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Abstract. We put the Gentry-Szydlo algorithm into a mathematical
framework, and show that it is part of a general theory of “lattices with
symmetry”. For large ranks, there is no good algorithm that decides
whether a given lattice has an orthonormal basis. But when the lattice is
given with enough symmetry, we can construct a provably deterministic
polynomial time algorithm to accomplish this, based on the work of
Gentry and Szydlo. The techniques involve algorithmic algebraic number
theory, analytic number theory, commutative algebra, and lattice basis
reduction. This sheds new light on the Gentry-Szydlo algorithm, and the
ideas should be applicable to a range of questions in cryptography.

Keywords: lattices, Gentry-Szydlo algorithm, ideal lattices, lattice-based cryptogra-

phy

1 Introduction

In §7 of [6], Gentry and Szydlo introduced some powerful new ideas that com-
bined in a clever way lattice basis reduction and number theory. They used these
ideas to cryptanalyze NTRU Signatures. The recent interest in Fully Homomor-
phic Encryption (FHE) and in the candidate multilinear maps of Garg-Gentry-
Halevi [2] bring the Gentry-Szydlo results once again to the fore. Gentry’s first
FHE scheme [3] used ideal lattices, as have a number of subsequent schemes.
Fully Homomorphic Encryption is performed more efficiently with ideal lattices
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than with general lattices. However, ideal lattices are special, with much struc-
ture (“symmetries”) that has the potential to be exploited. In his thesis [4],
Gentry mentions that the Gentry-Szydlo attack on NTRU signatures can be
used to attack principal ideal lattices in the ring Z[X]/(Xn − 1), if the lattice
has an orthonormal basis.

As Gentry pointed out [5], the Gentry-Szydlo algorithm “seems to be a rather
crazy, unusual combination of LLL with more ‘algebraic’ techniques. It seems
like it should have more applications—e.g., perhaps to breaking or weakening
ideal lattices.” Generalizing or improving the Gentry-Szydlo algorithm would po-
tentially affect the security of all cryptography that is built from ideal lattices,
or whose security is based on hard problems for ideal lattices. Candidate mul-
tilinear maps were recently cryptanalyzed using the Gentry-Szydlo algorithm.
As remarked by Garg, Gentry, and Halevi in [2], their “new algebraic/lattice
attacks are extensions of an algorithm by Gentry and Szydlo, which combines
lattice reduction and Fermat’s Little Theorem in a clever way to solve a relative
norm equation in a cyclotomic field.”

The Gentry-Szydlo algorithm has been viewed by some as magic [11]. In this
paper we revisit the algorithm and put it in a mathematical framework, in order
to make it easier to understand, generalize, and improve on. That should help
make it more widely applicable in cryptographic applications. We embed the
algorithm in a wider theory that we refer to as “lattices with symmetry”.

The algorithm of Gentry and Szydlo can be viewed as a way to find an
orthonormal basis (if one exists) for an ideal lattice. Determining whether a
lattice has an orthonormal basis is a difficult algorithmic problem that is easier
when the lattice has many symmetries. In this paper we solve this problem when
the lattice comes with a sufficiently large abelian group of automorphisms, and
we show how the Gentry-Szydlo algorithm is a special case of this result.

Our algorithm runs in deterministic polynomial time, whereas [6] relies on
a probabilistic algorithm. Also, our setting is more general (our theory applies
to arbitrary finite abelian groups, where [6] considers only cyclic groups of odd
prime order), thereby covering other cases of potential cryptographic interest.

Briefly, our main result is as follows (see §2 for background information). If G
is a finite abelian group and u ∈ G has order 2, define a G-lattice to be a lattice
L with a group homomorphism G→ Aut(L) that takes u to −1. The “standard”
G-lattice is the modified group ring Z〈G〉 = Z[G]/(u + 1). A G-isomorphism is
an isomorphism of lattices that respects the G-actions.

Theorem 1.1 There is a deterministic polynomial time algorithm that, given
a finite abelian group G, an element u ∈ G of order 2, and a G-lattice L,
decides whether L and Z〈G〉 are G-isomorphic, and if they are, exhibits a G-
isomorphism.

The ingredients include the technique invented by Gentry and Szydlo in [6],
lattice basis reduction, commutative algebra (finite rings and tensor algebras),
analytic number theory, and algorithmic algebraic number theory. The graded
tensor algebra Λ introduced in §3.4 is in a sense the hero of our story. It replaces
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Gentry’s and Szydlo’s polynomial chains. In §7 of [6], taking powers of an ideal in
the ring R = Z[X]/(Xn − 1) required complicated bookkeeping, via polynomial
chains and lattice basis reduction to avoid coefficient blow-up. We do away with
this, by using the module structure of the ideal, rather than its ideal structure.
More precisely, an ideal in a commutative ring R is the same as an R-module
M along with an embedding M ↪→ R of R-modules. While Gentry and Szydlo
use the embedding, we observe that one can avoid coefficient blow-up by using
the module structure of M but not the actual embedding. We replace ideal
multiplication with tensor products of lattices.

In §2 we introduce the concept of a G-lattice, and in §2.3 we show that
Theorem 1.1 implies the result of Gentry and Szydlo. In §3–§4 we introduce
invertible G-lattices, of which the ideal lattices considered by Gentry and Szydlo
are examples, and give the concepts and results that we use to state our new
algorithm and prove its correctness. We explicitly present the algorithm in §5.

2 G-lattices and the modified group ring

In this section we explain some notation and concepts that we use in our main
result.

2.1 Lattices and G-lattices

We first give some background on lattices (see also [10]), and introduce G-
lattices.

Definition 2.1 A lattice or integral lattice is a finitely generated abelian
group L with a map 〈 · , · 〉 : L× L→ Z that is

– bilinear: 〈x, y + z〉 = 〈x, y〉 + 〈x, z〉 and 〈x + y, z〉 = 〈x, z〉 + 〈y, z〉 for all
x, y, z ∈ L,

– symmetric: 〈x, y〉 = 〈y, x〉 for all x, y ∈ L, and

– positive definite: 〈x, x〉 > 0 if 0 6= x ∈ L.

