary tree T ,

define aT : {0, 1}|T | → R`q recursively as

aT (x) =

{
ax if |T | = 1

aT.l(xl) · g−1(aT.r(xr)) otherwise,
(2.9)

where in the second case we parse x = xl‖xr for xl ∈ {0, 1}|T.l|, xr ∈ {0, 1}|T.r|.
We define the function family

Fa0,a1,T,p =
{
Fs : {0, 1}|T | → R`p

}
,

which is parameterized by row vectors a0,a1 ∈ R`q, a binary tree T , and a modulus
p ≤ q. A member of the family is indexed by some s ∈ R (or Rq), and is defined
as

Fs(x) := bs · aT (x)ep. (2.10)

Analysis. Evaluating aT (x) from scratch takes one decomposition with g−1 and
one vector-matrix multiplication of dimension ` = log q over Rq per internal
node of T , for a total of O(|T | · `2) ring operations in Rq. Ring operations in
Rq can be performed in O(n log n) scalar operations over Zq, and g−1 can be

computed in O(n log q) time. Using a tree T with expansion e(T) = Õ(1), by
Equation (2.6) we can get a PRF with input length λ and 2λ security (under
conventional assumptions) running in Õ(λ2) bit operations to output at least λ
bits. When T has polylogarithmic depth, the incremental cost per invocation is
reduced to Õ(λ) bit operations, which is quasi-optimal.

As an optimization, and analogously to the LWE-based construction, each Rq-
entry of aT (x) ∈ R`q can be computed independently in O(|T | · `) ring operations
each. Therefore, we can compute each Rp-entry of the output (yielding at least n
output bits) in just O(|T | · `) ring operations. This may be useful in applications
that do not need the entire large output length.

3 Security Proof

In this section we prove the security theorem, Theorem 2.1, which says that
Fs(x) = bst ·AT (x)ep from Construction 2.1 is a PRF under the LWE assumption,
for appropriate parameters.

3.1 Proof Outline

We start with an overview of the proof, which highlights the central (new) ideas.
(For technical reasons, the formal proof proceeds a bit differently than this outline,
but the main ideas are the same.) The basic strategy, first used in [BPR12], is
to define a sequence of hybrid games where the function inside the rounding
operation b·ep changes in ways that are indistinguishable to the adversary, either
statistically or computationally. As in prior works [BPR12, BLMR13], these
changes include introducing small additive terms that are “rounded away” and
hence preserve the input-output behavior (with high probability), and replacing
LWE instances with uniformly random ones. In addition, we introduce a new
proof technique described within.

Let T be any full binary tree, and suppose its leftmost leaf v is at depth d > 1.
(If d = 1, then |T | = 1 and the function is trivially a PRF based on the “learning
with rounding” problem, which is as hard as LWE for our choice of parameters,
or even slightly better ones [BPR12, AKPW13].) In the real attack game, the
adversary has oracle access to Fs(·), which, by unwinding the definition of AT ,
is of the form

Fs(x) =
⌊
st ·AT (x)

⌉
p

=

⌊
st ·Ax0

·
d∏
i=1

G−1(ATi
(x′i))︸ ︷︷ ︸

ST (x′)

⌉
p

,

where subtree Ti is the right child of v’s ith ancestor, and x = x0‖x′ =
x0‖x′1‖ · · · ‖x′d where |x0| = 1 and |x′i| = |Ti| for all i.

We next consider a hybrid game in which st ·Ab for b ∈ {0, 1} is replaced
by an LWE vector st ·Ab + etb, for some short error vectors e0, e1. That is, the
adversary instead has oracle access to the function

F ′s,e0,e1
(x) :=

⌊
(st ·Ax0 + etx0

) · ST (x′)
⌉
p

=
⌊
st ·AT (x) + etx0

· ST (x′)
⌉
p
.

Because ex0
and any matrix of the form G−1(·) are short, etx0

· ST (x′) is short.
More precisely, its entries are of magnitude bounded by ≈ (n log q)d, which is
much less than q/p because d ≤ e(T) and by assumption on q. Therefore, the
additive term etx0

· ST (x′) is very unlikely the change the final rounded value,
i.e., with high probability F ′s,e0,e1

(x) = Fs(x) for all the adversary’s queries x.
Therefore, this hybrid game is statistically indistinguishable from the real attack.

