
Construction of Differential Characteristics
in ARX Designs

Application to Skein

Gaëtan Leurent

UCL Crypto Group??

Gaetan.Leurent@uclouvain.be

Abstract. In this paper, we study differential attacks against ARX
schemes. We build upon the generalized characteristics of De Cannière
and Rechberger and the multi-bit constraints of Leurent.
Our main result is an algorithm to build complex non-linear differential
characteristics for ARX constructions, that we applied to reduced versions
of the hash function Skein. We present several characteristics for use
in various attack scenarios: on the one hand we show attacks with a
relatively low complexity, in relatively strong settings; and on the other
hand weaker distinguishers reaching more rounds. Our most notable
results are practical free-start and semi-free-start collision attacks for 20
rounds and 12 rounds of Skein-256, respectively. Since the full version of
Skein-256 has 72 rounds, this result confirms the large security margin of
the design.
These results are some of the first examples of complex differential trails
built for pure ARX designs. We believe this is an important work to
assess the security those functions against differential cryptanalysis. Our
tools are publicly available from the ARXtools webpage.

Keywords: Symmetric ciphers, Hash functions, ARX, Generalized char-
acteristics, Differential attacks, Skein

1 Introduction

ARX is a popular alternative to S-Box based designs for the design of symmetric
key cryptographic primitives. ARX designs use only Additions (a� b), Rotations
(a≫ i), and Xors (a⊕ b). These operations are very simple and can be imple-
mented efficiently in software or in hardware, but when mixed together, they
interact in complex and non-linear ways. ARX designs have been quite popular
recently; in particular, two of the SHA-3 finalists, BLAKE and Skein, follow this
design strategy. This stategy as also been used for stream ciphers such as Salsa20
and ChaCha, and block ciphers, such as TEA, XTEA or HIGHT (RC5 uses
additions and data-dependant rotations, but we only consider construction with
?? Part of this work was done when the author was at the University of Luxembourg.

fixed rotations). Recently, a dedicated short-input PRF, SipHash [1], has been
built following the ARX design. We note that Salsa20 is in the eStream portfolio,
while SipHash is already deployed as the default hash table implementation of
the Perl and Ruby languages. More generally, functions of the MD/SHA family
are built using Additions, Rotations, Xors, but also bitwise Boolean functions,
and logical shifts; they are sometimes also referred to as ARX.

The ARX design philosophy is opposed to S-Box based designs such as the
AES. Analysis of S-Box based designs usually happen at the word-level; differen-
tial characteristics are relatively easy to build, but efficient attacks often need
novel techniques, such as the rebound attack against hash functions [20]. For
ARX designs, the analysis is done on a bit-level; finding good differential charac-
teristics remains an important challenge. In particular, the seminal attacks on the
MD/SHA-familiy by the team of X. Wang are based on differential characteristics
built by hand [28,30,29], and a significant effort has been dedicated to building
tools to construct automatically such characteristics [6,24,10,17,25,18,16]. This
effort has been quite successful for functions of the MD/SHA family, and it has
allowed new attacks based on specially designed characteristics: attacks against
HMAC [11], the construction of a rogue MD5 CA certificate [26], and attacks
against combiners [19].

However, this body of work is mainly focused on MD/SHA designs, as opposed
to pure ARX designs such as Skein, BLAKE or Salsa20. In MD/SHA-like functions,
the Boolean functions play an important role, and the possibility to absorb
differences gives a lot of freedom for the construction of differential characteristics.
In pure ARX designs, the addition is the only source of non-linearity (over F2),
and the freedom in the carry expansions is much harder to use than the absorption
property of Boolean functions.

To this effect, Leurent introduced multi-bit constraints [14] involving several
consecutive bits of a variable (i.e. x[i] and x[i−1]), instead of considering bits one
by one. He describes reduced sets of 1.5-bit and 2.5-bit constraints, and explains
how to propagate these constraints using S-systems and automata. This set of
constraints is well suited to study ARX designs because it can extract a lot of
information about the carry extensions in modular additions. A set of tools to
propagate these constraints is given in [14], and the main result is a negative
result (for the cryptanalyst) showing that several previous attacks are invalid.

1.1 Our Results

In this paper, we study the problem of constructing differential characteristics
for ARX schemes. This work is heavily inspired by the framework of generalized
characteristics from De Cannière and Rechberger [6], and the multi-bit constraints
of [14]. As opposed to the results of [14], we give positive results for cryptanalysts.

We first recall how to describe a differential characteristic, and the main
ideas for constraint propagation in Section 2. Then, we describe a differential
characteristic search algorithm in Section 3 using a constraint propagation tool,
and we present our results on Skein in Section 4. Finally, we describe our technical

improvements over the previous constraint propagation tools in the full version
of this paper.

Construction of differential characteristics. We use a propagation tool to
construct differential characteristics automatically. Using an efficient constraint
propagation tool and some simple heuristics, we show that we can actually
build complex non-linear characteristics. We obtain some of the first complex
differential trails for ARX designs and we believe that this automated approach
is an important step to assess the security of ARX designs against differential
cryptanalysis.

Application to Skein. We apply this technique to reduced versions of the
Skein hash function, where we build rebound-like characteristics by connecting
two high-probability trails.

We compare our results with previous works in Table 1. Most previous works
on Skein are either weak distinguishers (such as boomerang properties or free-
tweak free-start partial-collisions), or attack with marginal improvement over
brute-force (such as some biclique-based results). In this work, we present attacks
in relatively strong settings (collisions and free-start collisions) with a relatively
low complexity (several attacks are practical, and all our attack gain at least a
factor 28).