As a group, L is isomorphic to Zn for some n, which is called the rank of L.
In algorithms, a lattice is specified by a Gram matrix (〈bi, bj〉)ni,j=1 associated
to a Z-basis {b1, . . . , bn}.

Definition 2.2 The standard lattice of rank n is L = Zn with 〈x, y〉 =∑n
i=1 xiyi. Its Gram matrix is the n× n identity matrix In.

Definition 2.3 A lattice L is unimodular if the map L → Hom(L,Z) that
takes each x ∈ L to the map y 7→ 〈x, y〉 is bijective. Equivalently, L is unimodular
if its Gram matrix has determinant 1.
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Definition 2.4 An isomorphism L
∼−→ M of lattices is a group isomorphism

ϕ : L
∼−→ M that respects the lattice structures, i.e., 〈ϕ(x), ϕ(y)〉 = 〈x, y〉 for

all x, y ∈ L. If such a map ϕ exists, then L and M are isomorphic lattices.
An automorphism of a lattice L is an isomorphism from L onto itself. The
set of automorphisms of L is a finite group Aut(L) whose center contains −1
(represented by −In).

In algorithms, isomorphisms are specified by their matrices on the given bases
of L and M .

Examples 2.5 (i) “Random” lattices have Aut(L) = {±1}.
(ii) Letting Sn denote the symmetric group on n letters and o denote semidirect

product, then Aut(Zn) ∼= {±1}n o Sn. (The standard basis vectors can be
permuted, and negatives taken.)

(iii) If L is the equilateral triangular lattice in the plane, then Aut(L) is the
symmetry group of the regular hexagon, which is a dihedral group of order
12.

From now on, suppose that G is a finite abelian group, and u ∈ G is a fixed
element of order 2.

Definition 2.6 A G-lattice is a lattice L together with a group homomorphism
f : G→ Aut(L) such that f(u) = −1. For each σ ∈ G and x ∈ L, define σx ∈ L
by σx = f(σ)(x).

The abelian group G is specified by a multiplication table. The G-lattice L
is specified as a lattice along with, for each σ ∈ G, the matrix describing the
action of σ on L.

Definition 2.7 If L and M are G-lattices, then a G-isomorphism is an iso-
morphism ϕ : L

∼−→M of lattices that respects the G-actions, i.e., ϕ(σx) = σϕ(x)
for all x ∈ L and σ ∈ G. If such an isomorphism exists, we say that L and M
are G-isomorphic, or isomorphic as G-lattices.

2.2 The Modified Group Ring Z〈G〉

We define a modified group ring A〈G〉 whenever A is a commutative ring. We
will usually take A = Z, but will also take A = Z/mZ. We consider A〈G〉 rather
than the standard group ring A[G], since G-lattices become Z〈G〉-modules. Also,

it allows us to include the cyclotomic rings Z[X]/(X2k + 1) in our theory.

The group ring A[G] is the set of formal sums
∑
σ∈G aσσ with aσ ∈ A, with

addition defined by ∑
σ∈G

aσσ +
∑
σ∈G

bσσ =
∑
σ∈G

(aσ + bσ)σ
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and multiplication defined by

(
∑
σ∈G

aσσ)(
∑
τ∈G

bττ) =
∑
ρ∈G

(
∑
στ=ρ

aσbτ )ρ.

For example, if G is a cyclic group of order m and g is a generator, then as rings
Z[X]/(Xm − 1) ∼= Z[G] via the map

∑m−1
i=0 aiX

i 7→
∑m−1
i=0 aig

i.

Definition 2.8 If A is a commutative ring, then writing 1 for the identity ele-
ment of the group G, we define the modified group ring

A〈G〉 = A[G]/(u+ 1).

Every G-lattice is a Z〈G〉-module, where one uses the G-action on L to define
ax whenever x ∈ L and a ∈ Z〈G〉.

Definition 2.9 Define the scaled trace function t : A〈G〉 → A by

t(
∑
σ∈G

aσσ) = a1 − au.

Then t is the (additive) group homomorphism satisfying t(1) = 1, t(u) = −1,
and t(σ) = 0 if σ ∈ G and σ 6= 1, u.

Definition 2.10 For a =
∑
σ∈G aσσ ∈ A〈G〉, define a =

∑
σ∈G aσσ

−1.

The map a 7→ a is a ring automorphism of A〈G〉. Since a = a, it is an
involution. (An involution is a map that is its own inverse.) In practice, this
map plays the role of complex conjugation.

Remark 2.11 If L is a G-lattice and x, y ∈ L, then 〈σx, σy〉 = 〈x, y〉 for all
σ ∈ G. It follows that 〈ax, y〉 = 〈x, ay〉 for all a ∈ Z〈G〉.

Definition 2.12 For x, y ∈ Z〈G〉 define 〈x, y〉Z〈G〉 = t(xy).

Let n = |G|/2 ∈ Z.

Definition 2.13 Let S be a set of coset representatives of G/〈u〉 (i.e., #S = n
and G = S t uS), and for simplicity take S so that 1 ∈ S.

The following result is straightforward.

Proposition 2.14 (i) The additive group of the ring Z〈G〉 is a G-lattice of
rank n, with lattice structure defined by 〈x, y〉Z〈G〉 and G-action defined by
σx = σx where the right-hand side is ring multiplication in Z〈G〉.

(ii) As lattices, Z〈G〉 ∼= Zn.
(iii) Z〈G〉 = {

∑
σ∈S aσσ : aσ ∈ Z} =

⊕
σ∈S Zσ and t(

∑
σ∈S aσσ) = a1.

Definition 2.15 We call Z〈G〉 the standard G-lattice.
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Example 2.16 Suppose G = H × 〈u〉 with H ∼= Z/nZ. Then Z〈G〉 ∼= Z[H] ∼=
Z[X]/(Xn−1) as rings and as lattices. When n is odd (so G is cyclic), then (by
sending X to −X) we have Z〈G〉 ∼= Z[X]/(Xn − 1) ∼= Z[X]/(Xn + 1).

Remark 2.17 The ring Z〈G〉 is an integral domain (i.e., no zero divisors) if
and only if G is cyclic and n is a power of 2. If G is cyclic of order 2r, then
Z〈G〉 ∼= Z[ζ2r ].