In the next hybrid game, we replace each st ·Ab+etb for b ∈ {0, 1} by uniformly
random and independent utb, i.e., the adversary has access to the function

F ′′u0,u1
(x) :=

⌊
utx0
· ST (x′)

⌉
p

=

⌊
utx0
·G−1(AT1

(x′1))·
d∏
i=2

G−1(ATi
(x′i))︸ ︷︷ ︸

S′T (x′)

⌉
p

. (3.1)

Since ST (x′) can be efficiently computed from the public parameters Ab and the
adversary’s queries x, this game is computationally indistinguishable from the
previous one, under the LWE assumption.

At this point, we would like to be able to proceed by replacing the terms
utx0
·G−1(AT1

(x′1)) with some “noisy” variants, then replace those with uniform
and independent vectors for all values of x0‖x′1, etc. Indeed, this is possible if x′1
consists of a single bit (i.e., if |T1| = 1 and hence AT1(x′1) = Ax′1

), using “non-
uniform LWE” exactly as is done in [BLMR13]. Unfortunately, non-uniform LWE
does not appear to be sufficient when x′1 is more than one bit (i.e., when |T1| > 1),
because the matrices AT1

(x′1) are not independent for different values of x′1. And
requiring |Ti| = 1 for all i makes T have maximal expansion e(T) = |T | − 1.

Our main new proof technique is a way to deal with the above issue. Going
back to Equation (3.1), as “wishful thinking” suppose that each ub was of the
form utb = stb ·G for some (uniform, say) sb ∈ Znq . Then the G factor would undo
the decomposition G−1(·), and the adversary would have access to the function

F ′′′s0,s1(x) :=
⌊
stx0
·AT1

(x′1) · S′T (x′)
⌉
p

=
⌊
stx0
·AT ′(x

′)
⌉
p
,

where T ′ is the full binary tree obtained from T by removing its leftmost leaf v
and promoting v’s sibling subtree T1 to replace their parent. Notice that the above
function is just two independent members of our function family instantiated
with tree T ′. Moreover, T ′ has expansion e(T ′) ≤ e(T), because expansion is just
“left depth.” Therefore, the above function would be a PRF simply by induction
on |T |.

Unfortunately, our “wishful thinking” fails in a very strong sense: a uniformly
random ut is highly likely to be very far from any vector of the form st ·G.
However, because Gt ·Znq is a subgroup of Zn`q , a uniformly random vector u ∈ Zn`q
can be decomposed as ut = st ·G + vt where s ∈ Znq is uniform, and v is uniform

in (some canonical set of representatives of) the quotient group Zn`q /(Gt · Znq)
and independent of s. Therefore, the function in Equation (3.1) is equivalent to
the function

F ′′′s0,s1,v0,v1
(x) :=

⌊
stx0
·AT ′(x

′) + vtx0
· ST (x′)

⌉
p
,

where T ′ and x′ are exactly as in the previous paragraph. Note that vb is not
short, so the extra additive term above does not simply “round away”—but we
do not need it to. The main point is that vb may be chosen independently of (and
hence without knowledge of) sb by the simulator, and then the additive term
may be efficiently computed from it and other public information. Essentially,
this allows us to complete the proof by induction on |T |. (Again, the actual proof
is structured a bit differently, to allow us to simulate the independent additive
terms inside the rounding operation.)

3.2 Additional Background

Games and indistinguishability. In our security proof, we model interaction
with the adversary through a series of probabilistic experiments called games.
For an adversary A interacting with two games H0 and H1, the distinguishing
advantage of A, which is implicitly a funtion of the security parameter λ, is

defined as AdvH0,H1
(A) = |Pr[A accepts in H0] − Pr[A accepts in H1]|. Two

games H0 and H1 are computationally distinguishable, denoted H0
c
≈ H1, if

AdvH0,H1(A) = negl(λ) for any efficient adversary A.

Learning with errors. We use the following form of the learning with errors (LWE)
problem, due to Regev [Reg05]. For a positive integer dimension n, a modulus
q ≥ 2, and a probability distribution χ over Z, the decision-LWEn,q,χ assumption
is that for for any polynomially bounded m,w,

(A← Zn×mq ,Bt = St ·A + Et ∈ Zw×mq)
c
≈ (A← Zn×mq ,Bt ← Zw×mq),

where on the left St ← Zw×nq and Et ← χw×m. (The assumption for w = 1
implies the assumption for larger w, by a routine hybrid argument.)