Constraint propagation. Finally, we describe an alternative way to perform
the constraint propagation for multi-bit constraints. Our approach is significantly
more efficient that the technique of [14], and uses the full set of 232 constraints
instead of a reduced set of 16 carefully chosen constraints. The reduced set is
sufficient in most situations, but we show that the full set extracts some more
information. This improvement was crucial to allow the characteristic search to
work in practice.

In addition, our approach can also deal with larger systems that the previous
technique with a reasonable complexity. In particular, we can deal with the
3-input modular sums, and 3-input Boolean functions used in functions of the
MD/SHA family. We can also propagate 4 simultaneous trails in a boomerang
configuration through an addition or an xor, with full 2-bit constraints.

1.2 Related work

A recent result by Yu et al. achieves a similar result as our free-start free-tweak
partial-collision on 32 rounds, and is also based on a complex non-linear trail
for Skein-256. This work has been available on ePrint since April 2011 [31], but
the characteristic given in that version of the paper was flawed [14]. This has
motivated our work on building such characteristics automatically.

More recently, they managed to build a valid characteristic and their work
has been presented at FSE [33]; this result was achieved simultaneously and

Table 1. Comparison of attacks on reduced versions of Skein-256 (we omit attack on
previous versions, and weak distinguishers). The full Skein-256 has 72 rounds.
In order to compare various attack settings, we count the number of extra degrees of
freedom used by the attack.

Extra Degrees of freedom Rounds Time Generic Ref, notes

Collision 0 4 2 96 2128 [13], biclique
8 2120

9 2124

12 2126.5

Free-start collision 8 22† 2253.8† 2256 [15], biclique
37† 2255.7†

Related-tweak‡ partial q-multicol 10 20 q · 2 97 2
q−1
q+1
·130 [27], 126 bits

Free-tweak partial q-multicol 12 32 q · 285 2
q−1
q+1
·205 [33], 51 bits

Collision 0 12 ≈ 2100? 2128 4.4
Semi-free-start collision 4 12 ≈ 2 40 2128 4.4
Free-start collision 8 20 ≈ 2 40 2128 4.5
Free-start near-collision 8 24 ≈ 2 40 2 88.4 4.5, 15 bits
Related-tweak‡ near-collision 10 24 ≈ 2 40 2117.3 4.6, 3 bits
Related-tweak‡ partial q-multicol 10 32 ≈ q · 2119? 2

q−1
q+1
·205 4.6, 51 bits

Free-tweak partial q-multicol 12 32 q · 2105 2
q−1
q+1
·205 4.6, 51 bits

Block cipher attacks

Key recovery (Threefish-512) 32 2181 2512 [32], Boomerang
33 2305

34 2424

† Attacks on Skein-512. For Skein-256, fewer round will be attacked, with a complexity
slightly below 2128.
‡ Using freedom degrees in the tweak difference, but the tweak value can be arbitrary.
? Using heuristic assumptions about the search for a large number of characteristics.

independently from our work. Building such a trail by hand is impressive, but this
kind of result it is very challenging to replicate or to apply to another primitive.
We hope that our automatic approach will be easier to adapt to new settings.

2 Analysis of Differential Characteristics

The first step for working with differential characteristics (or trails) is to choose a
way to represent a characteristic, and to evaluate its probability. The main idea
of differential cryptanalysis is to consider the computation of the function for
a pair of inputs X,X ′, and to specify the difference between x and x′ for every
internal state variable x. The difference can be the xor difference, the modular
difference, or more generally, use any group operation. However, this approach is
not efficient for ARX design, because both the modular difference and the xor

difference play an important role. Several works have proposed better way to
represent a differential characteristic for ARX designs.

Signed bitwise difference. The groundbreaking results of Wang et al. [28,30,29]
are based on a bitwise signed difference. For each bit of the state, they specify
whether the bit is inactive (x = x′), active with a positive sign (x = 0, x′ = 1),
or active with a negative sign (x = 1, x′ = 0). This information express both the
xor difference and the modular difference.

Generalized characteristics. This was later generalized by De Cannière and
Rechberger [6]: for each bit of the state, they look at all possible values of the
pair (x, x′), and they specify which values are allowed. The constraints -, u and n
correspond to the bitwise signed difference of Wang. De Cannière and Rechberger
also describe an algorithm to build differential characteristics using this set of
constraints.

Multi-bit constraints. Recently, Leurent studied differential characteristics
for ARX designs, and introduced multi-bit constraints [14]. These constraints are
applied to the values of consecutive bits of a state variable (e.g. x[i] and x[i−1])
instead of being purely bitwise. Multi-bit constraints are quite efficient to study
ARX designs because they can capture the behaviour of carries in the modular
addition. Two set of constraints are introduced in [14]:
– a set of 16 constraints involving (x[i], x′[i], x[i−1]) called 1.5-bit constraints;
– a set of 16 constraints involving (x[i], x′[i], x[i−1], x′[i−1], x[i−2]) called 2.5-bit

constraints.

The full sets of 28 1.5-bit constraints and 232 2.5-bit constraint are not used
because the propagation method of [14] becomes impractical with such large sets.

2.1 Constraint Propagation and Probability Computation

In [14], the constraints are studied using the theory of S-functions introduced
in [22]. We use the following definitions:
T-function A T-function on n-bit words with k inputs and l outputs is a

function from ({0, 1}n)k to ({0, 1}n)l with the following property:
For all t, the t least significant bits of the outputs can be computed
from the t least significant bits of the inputs.