2.3 Ideal Lattices

Example 2.18 Suppose I is an ideal in the ring Z〈G〉 and w ∈ Z〈G〉. Suppose
that II = Z〈G〉 ·w and ψ(w) ∈ R>0 for all ring homomorphisms ψ : Z〈G〉 → C.
It follows that the ideal I has finite index in Z〈G〉, that w = w, and that w is
not a zero divisor. Define the G-lattice L(I,w) to be I with G-action given by
multiplication in Z〈G〉, and with lattice structure defined by

〈x, y〉I,w = t

(
xy

w

)
with t as in Definition 2.9. (Note that xy

w ∈ Z〈G〉 since w generates the ideal

II.) In particular, L(Z〈G〉,1) = Z〈G〉.
The lattice L(I,w) is G-isomorphic to Z〈G〉 if and only if there exists v ∈

Z〈G〉 such that I = (v) and w = vv. Further, knowing such a G-isomorphism
is equivalent to knowing v. More precisely, v is the image of 1 under a G-
isomorphism Z〈G〉 ∼−→ L(I,w), and w = vv if and only if 〈av, bv〉I,w = t(ab) =
〈a, b〉Z〈G〉 for all a, b ∈ Z〈G〉. Thus, finding v from I and vv in polynomial time

is equivalent to finding a G-isomorphism Z〈G〉 ∼−→ L(I,w) in polynomial time.
The point of dividing by w in the definition of 〈x, y〉I,w is to make the lattice

L unimodular. It follows that when we take tensor powers of L over Z〈G〉, as we
will do in §3 below, there will be no coefficient blow-up.

We next show how to recover the Gentry-Szydlo result from Theorem 1.1.
The Gentry-Szydlo algorithm finds a generator v of an ideal I of finite index in
the ring R = Z[X]/(Xn − 1), given vv, a Z-basis for I, and a “promise” that

v exists. Here, n is an odd prime, and for v = v(X) =
∑n−1
i=0 aiX

i ∈ R, its

“reversal” is v = v(X−1) = a0 +
∑n−1
i=1 an−iX

i ∈ R. We take G to be a cyclic
group of order 2n. Then R ∼= Z〈G〉 as in Example 2.16, and we identify R with
Z〈G〉. Let w = vv ∈ Z〈G〉 and let L = L(I,w) as above. Then L is the “implicit
orthogonal lattice” in §7.2 of [6]. Once you know a Z-basis for I and w, you know
L. Theorem 1.1 produces a G-isomorphism Z〈G〉 ∼−→ L in polynomial time, and
thus gives a generator v in polynomial time.

3 Invertible G-lattices, short vectors, and the tensor
algebra Λ

In this section we give some concepts that we will use to prove Theorem 1.1.



Revisiting the Gentry-Szydlo Algorithm 7

3.1 Invertible G-lattices

Definition 3.1 If L is a G-lattice, then the G-lattice L is a lattice equipped with
a lattice isomorphism L

∼−→ L, x 7→ x and a group homomorphism G→ Aut(L)
defined by σx = σ−1x = σx for all σ ∈ G and x ∈ L, i.e., σx = σ x.

Definition 3.2 If L is a G-lattice, define the lifted inner product

· : L× L→ Z〈G〉 by x · y =
∑
σ∈S
〈x, σy〉σ ∈ Z〈G〉.

Then

〈x, y〉 = t(x · y) (1)

and x·y = y · x. This lifted inner product is Z〈G〉-bilinear, i.e., (ax)·y = x·(ay) =
a(x · y) for all a ∈ Z〈G〉 and all x, y ∈ L.

Example 3.3 If L = Z〈G〉, then L = Z〈G〉 with having the same meaning as
in Definition 2.10 for A = Z, and with · being multiplication in Z〈G〉.

Definition 3.4 A G-lattice L is invertible if the following three conditions all
hold:

(i) rank(L) = n = |G|/2;

(ii) L is unimodular (see Definition 2.3);

(iii) for each m ∈ Z>0 there exists em ∈ L such that {σem + mL : σ ∈ G}
generates the abelian group L/mL.

Example 3.5 If a G-lattice L is G-isomorphic to the standard G-lattice then L
is invertible. For (iii), observe that the group Z〈G〉 is generated by {σ1 : σ ∈ G},
so the group L is generated by {σe : σ ∈ G} where e is the image of 1 under the
isomorphism. Now let em = e for all m.

Remark 3.6 In the full version of the paper we will show that a G-lattice L
is invertible if and only if there is a Z〈G〉-module M such that L ⊗Z〈G〉M and
Z〈G〉 are isomorphic as Z〈G〉-modules and L is unimodular. (See Chapter XVI
of [8] for tensor products.) We will also show that this is equivalent to the map
ϕ : L ⊗Z〈G〉 L → Z〈G〉 defined by ϕ(x ⊗ y) = x · y being an isomorphism of
Z〈G〉-modules. Further, L is invertible if and only if L is G-isomorphic to L(I,w)

for some I and w as in Example 2.18.

Definition 3.4(iii) states that L/mL is a free (Z/mZ)〈G〉-module of rank one
for all m > 0. Given an ideal, it is a hard problem to decide if it is principal.
But checking (iii) of Definition 3.4 is easy algorithmically; see Proposition 4.4(ii)
below.
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3.2 Short vectors

Definition 3.7 We will say that a vector e in an integral lattice L is short if
〈e, e〉 = 1.

Example 3.8 The short vectors in the standard lattice of rank n are the 2n
signed standard basis vectors {(0, . . . , 0,±1, 0, . . . , 0)}. Thus, the set of short vec-
tors in Z〈G〉 is G.

Proposition 3.9 Suppose L is an invertible G-lattice. Then:

(i) if e is short, then {σ ∈ G : σe = e} = {1};
(ii) if e is short, then 〈e, σe〉 is 1 if σ = 1, is −1 if σ = u, and is 0 for all other

σ ∈ G;
(iii) e ∈ L is short if and only if e·e = 1, with inner product · defined in Definition

3.2.