For χ = DZ,r where r ≥ 3
√
n, and under mild conditions on the form

of the modulus q, the decision-LWEn,q,χ assumption holds true assuming that
various problems on n-dimensional lattices are hard for quantum algorithms to
approximate to within Õ(n ·q/r) factors in the worst case [Reg05]; see also [Pei09,
BLP+13] and references therein for similar statements assuming only classical
(non-quantum) hardness.

3.3 Proof of Security Theorem

In this section we give the formal proof of Theorem 2.1.
To aid the proof we first define a couple of auxiliary function families. The

first family simply consists of the “pre-rounded” counterparts of the functions
Fs ∈ F = FA0,A1,T,p.

Definition 3.1. For A0,A1 ∈ Zn×n`q and a full binary tree T , the family G =

GA0,A1,T is the set of functions Gs : {0, 1}|T | → Zn`q indexed by some s ∈ Znq ,
and defined as Gs(x) := st ·AT (x) (where we define AT (ε) := G for the empty
tree T). We endow G with the distribution where s← Znq is chosen uniformly at
random.

Note that Fs(x) = bGs(x)ep.
The next family G̃ consists of functions that are certain “noisy” versions of

the functions in G. The family E of “error functions” used in the definition is a

family of functions from {0, 1}|T | to Zn`, and is formally defined in Definition 3.5
below. An important point is that the functions in E ∈ E have exponentially large
keys, but they may be efficiently sampled “lazily,” as values E(x) are needed.
See the discussion following Definition 3.5 for details.

Definition 3.2. For A0,A1 ∈ Zn×n`q and a full binary tree T , the family G̃ =

G̃A0,A1,T is the set of functions G̃s,E : {0, 1}|T | → Zn`q indexed by some Gs ∈ G
and E ∈ E = EA0,A1,T , and defined as G̃s,E(x) := Gs(x) + E(x). We endow G̃
with the distribution where Gs ← G and E ← E are chosen independently.

The proof of Theorem 2.1 consists of showing that with overwhelming prob-
ability, the rounding of Gs ∈ G agrees with the rounding of essentially any
corresponding G̃s,E ∈ G̃ on all the attacker’s queries, because the outputs of the
error functions E ∈ E are small. This proof follows very similary to the style of
the proof of the “degree-k” PRF of [BPR12], and thus we relegate the details to
the full version. The main crux of the theorem, which we show in Theorem 3.1
below, is in proving that G̃ is a PRF family without any rounding, and hence
with rounding as well. It follows that the rounding of Gs ← G (i.e., Fs ← F)
cannot be distinguished from a uniformly random function, as desired.

We now formally define the “error function” family E = EA0,A1,T . To define
the error functions we first need a couple of simple definitions.

Definition 3.3 (Pruning). For a full binary tree T of at least one node, define
its pruning T ′ = pr(T) inductively as follows: if |T.l| ≤ 1 then T ′ := T.r;
otherwise, T ′.l := pr(T.l) and T ′.r := T.r. We let T (i) denote the ith successive
pruning of T , i.e., T (0) = T and T (i) = pr(T (i−1)).

In other words, pruning a tree node removes its leftmost leaf v and replaces
the subtree rooted at v’s parent (if it exists) with the subtree rooted at v’s sibling.
Notice that pruning cannot increase the tree’s expansion (i.e., left depth; see
Equation (2.4)): e(T ′) ≤ e(T).

Definition 3.4. Given A0,A1 ∈ Zn×n`q and a full binary tree T of at least one

node, define the function ST : {0, 1}|T |−1 → Zn`×n` recursively as follows:

ST (x) =

{
I (the identity matrix) if |T | = 1

ST.l(xl) ·G−1(AT.r(xr)) otherwise,
(3.2)

where x = xl‖xr for |xl| = |T.l| − 1, |xr| = |T.r|.

Notice that if T ′ = pr(T) and x = x1‖x′ ∈ {0, 1}|T | for |x1| = 1, then it follows
directly from the definitions (recalling that Aε(ε) = G) and by induction that

AT (x) = Ax1
· ST (x′), (3.3)

G · ST (x′) = AT ′(x
′). (3.4)

Definition 3.5 (Error Functions). For public matrices A0,A1 ∈ Zn×n`q and

a full binary tree T , the family E = EA0,A1,T consists of functions from {0, 1}|T |
to Zn`, defined inductively as follows.