S-function An S-function on n-bit words is a function from ({0, 1}n)k to
({0, 1}n)l, for which we can define a small set of states S, and an initial
state S[−1] ∈ S with the following property:

For all t, bit t of the outputs and the state S[t] ∈ S can be computed
from bit t of the inputs, and the state S[t− 1].

For instance, the modular addition is an S-function, with a 1-bit state corre-
sponding to the carry. An S-function can also include bitwise functions, shifts to
the left by a fixed number of bits, or multiplications by constants. A system of
equation that can be written as a S-function is called an S-system.

2.2 Differential Characteristics

In order to describe a differential characteristics with this framework, we specify
a difference for each internal variable of a cipher, and we consider the operations
that connect the variables. For a series a constraints ∆, we write δx = ∆ to denote
that the pair (x, x′) follows the difference pattern ∆. For instance, δx = x--0 is
equivalent to x⊕ x′ = 1000 and x[0] = 0.

For each operation �, we can write a system:

δx = ∆x δy = ∆y δz = ∆z z = x� y z′ = x′ � y′, (1)

where x, y, z, x′, y′, z′ are unknowns, and ∆x, ∆y, ∆z are parameters. In an ARX
design, all the operations except the rotations are S-function, and the difference
operation δ can be written with bitwise operations and left-shifts; therefore
system (1) is an S-system. Using tools to analyze this S-system, we can verify if
the specified input and output patterns for each operation are compatible. We
deal with the rotations y = x≫ i by just rotating the constraint pattern: if
δx = ∆x then we use δy = ∆x≫ i.

We can also find new constraints that must be satisfied for any solution to
the system. This allows to propagate constraints between the inputs and outputs
of the operation �. When we consider a characteristic for a cipher, this process
will be iterated for each operation, until no new constraints are found.

Moreover, we can compute the probability to reach the specified output
pattern by counting the number of solutions. Assuming that the probabilities
of each operations are independent, we can compute the probability of the full
characteristic by multiplying the probabilities of each operations.

2.3 Tools for S-systems

In [14], a set of constraints is represented by an S-system, and an automaton
is built to compute the probability of each operation. To perform constraints
propagation, each constraint is split into two disjoint subsets; if one of the subsets
results in an incompatible system, the constraint can be restricted to the other
subset without reducing the number of solutions.

This approach allows to achieve a good efficiency when the automaton is fully
determinized: one can test whether a system is compatible with only n table
accesses. However, the table becomes impractically large if the set of constraints
is too large, or if the operation is too complex. In [14], the automaton is fully
determinized for 1.5-bit constraints, but could not be determinized for 2.5-bit
constraints; this results in a quite inefficient propagation algorithm for 2.5-bit
constraints.

In this work, we explore a different option using non-deterministic automata.
This allows to deal with large set of constraints and more complex operations.
We need to perform many operations to verify whether a system is compatible,
but the automata are very sparse and can be represented by tables small enough
to fit in the cache (the tables of [14] take hundreds of megabytes for an addition);

this gives better results in practice. In addition, we show special properties of
the automata allowing an efficient propagation algorithm without splitting the
constraints into subsets. Due to space constraints, the technical details of our
new approach are given in the full version of this paper.

2.4 Comparison

Table 2. Experiments with toy versions of Skein. We give the number of input/output
differences accepted by each technique, and the ratio of false positive.

2 rounds / 4 bits 3 rounds / 6 bits (sparse?)

Method Accepted F pos. Accepted F pos. Time†

Exhaustive search 225.1 (35960536) – 218.7 (427667) –
2.5-bit full set 225.3 (40597936) 0.13 219.2 (619492) 0.4 2.5 ms
2.5-bit reduced set [14] 225.3 (40820032) 0.14 219.5 (746742) 0.7 50 ms
1.5-bit reduced set [14] 225.3 (40820032) 0.14 220.4 (1372774) 2.2 0.5 ms
1-bit constraints [6] 225.4 (43564288) 0.21 220.7 (1762857) 3.1 0.5 ms
Check adds independently 225.8 (56484732) 0.57

? Weight 4 differences. The number of input/output differences is
(∑4

i=0

(
24
i

))2 ≈ 226.7

† Average time to verify one input/output difference (over the false positives of the
1.5-bit reduced set).

We show a comparison with previous methods in Table 2. We use the same
settings as [14]:

1. A reduced Skein with two rounds and 4 words of 4 bits each; In this setting
the full 2.5-bit constraints offer a little advantage over the reduced set of
2.5-bit constraints.

2. A reduced Skein with three rounds and 4 words of 6 bits each. We only use
sparse differences (less than 4 active bits in the input and output), because
the full space is too large to be exhausted in practice. In this setting, the
full 2.5-bit constraints give a significant improvement over the reduced set of
2.5-bit constraints.

These experiments show that using the full set of 2.5-bit constraints gives better
results than using the reduced set of [14]. We also give timing informations1: our
new approach for constraint propagation is one order of magnitude faster that
the previous method with a reduced set of 2.5-bit constraints, and somewhat
slower than the previous method with 1.5-bit constraints.

1 The comparison is done with similar implementations.

3 Automatic Construction of Differential Characteristics

In order to mount a differential attack for a hash function or a block cipher, an
important task is to build a differential characteristic. For the analysis of ARX
primitives (and MD/SHA-like designs), the characteristic is usually designed at
the bit level. This turns out to be a very challenging task because of the complex
interactions between the operations, and the large number of state elements to
consider.

This problem has been heavily studied for attacks on the MD/SHA family of
hash functions: a series of attacks by X. Wang and her team are based on differen-
tial characteristics built by hand [28,30,29,33], while later works gave algorithms
to build such characteristics automatically [6,24,10,17,25]. Unfortunately, most
of those tools are not publicly available.