Proof. Suppose e ∈ L is short. Let H = {σ ∈ G : σe = e}. For all σ ∈ G, by the
Cauchy-Schwarz inequality we have |〈e, σe〉| ≤ (〈e, e〉〈σe, σe〉)1/2 = 〈e, e〉 = 1,
and |〈e, σe〉| = 1 if and only if e and σe lie on the same line through 0. Thus
〈e, σe〉 ∈ {1, 0,−1}. Then 〈e, σe〉 = 1 if and only if σ ∈ H. Also, 〈e, σe〉 = −1
if and only if σe = −e if and only if σ ∈ Hu. Otherwise, 〈e, σe〉 = 0. Thus for
(i,ii), it suffices to prove H = {1}.

Let T be a set of coset representatives for G mod H〈u〉 and let S = T ·H,
a set of coset representatives for G mod 〈u〉. If a =

∑
σ∈S aσσ ∈ (Z/mZ)〈G〉 is

fixed by H, then aτσ = aσ for all σ ∈ S and τ ∈ H, so a ∈ (
∑
τ∈H τ)(Z/mZ)〈G〉.

Let m = |H|. By Definition 3.4(iii), there is a Z[H]-module isomorphism
L/mL ∼= (Z/mZ)〈G〉. The latter is a free module over (Z/mZ)[H] with basis T .
Since e+mL ∈ (L/mL)H we have e = mε1 + (

∑
τ∈H τ)ε2 with ε1, ε2 ∈ L. Since

〈e, τε2〉 = 〈τe, τε2〉 = 〈e, ε2〉 for all τ ∈ H, we have

1 = 〈e, e〉 = m〈e, ε1〉+
∑
τ∈H
〈e, τε2〉 = m〈e, ε1 + ε2〉 ≡ 0 mod m.

Thus, m = 1 as desired. Part (iii) follows directly from (ii) and Definition 3.2.

This enables us to prove the following result.

Proposition 3.10 Suppose L is a G-lattice. Then:

(i) if L is invertible, then the map

{G-isomorphisms Z〈G〉 → L} → {short vectors of L}

that sends f to f(1) is bijective;
(ii) if e ∈ L is short and L is invertible, then {σe : σ ∈ G} generates the abelian

group L;
(iii) L is G-isomorphic to Z〈G〉 if and only if L is invertible and has a short

vector;
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(iv) if e ∈ L is short and L is invertible, then the map G→ {short vectors of L}
defined by σ 7→ σe is bijective.

Proof. For (i), that f(1) is short is clear. Injectivity of the map f 7→ f(1) follows
from Z〈G〉-linearity of G-isomorphisms. For surjectivity, suppose e ∈ L is short.
Proposition 3.9(ii) says that {σe}σ∈S is an orthonormal basis for L. Parts (ii) and
(i) now follow, where the G-isomorphism f is defined by x 7→ xe for all x ∈ Z〈G〉.
Part (iii) follows from (i) and Example 3.5. For (iv), injectivity follows from
Proposition 3.9(i). For surjectivity, suppose e′ ∈ L is short. Take G-isomorphisms
f and f ′ with f(1) = e and f ′(1) = e′ as in (i), and let σ = f−1 ◦ f ′(1). Then σ
is a short vector in Z〈G〉 such that σe = e′. By Example 3.8 we have σ ∈ G.

3.3 The Witt-Picard group

If L and M are invertible G-lattices, then the Z〈G〉-module L ⊗Z〈G〉M is a G-
lattice with lifted inner product (x⊗ v) · (y ⊗w) = (x · y)(v ·w), for all x, y ∈ L
and v, w ∈M , and with lattice structure 〈a, b〉 = t(a · b) for all a, b ∈ L⊗Z〈G〉M .
In the notation of Example 2.18 we have

L(I1,w1) ⊗Z〈G〉 L(I2,w2) = L(I1I2,w1w2),

where I1I2 is the product of ideals.

Definition 3.11 If L is an invertible G-lattice, let [L] denote its G-isomorphism
class, i.e., the class of all G-lattices that are G-isomorphic to L. We define the
Witt-Picard group of Z〈G〉 to be the set of all G-isomorphism classes of
invertible G-lattices, with group operation defined by [L] · [M ] = [L ⊗Z〈G〉 M ],

with identity element [Z〈G〉], and with [L]−1 = [L].

The Witt-Picard group is a finite abelian group. When computing in the
Witt-Picard group, one can apply a lattice basis reduction algorithm when-
ever the numbers get too large. More precisely, algorithmically we represent
an invertible G-lattice M by letting M = Zn as an abelian group, specify-
ing a group homomorphism G → GL(n,Z) giving the action of G on M , and
giving data describing the map · : M × M → Z〈G〉; the lattice structure is
then given by 〈a, b〉 = t(a · b) for all a, b ∈ M . If M1 and M2 are invertible
G-lattices, m1,m2 ∈ Z>0, and di ∈ Mi/miMi for i = 1, 2, one can compute
(M1 ⊗Z〈G〉M2, d1 ⊗ d2) in polynomial time. Also, there is a deterministic poly-
nomial time algorithm that, given M and given d ∈ M/mM , produces a pair
(M ′, d′) and a G-isomorphism (M,d) → (M ′, d′) such that the standard basis
of M ′ = Zn is LLL-reduced (and thus each entry of the Gram matrix is at most
2n−1 in absolute value, by Lemma 3.12 below). This in fact proves the finiteness
of the Witt-Picard group.

If L = L(I,w) for some I and w as in Example 2.18, and j ∈ Z>0, then [L]j

is the G-isomorphism class of L(Ij ,wj). One can compute [L]j in deterministic
polynomial time using an addition chain for j, and LLL-reducing intermediate
powers to prevent coefficient blow-up. This takes the place of the polynomial
chains in §7.4 of [6].
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Lemma 3.12 If {b1, . . . , bn} is an LLL-reduced basis for an integral unimodular
lattice L and {b∗1, . . . , b∗n} is its Gram-Schmidt orthogonalization, then

21−i ≤ |b∗i |2 ≤ 2n−i

and |bi|2 ≤ 2n−1 for all i ∈ {1, . . . , n}.