– For |T | = 0, the sole function in E is defined simply as E(ε) := 0.
– For |T | ≥ 1, a function in E is indexed by some e0, e1 ∈ Zn` and E′0, E

′
1 ∈

E ′ = EA0,A1,T ′ , where T ′ is the pruning of T . For x = x1‖x′ ∈ {0, 1}|T |, the
function is defined as

Ee0,e1,E′0,E
′
1
(x) := etx1

· ST (x′) + E′x1
(x′).

For a given error function distribution χ over Z, we endow E with the
distribution where e0, e1 ← χn` and E′0, E

′
1 ← E ′ are all chosen independently.

Note that a function E ∈ E is fully specified by exponentially (in |T |) many

error vectors (namely, one ew for each w ∈ {0, 1}≤|T |), and the value E(x) is
fully determined by those ew where w is a prefix of x (and A0,A1). This large
number of error vectors is what prevents G̃ itself from being usable as a PRF
family. However, as needed in the proof of Theorem 2.1, a function E ← E can
be sampled “lazily” as values E(x) are needed, since each value of E(x) depends
on only a small number of the error vectors. The fact that the output of the error
function is “small” with very high probability is also used in the proof of the
theorem. Proving this fact is a standard technical exercise, and it is furnished in
the full version.

We now prove that the function family G̃ from Definition 3.2 is pseudorandom.

Theorem 3.1. For any n, q ≥ 1 and error distribution χ over Z, any full binary
tree T , and over the uniformly random and independent choice of A0,A1 ∈ Zn×n`q ,

the family G̃ = G̃A0,A1,T is pseudorandom, assuming the hardness of decision-
LWEn,q,χ.

Proof. We proceed through a series of games, one for each bit of the input. In
each successive game, we modify the function family G̃ a little, until we are left

with the family of all functions from {0, 1}|T | to Zn`q (with uniform distribution),
and we show that each successive game is computationally indistinguishable
under the LWE assumption from the theorem statement.

To define the games formally, we first need some notation. For a bit string x
of length at least i, let x(i) = x1x2 · · ·xi denote the string of its first i bits, and

let x(i) denote the remainder of the string. Where A0,A1 and T are clear from
context, let G(i) = GA0,A1,T (i) and similarly for E(i). Let P ⊂ Zn` denote an

arbitrary set of representatives of the quotient group Zn`q /Gt · Znq , and define a

family of auxiliary functions V(i) = V(i)
A0,A1,T

as follows.

Definition 3.6. For public matrices A0,A1 ∈ Zn×n`q , a full binary tree T , and

0 ≤ i ≤ |T |, the family V(i) = V(i)
A0,A1,T

consists of functions from {0, 1}|T | to

Zn`, and is defined inductively as follows.

– The sole function in V(0) is defined simply as V (x) := 0.
– For i ≥ 1, a function in V(i) is indexed by some vw ∈ Zn` for every w ∈
{0, 1}i, and some V ′ ∈ V(i−1). The function is defined as

V{vw},V ′(x) := vtx(i)
· ST (i−1)(x(i)) + V ′(x).

We endow V(i) with the distribution where the vw ← P and V ′ ← V(i−1) are
all chosen independently and uniformly.

Similarly to the family E of error functions, the description of a function in V(i)

consists of an exponential (in i) number of vw vectors, and can be sampled lazily.

We now define game Hi for 0 ≤ i ≤ |T |.

Game Hi. Choose A0,A1 ← Zn×n`q independently, and lazily sample Gsw ← G(i)

and Ew ← E(i) for each w ∈ {0, 1}i, and V ← V(i). Give the adversary A0,A1

and oracle access to the function

H(x) := Gsx(i)
(x(i)) + Ex(i)

(x(i)) + V (x). (3.5)

Claim. Game H0 corresponds to the real attack game against the family G̃, and
game H|T | corresponds to oracle access to a uniformly random function.

The first claim follows by definition of G̃ = G̃A0,A1,T , and because V(0) consists
solely of the zero function. For the second claim, for i = |T | we have x(i) = x,

x(i) = ε, and T (i) = ε (the empty tree), so by Definitions 3.1, 3.5, and 3.6,

H(x) = Gsx(ε) + Ex(ε) + V (x) = stx ·G + vtx + V ′(x).