In this section, we show that the multi-bit constraints can be used to design a
successful algorithm for this task on pure ARX designs. Our algorithm is heavily
inspired by the pioneer work of De Cannière and Rechberger [6], and the more
detailed explanation given in [23] and [21].

3.1 Types of Trails

Differential trails can be classified in two categories: iterative and non-iterative.
An iterative characteristic exploits the round-based nature of many cryptographic
constructions: if a trail can be built over a few rounds with the same input and
output difference ∆, then this characteristic can be repeated to reach a larger
number of rounds. In practice very few iterative characteristics have been found
for ARX constructions, because many designs use different rotation amounts
or Boolean functions over the rounds, or a non-iterative key-schedule. Notable
exceptions include the attacks of den Boer and Bosselaers against MD5 [7], and
the recent work of Dunkelman and Khovratovich on BLAKE [8]. In this work,
we focus on non-iterative trails.

The main way to build non-iterated trails is to connect two simple and high-
probability trails using a complex and low-probability section in between. The
choice of the high-probability trails will depend on the attack setting, and should
be done by the cryptanalyst using specific properties of the design, while the
complex section will be build automatically by an algorithm (or by hand). When
the characteristic is used in a hash-function attack, the cost of the low-probability
section can usually be avoided.

For instance, the characteristics used for the attacks on SHA-1 use a linear
section built using local collisions [4,29], and a non-linear section to connect a
given input difference to the linear characteristic. This general idea is also the
core of the rebound attack [20]: it combines two high-probability trails using a
low-probability transition through an S-box layer.

In our applications, we will use a rebound-like approach to connect two
high-probability trails with a complex low-probability section. Using rebound-like
differential trails for ARX designs has also been proposed in [33].

3.2 Algorithm

Our algorithm takes as input a characteristic representing two high-probability
trails ∆1 → ∆2 and ∆3 → ∆4. The middle section is initially unconstrained, i.e.
filled with ?. The main part of the algorithm is a search phase which tries to
fill the middle part with a valid characteristic. We follow the general idea of the
algorithm of De Cannière and Rechberger, by repeating the following operations:

Propagation: deduce more information from the current characteristic by run-
ning the propagation algorithm on each operation.

Guessing: select an unconstrained state bit (i.e. a ? constraint), and reduce
the set of allowed values (e.g. to a - or x constraint).

When a contradiction is found, we go back to the last guess, and make the
opposite choice, leading to a backtracking algorithm. However, we abort after
some number of trials and restart from scratch because mistakes in the early
guesses would never be corrected.

Our algorithm is built from the idea that the constraint propagation is
relatively efficient to check if a transition ∆ → ∆′ is possible. Therefore to
connect the differences ∆2 and ∆3 from the high-probability trails, we essentially
guess the middle difference ∆′ and we check whether the transitions ∆2 → ∆′

and ∆′ → ∆3 are possible.
This leads to the following difference with the algorithm of De Cannière and

Rechberger:

– We only use signed differences, i.e. we use the constraints -, u, and n.
– We specify in advance which words of the state will be restricted in the

guessing phase, using state words in the middle of the unspecified section.
– We guess from the low bits to the high bits, and we can compare incomplete

characteristics by counting how many bits have been guessed before aborting
the search.

– Every time the backtracking process is aborted, we remember which guess
was best and the random guesses of the next run are strongly biased toward
this choice.

Thanks to this approach, we can use the best path of the previous run as an
input for the search algorithm, and explore solutions with few differences in the
guesses. Finally, we use a simulated annealing algorithm in order to find better
characteristics.

3.3 Finding pairs

The hardest part of our attacks in to build the differential trails. Finding conform-
ing pairs for the middle section is relatively easy using the propagation algorithm:
one just has to make random choices for the unconstrained bits in the middle
and run the propagation algorithm after each choice. In practice the paths we
found leave very few choices to make, and most of them lead to valid pairs. The

degrees of freedom in the key can then be used to build many different pairs.
This can be compared to the rebound attack on AES-like designs [20]: in this
attack the trails are easy to build, and finding pairs for the inbound phase has a
small amortized cost.

4 Application to Skein-256

In this section, we apply our algorithm to build characteristics for several attack
scenarios on Skein-256.

4.1 Short Description of Threefish and Skein

The compression function of Skein is based on the block cipher Threefish. In this
paper we only study Threefish-256, which uses a 256-bit key (as 4 64-bit values),
a 128-bit tweak (as 2 64-bit values), and a 256-bit state (as 4 64-bit values). The
full version of Skein has 72 rounds. We denote the ith word of the state after r
rounds as er,i. There is a key addition layer every 4 rounds:

er,i =

{
vr,i + kr/4,i if r mod 4 = 0

vr,i otherwise

where kr/4,i is the ith word of the round key at round r/4. The state vr+1,i

(for i = 0, 1, .., nw) after round r + 1 is obtained from er,i by applying a MIX
transformation and a permutation of 4 words as following:

(fr,2j , fr,2j+1) := MIXr,j(er,2j , er,2j+1) for j = 0, 1, .., nw/2
vr+1,i := fr,σ(i) for i = 0, 1, .., nw

where σ is the permutation (0 3 2 1) (specified in [9]) and (c, d) = MIXr,j(a, b) is
defined as:

c = a� b
d = (b≪ Rr mod 8,j)⊕ c

The rotations Rr mod 8,j are specified in [9]. The key scheduling algorithm of
Threefish produces the round keys from a tweak (t0, t1) and a key as following:

kl,0 = k(l) mod 5 kl,1 = k(l+1) mod 5 + tl mod 3

kl,2 = k(l+2) mod 5 + t(l+1) mod 3 kl,3 = k(l+3) mod 5 + l,

where k4 = C240⊕
⊕4

i=0 ki with C240 a constant specified in [9], and t2 = t0⊕ t1.
The compression function F for Skein is given as F (M,H, T) = EH,T (M)⊕M ,
where H is the chaining value, M is the message, and T is a block counter. This
follows the Matyas-Meyer-Oseas construction for the compression function, and
the Haifa construction for the iteration.