Proof. Being LLL-reduced means that bi = b∗i +
∑i−1
j=1 µijb

∗
j with |µij | ≤ 1

2 for

all j < i ≤ n, and |b∗i |2 ≤ 2|b∗i+1|2 for all i < n. Thus for 1 ≤ j ≤ i ≤ n we have
|b∗i |2 ≤ 2j−i|b∗j |2, so for all i we have

21−i|b∗1|2 ≤ |b∗i |2 ≤ 2n−i|b∗n|2.

Since L is integral we have |b∗1|2 = |b1|2 = 〈b1, b1〉 ≥ 1, so |b∗i |2 ≥ 21−i.

Letting Li =
∑i
j=1 Zbj , then |b∗i | = det(Li)/det(Li−1). Since L is integral and

unimodular, |b∗n| = det(Ln)/det(Ln−1) = 1/det(Ln−1) ≤ 1, so |b∗i |2 ≤ 2n−i.
Since {b∗i } is orthogonal we have

|bi|2 = |b∗i |2 +

i−1∑
j=1

µ2
ij |b∗j |2 ≤ 2n−i +

1

4

i−1∑
j=1

2n−j

= 2n−i + (2n−2 − 2n−i−1) = 2n−2 + 2n−i−1 ≤ 2n−1.

3.4 The extended tensor algebra Λ

We are now ready to introduce the extended tensor algebra Λ in which our
computations take place. Suppose L is an invertible G-lattice. Letting L⊗0 =

Z〈G〉 and letting L⊗m = L ⊗Z〈G〉 · · · ⊗Z〈G〉 L (m times) and L⊗(−m) = L
⊗m

=

L⊗Z〈G〉 · · · ⊗Z〈G〉 L for all m ∈ Z>0, define the extended tensor algebra

Λ =
⊕
i∈Z

L⊗i = . . .⊕ L⊗3 ⊕ L⊗2 ⊕ L⊕ Z〈G〉 ⊕ L⊕ L⊗2 ⊕ L⊗3 ⊕ . . .

(“extended” because we extend the usual notion to include negative exponents
L⊗(−m)). Each L⊗i is an invertible G-lattice, and represents [L]i. For simplicity,
we denote L⊗i by Li. The ring structure on Λ is defined as the ring structure on
the tensor algebra, supplemented with the lifted inner product ·. The following
result is straightforward.

Proposition 3.13 (i) Λ is a commutative ring containing Z〈G〉 as a subring;
(ii) the action of G on L becomes multiplication in Λ, and likewise for the action

of G on L;
(iii) Λ has an involution x 7→ x extending both the involution of Z〈G〉 and the

map L
∼−→ L;

(iv) the lifted inner product · : L× L→ Z〈G〉 becomes multiplication in Λ;
(v) if e ∈ L is short, then e = e−1 in Λ and Λ = Z〈G〉[e, e−1].

All computations in Λ and in Λ/mΛ will be done with homogeneous elements
only, where the set of homogeneous elements of Λ is

⋃
i∈Z L

i.
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4 The main ingredients

We give the main results that we will use to prove Theorem 1.1. Fix as before
a finite abelian group G of order 2n and u ∈ G of order 2. Let k denote the
exponent of G. (The exponent of a group H is the least positive integer k such
that σk = 1 for all σ ∈ H. The exponent of H divides |H| and has the same
prime factors as |H|.) For all m ∈ Z>1, denote by k(m) the exponent of the unit
group (Z〈G〉/(m))∗.

Remark 4.1 By Proposition 3.10, the G-isomorphisms Z〈G〉 ∼−→ L are in one-
to-one correspondence with the short vectors, and if a short e ∈ L exists, then the
short vectors of L are exactly the 2n vectors {σe : σ ∈ G}. If k is the exponent
of G, then (σe)k = σkek = ek in Λ. Hence for invertible L, all short vectors
in L have the same k-th power ek ∈ Λ. At least philosophically, it is easier to
find things that are uniquely determined. We look for ek first, and then recover
e from it.

Proposition 4.2 There is a deterministic polynomial time algorithm that, given
a finite commutative ring R and an R-module M , decides whether M is a free
R-module of rank one, and if it is, finds a generator.

Proof. We sketch a proof. A complete proof will be given in the full version of
the paper.

The inputs are given as follows. The ring R is given as an abelian group (say,
as a sum of cyclic groups) along with all the products of pairs of generators. The
finite R-module M is given as an abelian group (say, as a sum of cyclic groups),
and for all generators of the abelian group R and all generators of the abelian
group M , we are given the module products in M .

If #M 6= #R, output “no” and stop.
Suppose that A and B are finite commutative rings, that R � A × B is a

surjective ring homomorphism with nilpotent kernel, and that yB ∈ M is such
that the map B →MB = B ⊗RM , b 7→ b⊗ yB is an isomorphism. Let I denote
the kernel of the natural map R→ B and let N denote the image of IM under
the natural map M →MA.

Initially, take A = R, B = 0, and yB = 0. As long as A 6= 0, do the following.
If N = 0, output “no” and stop. Otherwise, pick xA ∈ IM whose image x ∈ N
is nonzero. Compute a = AnnAx, where AnnA denotes the annihilator in A. Let
b = AnnAa.

If a = a2, then A
∼−→ A/a×A/b and MA

∼−→MA/a×MA/b. The image of x
is of the form (x′, 0). If x′ does not generate MA/a, stop with “no”. Otherwise,
compute β ∈ R that maps to (0, 1) under the map R� A×B, and replace yB ,
B, A by βyB + xA, (A/a) × B, A/b, respectively. If a 6= a2, then a ∩ b is a
nonzero nilpotent ideal, and we replace A by A/(a∩b) and leave yB unchanged.

When A = 0, then I is nilpotent; say Ir = 0. Then By = MB = M/IM for
y = (yB mod IM). Thus,

M = RyB+IM = RyB+I(RyB+IM) = RyB+I2M = . . . = RyB+IrM = RyB ,
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so output “yes”.

Lemma 4.3 Suppose that L is a G-lattice, m ∈ Z>0, and e ∈ L. Then

{σe+mL : σ ∈ G}

generates L/mL as an abelian group if and only if L/(Z〈G〉 · e) is finite of order
coprime to m.