Since sx ∈ Znq ,vx ∈ P are uniformly random and independent for each x, and

P is a set of representatives of the quotient group Zn`q /Gt · Znq , the values

stx ·G+vtx ∈ Zn`q are uniformly random and independent. Since V ′ is independent
of these as well, H is a uniformly random function.

It remains to prove that successive games are computationally indistinguish-
able. To do so we define the following games H ′i for 1 ≤ i ≤ |T |.

Game H ′i. Choose A0,A1 ← Zn×n`q independently, and lazily sample uw ← Zn`q
and Ew ← E(i) for each w ∈ {0, 1}i, and V ′ ← V(i−1). Give the adversary A0,A1

and oracle access to the function

H ′(x) = utx(i)
· ST (i−1)(x(i)) + Ex(i)

(x(i)) + V (x). (3.6)

Claim. For 1 ≤ i ≤ |T |, games Hi and H ′i are equivalent.

We can write each uniformly random uw ∈ Zn`q for w ∈ {0, 1}i as utw = stw·Gt+vtw,
where sw ∈ Znq and vw ∈ P are uniformly random and independent. Therefore,
we can rewrite the function H ′(·) from Equation (3.6) as

H ′(x) =
(
stx(i)

·G + vtx(i)

)
· ST (i−1)(x(i)) + Ex(i)

(x(i)) + V ′(x)

= stx(i)
·G · ST (i−1)(x(i)) + Ex(i)

(x(i)) +
(
vtx(i)

· ST (i−1)(x(i)) + V ′(x)
)

= Gsx(i)
(x(i)) + Ex(i)

(x(i)) + V (x),

where in the final equality we have used Equation (3.4), and we have defined V (x)
to be the second parenthesized component of the previous expression. Notice
that all the functions Gsx(i)

, Ex(i)
, and V are drawn independently from G(i),

E(i), and V(i) (respectively), and this proves the claim.

Claim. For 0 ≤ i ≤ |T | − 1, games Hi and H ′i+1 are computationally indistin-
guishable under the LWE assumption from the theorem statement.

To prove the claim, we design an efficient simulator S which receives as input a
pair of matrices (A,Bt) ∈ Zn×2n`q ×ZQ×2n`q , where Q = poly(λ) is the minimum

of 2i and the number of queries that the adversary makes. The simulator parses
A = [A0 | A1] where A0,A1 ∈ Zn×n`q and gives them to the adversary. It lazily

samples a V ← V(i) and an Ew ← E(i+1) for every w ∈ {0, 1}i+1
. Then for each

query x from the adversary, if a vector btx(i)
has not already been defined, it lets

btx(i)
be a previously unused row of Bt. It parses btx(i)

= (btx(i)‖0 | b
t
x(i)‖1), where

bx(i)‖b ∈ Zn`q for each b ∈ {0, 1}. It then answers the query with the value

J(x) := btx(i+1)
· ST (i)(x(i+1)) + Ex(i+1)

(x(i+1)) + V (x).

We now analyze the behavior of S for the two distributions of (A,Bt) from the
decision-LWE problem. In both cases, A is uniformly random and so the public
parameters are properly distributed. When B is uniformly random, it can be
seen by inspection that the function J is drawn from the same distribution as the
function H ′ in game H ′i+1 described in Equation (3.6), so the simulator exactly
emulates game H ′i+1.

We now analyze the other case, namely, Bt = St ·A + Et for independent
St ← ZQ×nq and Et ← χQ×2n`. Then letting stx(i)

, (etx(i)‖0 | e
t
x(i)‖1) respectively

be the rows of St,Et corresponding to the row of Bt used as btx(i)
, we have

J(x) =
(
stx(i)

·Axi+1
+ etx(i)‖xi+1

)
· ST (i)(x(i+1)) + Ex(i+1)

(x(i+1)) + V (x)

= stx(i)
·AT (i)(x(i)) +

(
etx(i)‖xi+1

· ST (i)(x(i+1)) + Ex(i)‖xi+1
(x(i+1))

)
+ V (x)

= Gsx(i)
(x(i)) + Ex(i)

(x(i)) + V (x),

where in the second equality we have used Equation (3.3), and in the last
expression we have defined Ex(i)

(x(i)) to be the parenthesized component from
the previous expression. Notice that by the distributions of all the variables, the
functions Gsw , Ew (for each queried prefix w ∈ {0, 1}i) and V are all drawn
independently from G(i), E(i), and V(i), so in this case the simulator exactly
emulates game Hi.