In this work, we only consider attacks on multiples of four rounds, because
the structure of Skein is built with 4-round blocks with key additions in between.

We describe attacks in three different settings in Sections 4.4, 4.5, and 4.6. The
attacks are based on different kinds of trails shown in Figures 2, 3, and 4. Due
to space constraints, we do not include differential characteristics, but they are
given in the full version of this paper. All the characteristics have been verified by
building a conforming pair, and we give example of colliding pairs in Appendix A.

4.2 Building Characteristics

To describe a differential characteristic for Skein with our framework, we write
constraints for each er,i value, and for the vr,i values before a key addition
(i.e. when r mod 4 = 0). For each round, we have 4 equations and 2 rotations,
corresponding to two MIX functions. We also write the full key schedule as a
system of equations.

We note that the variables er,2j with r mod 4 = 0 are only involved in modular
additions: fr,2j = er,2j � er,2j+1 and er,2j = vr,2j � kr/4,2j . Therefore, we could
remove these variables, and write fr,2j = vr,2j � kr/4,2j � er,2j+1 using a three-
input modular addition. In practice, the propagation algorithm for three-input
modular addition takes significantly longer, so we keep the variables, but we try
to avoid constraining them since the multi-bit constraints can propagate the
modular difference.

Choosing the high-probability characteristics. In attack setting with dif-
ferences in the key, we build the high-probability trails starting from a non-active
state, with a low-weight key difference. When we go through the key addition, a
difference is introduced in the state, and we propagate the difference by linearizing
the function. If we have no difference in the key, we start with a single active bit
in the state and we propagate the difference for a few rounds by linearizing the
function. Most of our trails use the most significant bit as the active bit in order
to increase their probabilities.

4.3 General Results

For the algorithm to work successfully, we need to find a delicate balance in the
initial characteristic. If the unconstrained section is too short, there will not be
enough degrees of freedom to connect the high-probability parts. On the other
hand, if the unconstrained section is too long, the propagation algorithm will not
filter bad characteristics efficiently.

In practice, we can only build characteristics when we have a key addition
layer in the unconstrained part of the characteristic. This way, the algorithm
can use degrees of freedom from the key to connect the initial characteristics. In
general it seems hard to find enough degrees of freedom to build a valid trail
without using degrees of freedom from the key: for a random function f and
arbitrary differences ∆2 and ∆3, we expect on average a single pair satisfying
f(x +∆2) = f(x) +∆3. We can consider the intermediate differences for one

∆3

∆2

∆1

∆0

Fig. 1. Previous
trails: rel-key,
rel-tweak.

∆

∆

Fig. 2. Collision
trails: fixed key.

∆0

∆4

∆3

∆2

∆1

∆0

∆0

∆0

Fig. 3. Collision
trails: related-key.

∆7

∆6

∆5

∆4

∆3

∆2

∆ = 0

∆1

∆0

Fig. 4. (Near-) Col-
lision trails: rel-key,
rel-tweak.

such pair as a differential characteristics but a differential characteristic with a
single valid pair is not very useful for a differential attack.

In order to let the algorithm use the degrees of freedom in the key effi-
ciently, we use the registers before and after a key addition as guessing points:
vr,0, vr,1, vr,2, vr,3, er,1, er,3 with r mod 4 = 0 (as discussed above we do not con-
strain er,0 and er,2).

We find that the characteristics built by the algorithm are rather dense,
and use many degrees of freedom in the state, and many degrees of freedom
in the key. This is not a problem for attacks on the compression function, but
the characteristics are harder to use in attacks against the full hash function,
where fewer degrees of freedom are available to the attacker. We note that this
problem is less acute for attack against functions of the MD/SHA family, where
the message block is much larger than the state.

On the other hand, the trail built by hand by Yu et al. [33] is somewhat
sparser, and leaves more degrees of freedom for the key and the middle state.

4.4 Collision Attacks

We first study attacks with no difference in the chaining value so that they
can be applied to the full hash function. Since Skein uses the MMO mode, the
chaining value of the hash function is the key to the block cipher. We try to build
characteristics for a collision attack, therefore we use the same difference in the
initial state and in the final state so that they can cancel out in the feed-forward2.
2 We could build characteristics for 20 rounds if we consider near-collisions, but this
would not work on the full hash function because of the finalization step.

We start with a low-weight difference in one of the first rounds and we propagate
by linearization through rounds 0–4 and backward through round 11.

We give an example of a colliding pair for the compression function of Skein-
256 reduced to 12 rounds in Table 3.

Full collision attack. To build a collision attack on the full hash function,
we have to deal with the fact that the characteristic is only valid for a small
fraction of the keys, i.e. a small fraction of the chaining values. We use a large
number of characteristics, and a large number of random chaining values, in a
meet-in-the-middle fashion.