Proof. The set {σe + mL : σ ∈ G} generates L/mL as an abelian group if
and only multiplication by m is onto as a map from L/(Z〈G〉 · e) to itself.
Since L/(Z〈G〉 · e) is a finitely generated abelian group, this holds if and only if
L/(Z〈G〉 · e) is finite of order coprime to m.

Proposition 4.4 (i) There is a deterministic polynomial time algorithm that,
given G, a G-lattice L, and m ∈ Z>0, decides whether there exists em ∈ L
such that {σem +mL : σ ∈ G} generates L/mL as an abelian group, and if
so, finds one.

(ii) There is a deterministic polynomial time algorithm that, given G, u, and a
G-lattice L, decides whether L is invertible.

Proof. For (i), apply Proposition 4.2 with R = Z〈G〉/(m) and M = L/mL.
For (ii), it is easy to check whether rank(L) = n and whether L is unimodular

(check whether the Gram matrix has determinant 1). We need to check Definition
3.4(iii) for all m’s in polynomial time. We show that it suffices to check two
particular values of m. First take m = 2, and use (i) to determine if e2 exists. If
not, output “no”. If there is one, use (i) to compute e2 ∈ L. By Lemma 4.3, the
group L/(Z〈G〉 · e2) is finite of odd order. Let q denote its order. Now apply (i)
with m = q. If no eq exists, output “no”. If eq exists, then for all m ∈ Z>0 there
exists em ∈ L that generates L/mL as a Z〈G〉/(m)-module, as follows. We can
reduce to m being a prime power pt, since if gcd(m,m′) = 1 then L/mm′L is
free of rank one over Z〈G〉/(mm′) if and only if L/mL is free of rank one over
Z〈G〉/(m) and L/m′L is free of rank one over Z〈G〉/(m′). Lemma 4.3 now allows
us to reduce to the case m = p. If p - q, we can take ep = e2. If p | q, we can take
ep = eq.

Proposition 4.5 There is a deterministic polynomial time algorithm that, given
a finite abelian group G of order 2n and u ∈ G of order 2, determines prime
powers ` and m such that `,m ≥ 2n/2 + 1 and gcd(k(`), k(m)) = k.

Proof. One can prove that if p is prime and p ≡ 1 mod k, then

k(pj) = (p− 1)pj−1,

using induction on j and the facts that (Z〈G〉/(pj))∗ ⊃ (Z/pjZ)∗ and the latter
group has exponent (p− 1)pj−1.

We next give an algorithm that, given n, k ∈ Z>0 with k even, computes
r, s ∈ Z>0 and primes p and q such that p ≡ q ≡ 1 mod k,

gcd((p− 1)pr−1, (q − 1)qs−1) = k,
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pr ≥ 2n/2 + 1, and qs ≥ 2n/2 + 1. (We can then take ` = pr and m = qs.) Try
p = k+ 1, 2k+ 1, 3k+ 1, . . . until the smallest prime p ≡ 1 mod k is found. Find
the least r such that pr ≥ 2n/2 +1. Try q = p+k, p+2k, . . . until the least prime
q ≡ 1 mod k such that gcd((p − 1)p, q − 1) = k is found. Find the smallest s
such that qs ≥ 2n/2 + 1.

This algorithm terminates, with correct output, in time (n + k)O(1). The
key ingredient for proving this is Heath-Brown’s version of Linnik’s theorem [7],
which implies that the prime p found by the algorithm satisfies p ≤ ck5.5 with an
effective constant c. If p− 1 = k1k2 with every prime divisor of k1 also dividing
k and with gcd(k2, k) = 1, then to have gcd((p − 1)p, q − 1) = k it suffices to
have q ≡ 2 mod p and q ≡ 1 + k mod k1 and q ≡ 2 mod k2. This gives a
congruence q ≡ a mod p(p − 1) for some a. Heath-Brown’s version of Linnik’s
theorem implies that q ≤ c(p2)5.5 ≤ c12k60.5.

Our prime powers ` and m play the roles that in the Gentry-Szydlo paper
[6] were played by auxiliary prime numbers P, P ′ > 2(n+1)/2 such that

gcd(P − 1, P ′ − 1) = 2n.

Our k(`) and k(m) replace their P−1 and P ′−1, respectively. While the Gentry-
Szydlo primes P and P ′ are found with at best a probabilistic algorithm, we
can find ` and m in deterministic polynomial time. (Further, the ring elements
they work with were required to not be zero divisors modulo P , P ′ and other
small auxiliary primes; we require no analogous condition on ` and m, since by
Definition 3.4(iii), when L is invertible then for all m, the (Z/mZ)〈G〉-module
L/mL is free of rank one.)

Proposition 4.6 (i) Suppose L is an integral lattice, 3 ≤ m ∈ Z, and C ∈
L/mL. Then C contains at most one element x with 〈x, x〉 = 1.

(ii) There is a deterministic polynomial time algorithm that, given a rank n
integral lattice L, m ∈ Z such that m ≥ 2n/2 + 1, and C ∈ L/mL, finds all
x ∈ C with 〈x, x〉 = 1 (and the number of them is 0 or 1).

Proof. For (i), suppose x, y ∈ C, 〈x, x〉 = 〈y, y〉 = 1, and x 6= y. Since x−y ∈ mL
and L is an integral lattice, we have

m ≤ 〈x− y, x− y〉1/2 ≤ 〈x, x〉1/2 + 〈y, y〉1/2 = 1 + 1 = 2

by the triangle inequality. This contradicts m ≥ 3, giving (i).
For (ii), using LLL to solve the closest vector problem, one can find (in

polynomial time) y ∈ C such that 〈y, y〉 < (2n − 1)〈x, x〉 for all x ∈ C. Suppose
x ∈ C with 〈x, x〉 = 1. Since x, y ∈ C, there exists w ∈ L such that x− y = mw.
Then

m〈w,w〉1/2 = 〈x− y, x− y〉1/2 ≤ 〈x, x〉1/2 + 〈y, y〉1/2 < (1 + 2n/2)〈x, x〉1/2 ≤ m.