Because the two LWE input distributions are computationally indistinguishable
by assumption and S is efficient, it follows that Hi and H ′i+1 are computationally
indistinguishable, and the claim is proved.

By repeated application of the claims above, we have that H0
c
≈ H ′1 ≡ H1

c
≈

H ′2 ≡ · · · ≡ H|T |−1
c
≈ H ′|T | ≡ H|T |, and so H0

c
≈ H|T | by the triangle inequality.

This completes the proof of Theorem 3.1.

References

[ACPS09] B. Applebaum, D. Cash, C. Peikert, and A. Sahai. Fast cryptographic
primitives and circular-secure encryption based on hard learning problems.
In CRYPTO, pages 595–618. 2009.

[AKPW13] J. Alwen, S. Krenn, K. Pietrzak, and D. Wichs. Learning with rounding,
revisited - new reduction, properties and applications. In CRYPTO, pages
57–74. 2013.

[BC10] M. Bellare and D. Cash. Pseudorandom functions and permutations
provably secure against related-key attacks. In CRYPTO, pages 666–684.
2010.

[BGG+14] D. Boneh, C. Gentry, S. Gorbunov, S. Halevi, V. Nikolaenko, G. Segev,
V. Vaikuntanathan, and D. Vinayagamurthy. Fully key-homomorphic
encryption, arithmetic circuit abe and compact garbled circuits. In EU-
ROCRYPT. 2014.

[BLMR13] D. Boneh, K. Lewi, H. W. Montgomery, and A. Raghunathan. Key
homomorphic PRFs and their applications. In CRYPTO, pages 410–428.
2013.

[BLP+13] Z. Brakerski, A. Langlois, C. Peikert, O. Regev, and D. Stehlé. Classical
hardness of learning with errors. In STOC, pages 575–584. 2013.

[BPR12] A. Banerjee, C. Peikert, and A. Rosen. Pseudorandom functions and
lattices. In EUROCRYPT, pages 719–737. 2012.

[BV14] Z. Brakerski and V. Vaikuntanathan. Lattice-based FHE as secure as
PKE. In ITCS, pages 1–?? 2014.

[GGM84] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random
functions. J. ACM, 33(4):792–807, 1986. Preliminary version in FOCS
1984.

[GSW13] C. Gentry, A. Sahai, and B. Waters. Homomorphic encryption from
learning with errors: Conceptually-simpler, asymptotically-faster, attribute-
based. In CRYPTO, pages 75–92. 2013.

[LMR14] K. Lewi, H. W. Montgomery, and A. Raghunathan. Improved constructions
of prfs secure against related-key attacks. In ACNS, pages 44–61. 2014.

[LPR10] V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning
with errors over rings. Journal of the ACM, 60(6):43:1–43:35, November
2013. Preliminary version in EUROCRYPT ’10.

[LPR13] V. Lyubashevsky, C. Peikert, and O. Regev. A toolkit for ring-LWE
cryptography. In EUROCRYPT, pages 35–54. 2013.

[NPR99] M. Naor, B. Pinkas, and O. Reingold. Distributed pseudo-random functions
and KDCs. In EUROCRYPT, pages 327–346. 1999.

[NR95] M. Naor and O. Reingold. Synthesizers and their application to the
parallel construction of pseudo-random functions. J. Comput. Syst. Sci.,
58(2):336–375, 1999. Preliminary version in FOCS 1995.

[NR97] M. Naor and O. Reingold. Number-theoretic constructions of efficient
pseudo-random functions. J. ACM, 51(2):231–262, 2004. Preliminary
version in FOCS 1997.

[NRR00] M. Naor, O. Reingold, and A. Rosen. Pseudorandom functions and
factoring. SIAM J. Comput., 31(5):1383–1404, 2002. Preliminary version
in STOC 2000.

[Pei09] C. Peikert. Public-key cryptosystems from the worst-case shortest vector
problem. In STOC, pages 333–342. 2009.

[Reg05] O. Regev. On lattices, learning with errors, random linear codes, and
cryptography. J. ACM, 56(6):1–40, 2009. Preliminary version in STOC
2005.

	New and ImprovedKey-Homomorphic Pseudorandom Functions