More precisely, the characteristics given by the algorithm have many con-
straints of the key, which define a set of valid keys, and the number of conforming
pairs estimated by looking at the probability of each step is even lower. We
assume that each solution will correspond to a different key, and the number of
solutions of the characteristics gives the number of key (i.e. chaining values) for
which we can actually build a collision. Our experiments indicate that we can
expect to build characteristics with more than 2106 solutions for a cost of 250.
If we extrapolate this experimental result, we expect that it is possible to build
many such characteristics. Let’s assume that we can build N characteristics for
a cost of N × 250; where each characteristic has 2106 solutions out of 2200 valid
keys. In a second phase, we will hash M random message blocks and test if they
can give a collision using one of the characteristics. Out of the M chaining values
generated, we expect that M ×N × 2200−256 will be valid for one characteristic,
and M ×N × 2106−256 values will actually lead to a collision after verification.
An important step of the attack will be to find for which characteristic a given
chaining value can be valid, but this can be done efficiently using a hash table
indexed by the bits of the chaining value which are imposed by the characteristics.

The optimal complexity is achieved with N = 250 and M = 2100. With these
parameters we only have to verify 294 valid chaining values, so the verification
step is negligible. This gives a collision attack on 12-round Skein-256 with a time
complexity of 2100, using memory to store 250 characteristics3.

The assumption that we can build so many good characteristics is a strong
assumption, and it is hard to verify. However, we believe that this estimation is
a safe upper bound, and that better characteristics would be found by running
the search algorithm for longer times. In our experiments, we tested a few
different high probability trails as input to the algorithms, and we spend an effort
equivalent to about 250 hash computations on our best candidate.We ran our
algorithm 128 times with different initialization of the PRNG, and we report the
best paths found by each run after 120 CPU hours in Figure 5. In addition, we
ran a few parallel experiments for 120 hours with 32 cores. All these experiments
generated more than 400.000 different characteristics; the best characteristic
3 To store a characteristic, we just need to store masks defining the valid keys, and
one state in the middle (if is not necessary to store all the intermediate constraints).
Then, we can test a chaining value candidate by just computing all the intermediate
states and checking if we reach a collision. This would take about 4× 256 bits.

65 70 75 80 85 90 95 100 105 110 115 120

140

160

180

200

220

Number of solutions (log2)

N
um

be
r
of

va
lid

ke
ys

(l
o
g
2
)

Best paths after 5 days on 1 core (≈ 242)
Best paths after 5 days on 32 cores (≈ 247)

Fig. 5. Best characteristic found after each run. The experiments were run on Intel
Xeon L5420 CPUs.

allow 2118 solutions, and 30.000 of these allow more than 2106 solutions (only
the best characteristic of each run is shown in Figure 5). We note that in order
to build a large number of characteristics, we would also use several different
starting points for the linear part.

4.5 Free-start Collision Attack

For a collision attack on the compression function, i.e. a free-start attack on
the hash function, we can use a difference in the chaining value (i.e. the key).
We note that the key schedule of Skein-256 repeats itself every 20 rounds when
there is no tweak difference. Therefore, we build trails with two inactive blocks
as shown in Figure 3: the difference introduced in the initial state by k0 cancels
out with the difference introduced in the final state by k5.

We give a collision pair built using this strategy in Table 4.
We can also extend this path to a free-start near-collision attack against

24-round Skein, if we extend the trail to 4 more rounds at the end. A linearized
trail gives near-collisions with 15 active bits, and the cost of finding a conforming
pair is negligible before the cost of finding the trail.

4.6 Free-tweak Free-start Near-collision Attack

Finally, we can use degrees of freedom in the tweak to reach the maximum
number of rounds possible. Previous works have shown that the key schedule
allows to have one round without any active key words if we use a difference in
the tweak in order to cancel a difference in the key. Using this property we can
build a 24-round trail, and extend it to 32 round by propagating the external

difference for four extra rounds in each direction, as shown in Figure 4. This is
the approach used in [31].

We give a characteristic built using this idea in the full version of this paper.
This results in a low weight difference for the input and output, with many zero
bits in predetermined position. Moreover, we can follow the approach of [31] and
also specify a fixed characteristic for round 0 to 4 and 28 to 32. It costs about
240 to build a characteristic that allows 220 solutions, so we can estimate that
the amortized costs of building a valid pair for rounds 4 to 28 is about 220. Using
the analysis of [31], we would build a conforming pair for rounds 0 to 32 for a
cost of 220+43+43 = 2119, assuming that we can find 266 different characteristics.

Alternatively, if we can choose the value of the tweak, then we only need
a single characteristic, and we follow the same attack as [33] with the same
complexity.

Note that the complexity of these attack is higher than the generic complexity
of a partial-collision attack on 256− 51 pre-specified bits, 2102.5. However, the
generic complexity to reach the fixed 256-bit difference with 51 pre-sepcified active
bits is still 2128. Alternatively, this attack can be considered as a q-multicollision
attack [2].

Conclusion

In this paper we describe an algorithm to build differential characteristics for
ARX designs, and we apply the algorithm to find characteristics for various
attack scenarios on Skein. Our attacks do not threaten the security of Skein, but
we achieve good results when compared to previous attacks; our main results
are low-complexity attacks in relatively strong settings. In particular, we show
practical free-start and semi-free-start collision attacks for 20 rounds and 12
rounds of Skein-256, respectively.

We obtain some of the first complex differential trails for pure ARX functions
(as opposed to MD/SHA-like functions with Boolean functions). Since our ap-
proach is rather generic, we expect that our technique can be applied to other
ARX designs, and will be used to evaluate the security of these designs against
differential cryptanalysis.

Our improvements to the tools of [14], and the code to build differential
characteristics for Skein are publicly available from the ARXtools webpage: http:
//www.di.ens.fr/~leurent/arxtools.html. We hope that this will promote
cooperation between researchers, and avoid a situation where several teams have
to develop their own implementation.