Therefore 1 > 〈w,w〉1/2 ∈ Z, so w = 0, and thus y = x. Compute 〈y, y〉. If
〈y, y〉 = 1, output y. If 〈y, y〉 6= 1, there is no x ∈ C with 〈x, x〉 = 1.
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The n of [6] is an odd prime, so k = 2n and Z〈G〉 embeds in Q(ζn) × Q.
Since the latter is a product of only two number fields, the number of zeros of
X2n−v2n is at most (2n)2, and the Gentry-Szydlo method for finding v from v2n

is sufficiently efficient. If one wants to generalize [6] to the case where n is not
prime, then the smallest t such that Z〈G〉 embeds in F1 × . . .× Ft with number
fields Fi can be large. Given ν, the number of zeros of Xk − ν could be as large
as kt. Finding e such that ν = ek then requires a more efficient algorithm, which
we attain with Proposition 4.9 below.

An order is a commutative ring A whose additive group is isomorphic to
Zn for some n ∈ Z≥0. We specify an order by saying how to multiply any two
vectors in a given basis. Let µ(A) denote the group of roots of unity in A.

Proposition 4.7 There is a deterministic polynomial time algorithm that, given
an order A, determines a set of generators for µ(A).

Proof. The proof is a bit intricate, involving commutative algebra and algorith-
mic algebraic number theory. We give a sketch. See [1] for commutative algebra
background.

One starts by computing the nilradical N of the Q-algebra AQ = A ⊗Z Q
as well as the unique subalgebra E ⊂ AQ that maps isomorphically to AQ/N .
One has µ(A) ⊂ E, so replacing A by A ∩ E one reduces to the case in which
the nilradical of A is 0, which we now assume. Next one determines the set
Spec(E) of prime ideals m of E. For each m we compute E/m, which is an
algebraic number field, and we also compute its subring A/(m ∩ A). One has
E ∼=

∏
m∈Spec(E)E/m, and we identify A with a subring of finite additive index

in the product ring B =
∏

m∈Spec(E)A/(m ∩A).

For each prime number p dividing |µ(A)| one has p ≤ 1 + dimQE, so it will
suffice to find, for each such p, a set of generators for the p-primary component
µ(A)p of µ(A). Fix now a prime number p ≤ 1 + dimQE.

Since each A/(m∩A) is contained in a number field, µ(A/(m∩A))p is cyclic
and easy to determine. This leads to a set of generators for µ(B)p.

Compute C = {x ∈ B : pix ∈ A for some i ∈ Z≥0}; this is a subring of B
containing A. The group C/A is finite of p-power order, and the group B/C is
finite of order not divisible by p. We make Spec(E) into the set of vertices of a
graph by connecting m, n ∈ Spec(E) with an edge if and only if

(m ∩ C) + (n ∩ C) 6= C.

For each connected component V of this graph, determine the image CV of C in
the product ring

∏
m∈V A/(m∩A). Then one can show that one has C ∼=

∏
V CV ,

with V ranging over the connected components, so that µ(C)p ∼=
∏
V µ(CV )p.

In addition, one can show that for each V and each m ∈ V the natural map
µ(CV )p → µ(A/(m ∩ A))p is injective, so that µ(CV )p is cyclic; the proof also
leads to an efficient algorithm for computing µ(CV )p. Thus, at this point one
knows a set of generators for µ(C)p.

To pass from µ(C)p to µ(A)p, one starts by computing the intersection r of
all maximal ideals of C that contain p, as well as s = r∩A. One has µ(C)p ⊂ 1+r



Revisiting the Gentry-Szydlo Algorithm 15

and µ(A)p = µ(C)p∩ (1 + s). To compute the latter intersection, one determines
t ∈ Z>0 with ptC ⊂ A as well as a presentation for the finite abelian p-group
1 + (r/ptC), which is a subgroup of the unit group (C/ptC)∗; to do this, one
uses that r/ptC is a nilpotent ideal of C/ptC. The group µ(A)p is now obtained
as the kernel of the natural map µ(C)p → (1 + (r/ptC))/(1 + (s/ptC)).

Proposition 4.8 Suppose L is an invertible G-lattice, r ∈ Z>0, and ν is a short
vector in the G-lattice Lr. Let A = Λ/(ν − 1). Identifying

⊕r−1
i=0 L

i ⊂ Λ with its

image in A, we can view A =
⊕r−1

i=0 L
i as a Z/rZ-graded ring. Then:

(i) G ⊆ µ(A) ⊆
⋃r−1
i=0 L

i,

(ii) {e ∈ L : e · ē = 1} = µ(A) ∩ L,

(iii) |µ(A)| is divisible by 2n and divides 2nr, and

(iv) there exists e ∈ L for which e · ē = 1 if and only if |µ(A)| = 2nr.

Proof. Since the ideal (ν − 1) = (ν−1 − 1) = (1− ν) = (ν − 1), the map a 7→ a
induces an involution on A. Since the lattice’s inner product is symmetric and
positive definite, for all ring homomorphisms ψ : A → C we have ψ(a) = ψ(a)
for all a ∈ A, and

⋂
ψ kerψ = 0. Let E = {e ∈ A : ee = 1}, a subgroup of A∗.

Suppose e ∈ µ(A). Then for all ring homomorphisms ψ : A → C we have
1 = ψ(e)ψ(e) = ψ(e)ψ(e) = ψ(ee), so ee = 1. Thus, µ(A) ⊆ E.

Conversely, suppose e ∈ E. Write e =
∑r−1
i=0 εi with εi ∈ Li, so e =

∑r−1
i=0 εi

with εi ∈ L−i = Lr−i in A. We have 1 = ee =
∑r−1
i=0 εiεi (the degree 0 piece of

ee). Applying the map t of Definition 2.9 and using (1) we have 1 =
∑r−1
i=0 〈εi, εi〉.

It follows that there exists j such that 〈εj , εj〉 = 1, and εi = 0 if i 6= j. Thus,

E ⊆
⋃r−1
i=0 {e ∈ Li : 〈e, e〉 = 1}, giving (i). By Proposition 3.9(iii) and Example

3.8 we have E ∩ Z〈G〉 = G, so µ(Z〈G〉) = G.