Acknowledgement

We would like to thank Pierre-Alain Fouque and Thomas Peyrin for fruitful
discussions about differential characteristics and propagation of constraints.

http://www.di.ens.fr/~leurent/arxtools.html
http://www.di.ens.fr/~leurent/arxtools.html

The author is supported by the ERC project CRASH. Part of this work was
done while the author was at the university of Luxembourg, supported by the
AFR grant PDR-10-022 of the FNR.

Computational resources have been provided by HPC facility of the University
of Luxembourg, as well as by the supercomputing facilities of the Université
catholique de Louvain (CISM/UCL) and the Consortium des Équipements de
Calcul Intensif en Fédération Wallonie Bruxelles (CÉCI) funded by the Fond de
la Recherche Scientifique de Belgique (F.R.S.-FNRS) under convention 2.5020.11.

References

1. Aumasson, J.P., Bernstein, D.J.: SipHash: a fast short-input PRF. In Galbraith,
S., Nandi, M., eds.: INDOCRYPT. Lecture Notes in Computer Science, Springer
(2012)

2. Biryukov, A., Khovratovich, D., Nikolic, I.: Distinguisher and Related-Key Attack
on the Full AES-256. [12] 231–249

3. Canteaut, A., ed.: Fast Software Encryption - 19th International Workshop, FSE
2012, Washington, DC, USA, March 19-21, 2012. Revised Selected Papers. In
Canteaut, A., ed.: FSE. Volume 7549 of Lecture Notes in Computer Science.,
Springer (2012)

4. Chabaud, F., Joux, A.: Differential Collisions in SHA-0. In Krawczyk, H., ed.:
CRYPTO. Volume 1462 of Lecture Notes in Computer Science., Springer (1998)
56–71

5. Cramer, R., ed.: Advances in Cryptology - EUROCRYPT 2005, 24th Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques,
Aarhus, Denmark, May 22-26, 2005, Proceedings. In Cramer, R., ed.: EUROCRYPT.
Volume 3494 of Lecture Notes in Computer Science., Springer (2005)

6. De Cannière, C., Rechberger, C.: Finding SHA-1 Characteristics: General Results
and Applications. In Lai, X., Chen, K., eds.: ASIACRYPT. Volume 4284 of Lecture
Notes in Computer Science., Springer (2006) 1–20

7. den Boer, B., Bosselaers, A.: Collisions for the Compressin Function of MD5.
In Helleseth, T., ed.: EUROCRYPT. Volume 765 of Lecture Notes in Computer
Science., Springer (1993) 293–304

8. Dunkelman, O., Khovratovich, D.: Iterative differentials, symmetries, and message
modification in BLAKE-256. In: ECRYPT2 Hash Workshop. (2011)

9. Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas,
J., Walker, J.: The Skein hash function family. Submission to NIST (2008/2010)

10. Fouque, P.A., Leurent, G., Nguyen, P.: Automatic Search of Differential Path in
MD4. In: ECRYPT Hash Worshop. (2007) http://eprint.iacr.org/2007/206.

11. Fouque, P.A., Leurent, G., Nguyen, P.Q.: Full Key-Recovery Attacks on
HMAC/NMAC-MD4 and NMAC-MD5. In Menezes, A., ed.: CRYPTO. Volume
4622 of Lecture Notes in Computer Science., Springer (2007) 13–30

12. Halevi, S., ed.: Advances in Cryptology - CRYPTO 2009, 29th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2009. Proceedings.
In Halevi, S., ed.: CRYPTO. Volume 5677 of Lecture Notes in Computer Science.,
Springer (2009)

13. Khovratovich, D., Rechberger, C., Savelieva, A.: Bicliques for Preimages: Attacks
on Skein-512 and the SHA-2 Family. [3] 244–263

http://eprint.iacr.org/2007/206

14. Leurent, G.: Analysis of Differential Attacks in ARX Constructions. In Wang, X.,
Sako, K., eds.: ASIACRYPT. Volume 7658 of Lecture Notes in Computer Science.,
Springer (2012) 226–243

15. Li, J., Isobe, T., Shibutani, K.: Converting meet-in-the-middle preimage attack into
pseudo collision attack: Application to sha-2. In Canteaut, A., ed.: FSE. Volume
7549 of Lecture Notes in Computer Science., Springer (2012) 264–286

16. Mendel, F., Nad, T., Schläffer, M.: Finding collisions for round-reduced sm3. In
Dawson, E., ed.: CT-RSA. Volume 7779 of Lecture Notes in Computer Science.,
Springer (2013) 174–188

17. Mendel, F., Nad, T., Schläffer, M.: Finding SHA-2 Characteristics: Searching
through a Minefield of Contradictions. In Lee, D.H., Wang, X., eds.: ASIACRYPT.
Volume 7073 of Lecture Notes in Computer Science., Springer (2011) 288–307

18. Mendel, F., Nad, T., Schläffer, M.: Collision Attacks on the Reduced Dual-Stream
Hash Function RIPEMD-128. [3] 226–243

19. Mendel, F., Rechberger, C., Schläffer, M.: MD5 Is Weaker Than Weak: Attacks
on Concatenated Combiners. In Matsui, M., ed.: ASIACRYPT. Volume 5912 of
Lecture Notes in Computer Science., Springer (2009) 144–161

20. Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: The Rebound Attack:
Cryptanalysis of Reduced Whirlpool and Grøstl. In Dunkelman, O., ed.: FSE.
Volume 5665 of Lecture Notes in Computer Science., Springer (2009) 260–276