The degree map from E to Z/rZ that takes e ∈ E to j such that e ∈ Lj

is a group homomorphism with kernel E ∩ Z〈G〉 = G. Therefore, |E| divides
|G| · |Z/rZ| = 2nr. Thus, E ⊆ µ(A) ⊆ E, so E = µ(A) and we have (ii,iii). The
degree map is surjective if and only if |µ(A)| = 2nr, and if and only if 1 is in the
image, i.e., if and only if µ(A) ∩ L 6= ∅. Part (iv) now follows from (ii).

Proposition 4.9 There is a deterministic polynomial time algorithm that, given
G of exponent k, an invertible G-lattice L, and ν ∈ Lk, determines whether there
exists e ∈ L such that ν = ek and e · ē = 1, and if so, finds one.

Proof. Check whether νν = 1. If so, let A = Λ/(ν − 1) and apply Proposition
4.7 to compute generators for µ(A). Using Proposition 4.8 with r = k, apply the
degree map µ(A)→ Z/kZ to the generators, check whether the images generate
Z/kZ, and if they do, compute an element e ∈ µ(A) whose image is 1. Then
e ∈ µ(A) ∩ L = {e ∈ L : e · ē = 1}. Check whether ν = ek. If any step fails,
no such e exists (by Remark 4.1). The algorithm runs in polynomial time since
2nk ≤ (2n)2.
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5 The Algorithm

We present the main algorithm, followed by a fuller explanation. As before, k is
the exponent of the group G and k(j) is the exponent of (Z〈G〉/(j))∗ if j ∈ Z>1.

Algorithm 5.1 Input a finite abelian group G, an element u ∈ G of order 2,
and a G-lattice L. Output a G-isomorphism Z〈G〉 ∼−→ L, or a proof that none
exists.

(i) Apply Proposition 4.4(ii) to check whether L is invertible. If it is not, ter-
minate with “no”.

(ii) Find ` and m as in Proposition 4.5.
(iii) Compute e`m as in Proposition 4.4(i).
(iv) Using an addition chain for k(m) and the algorithms mentioned in §3.3,

compute the pair (Lk(m), e
k(m)
`m +mLk(m)). Use Proposition 4.6(ii) to decide

whether the coset e
k(m)
`m + mLk(m) contains a short vector νm ∈ Lk(m), and

if so, compute it. Terminate with “no” if none exists.
(v) Compute s ∈ ((Z/`Z)〈G〉)∗ such that

νm = s(e
k(m)
`m + `Lk(m))

in Lk(m)/`Lk(m).
(vi) Use the extended Euclidean algorithm to find b ∈ Z such that

bk(m) ≡ k mod k(`).

(vii) Using an addition chain for k and the algorithms mentioned in §3.3, compute
the pair (Lk, ek`m + `Lk) and compute sb(ek`m + `Lk). Use Proposition 4.6(ii)
to decide whether the latter coset contains a short vector ν ∈ Lk, and if so,
compute it. Terminate with “no” if none exists.

(viii) Apply Proposition 4.9 to find e ∈ L such that ν = ek and e · ē = 1 (or to
prove there is no G-isomorphism).

We explain the algorithm in more detail. By Proposition 3.10(iii), the G-
lattice L is G-isomorphic to Z〈G〉 if and only if L is invertible and has a short
vector. Run the algorithm in Proposition 4.4(ii) to check whether L is invertible.
If it is not, terminate with “no”. If it is, we look for an e ∈ L such that eē = 1.
Lattice basis reduction algorithms such as LLL can find fairly short vectors, but
they are not nearly short enough for our purpose. We supplement LLL with
computations modulo m. Any short e satisfies Z〈G〉e = L, which implies that
for all m ∈ Z>0, the coset e + mL generates L/mL as a Z〈G〉/(m)-module.
Proposition 4.4(i) gives another generator em. Thus, em = ye for some y ∈
(Z〈G〉/(m))∗. We have e

k(m)
m mod m = ek(m) mod m in Λ/mΛ.

Apply Proposition 4.5 to find prime powers m, ` ≥ 2n/2 + 1 such that

gcd(k(`), k(m)) = k.
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Compute e`m (which works as both em and e`) as in Proposition 4.4(i). Propo-
sition 4.6(ii) applied to the coset e`m + mLk(m) ∈ Lk(m)/mLk(m) finds a short
vector νm (if it exists). If e ∈ L is short, then νm = ek(m) by Proposition 4.6(i).

Since e
k(m)
`m (by definition) and νm (by Proposition 3.10(ii)) each generate

the (Z/`Z)〈G〉-module Lk(m)/`Lk(m), we can find s ∈ ((Z/`Z)〈G〉)∗ such that

νm = s(e
k(m)
`m + `Lk(m)) in Lk(m)/`Lk(m). Since k = gcd(k(`), k(m)), we can use

the extended Euclidean algorithm to find a, b ∈ Z such that ak(`) + bk(m) = k.
Compute sb ∈ ((Z/`Z)〈G〉)∗ and sbek`m ∈ Lk/`Lk and use Proposition 4.6(ii)
to compute a short ν ∈ Lk in this coset or prove that none exists. If e ∈ L is

short, then ek(m) = νm ≡ se
k(m)
`m mod `Λ, so ek ≡ νbm(e

k(`)
`m )a ≡ sbek`m mod `Λ,

so sb(ek`m + `Lk) contains the short vector ek of Lk, and by Proposition 4.6(i)
we have ν = ek. Proposition 4.9 then finds a short vector e ∈ L, or proves none
exists. The map x 7→ xe gives the desired G-isomorphism from Z〈G〉 to L. This
completes the proof of Theorem 1.1.

Remark 5.2 There is a version of the algorithm in which checking invertibility
in step (i) is skipped. In this case, the algorithm may misbehave at other points,
indicating that L is not invertible and thus not G-isomorphic to Z〈G〉. At the
end one would check whether 〈e, e〉 = 1 and 〈e, σe〉 = 0 for all σ 6= 1, u. If
so, then {σe}σ∈S is an orthonormal basis for L, and x 7→ xe gives the desired
isomorphism; if not, no such isomorphism exists.
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