21. Mouha, N., De Cannière, C., Indesteege, S., Preneel, B.: Finding Collisions for a
45-Step Simplified HAS-V. In Youm, H.Y., Yung, M., eds.: WISA. Volume 5932 of
Lecture Notes in Computer Science., Springer (2009) 206–225

22. Mouha, N., Velichkov, V., De Cannière, C., Preneel, B.: The Differential Analysis
of S-Functions. In Biryukov, A., Gong, G., Stinson, D.R., eds.: Selected Areas in
Cryptography. Volume 6544 of Lecture Notes in Computer Science., Springer (2010)
36–56

23. Peyrin, T.: Analyse de fonctions de hachage cryptographiques. PhD thesis, Univer-
sity of Versailles (2008)

24. Schläffer, M., Oswald, E.: Searching for Differential Paths in MD4. In Robshaw,
M.J.B., ed.: FSE. Volume 4047 of Lecture Notes in Computer Science., Springer
(2006) 242–261

25. Stevens, M., Lenstra, A.K., de Weger, B.: Chosen-Prefix Collisions for MD5 and
Colliding X.509 Certificates for Different Identities. In Naor, M., ed.: EUROCRYPT.
Volume 4515 of Lecture Notes in Computer Science., Springer (2007) 1–22

26. Stevens, M., Sotirov, A., Appelbaum, J., Lenstra, A.K., Molnar, D., Osvik, D.A.,
de Weger, B.: Short Chosen-Prefix Collisions for MD5 and the Creation of a Rogue
CA Certificate. [12] 55–69

27. Su, B., Wu, W., Wu, S., Dong, L.: Near-Collisions on the Reduced-Round Com-
pression Functions of Skein and BLAKE. In Heng, S.H., Wright, R.N., Goi, B.M.,
eds.: CANS. Volume 6467 of Lecture Notes in Computer Science., Springer (2010)
124–139

28. Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the Hash Functions
MD4 and RIPEMD. [5] 1–18

29. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In Shoup,
V., ed.: CRYPTO. Volume 3621 of Lecture Notes in Computer Science., Springer
(2005) 17–36

30. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. [5] 19–35
31. Yu, H., Chen, J., Jia, K., Wang, X.: Near-Collision Attack on the Step-Reduced

Compression Function of Skein-256. IACR Cryptology ePrint Archive, Report
2011/148 (2011)

32. Yu, H., Chen, J., Wang, X.: The Boomerang Attacks on the Round-Reduced
Skein-512. In Knudsen, L.R., Wu, H., eds.: SAC. Lecture Notes in Computer
Science, Springer (2012)

33. Yu, H., Chen, J., Wang, X.: Partial-Collision Attack on the Round-Reduced
Compression Function of Skein-256. In Moriai, S., ed.: FSE. Lecture Notes in
Computer Science, Springer (2013)

A Collision Pairs for reduced compression functions of
Skein-256

In this section we give some examples of colliding pair for reduced versions of
the compression function of Skein-256. The differential characteristics used to
build those pair are given in the full version of the paper.

The inputs are k = cv and v0 = m. The output is h = Ek(m) ⊕ m. The
examples are given for T = 0.

Table 3. Semi-free-start collision for 12-round Skein-256 (rounds 0–12).

Input 1 Input 2 Output 1 Output 2

k0 968cb2e66b0fb527 968cb2e66b0fb527 e12,0 2798a30c07459007 2398930c07459007
k1 37fce3361809b06a 37fce3361809b06a e12,1 2410f135e024aace 2410e135e024aace
k2 4bb032fb1894a60b 4bb032fb1894a60b e12,2 60490bbd9ddcb933 60490bbd9ddcb933
k3 d917aa4640682db6 d917aa4640682db6 e12,3 7fd51384c7b528f3 7fd51384c7b528f3

m0 e7395021238d7d18 e3396021238d7d18 h0 c0a1f32d24c8ed1f c0a1f32d24c8ed1f
m1 7229b06628958c1a 7229a06628958c1a h1 56394153c8b126d4 56394153c8b126d4
m2 3ea410b0b8f1b533 3ea410b0b8f1b533 h2 5eed1b0d252d0c00 5eed1b0d252d0c00
m3 fc0aa7147201f560 fc0aa7147201f560 h3 83dfb490b5b4dd93 83dfb490b5b4dd93

Table 4. Free-start collision for 20-round Skein-256 (rounds 0–20).

Input 1 Input 2 Output 1 Output 2

k0 5f977cfdd64d2f57 5f977cfdd64d2f57 e20,0 6627a3d5c18e2057 6627a3d5c18e2057
k1 35839193022be6f4 b5839193022be6f4 e20,1 7a1eeeee92b2202d fa1eeeee92b2202d
k2 05e168930700458f 85e168930700458f e20,2 2bf3a5067fac9218 abf3a5067fac9218
k3 6f47d57f8b6f9b78 6f47d57f8b6f9b78 e20,3 b0ccc2f709dc2e35 b0ccc2f709dc2e35

m0 627f37f95152438c 627f37f95152438c h0 0458942c90dc63db 0458942c90dc63db
m1 0532b3fdf499d0d7 8532b3fdf499d0d7 h1 7f2c5d13662bf0fa 7f2c5d13662bf0fa
m2 91c792ab31ba535c 11c792ab31ba535c h2 ba3437ad4e16c144 ba3437ad4e16c144
m3 72e80ac1aaee8118 72e80ac1aaee8118 h3 c224c836a332af2d c224c836a332af2d

	Construction of Differential Characteristics in ARX Designs Application to Skein
	Introduction
	Our Results
	Related work

	Analysis of Differential Characteristics
	Constraint Propagation and Probability Computation
	Differential Characteristics
	Tools for S-systems
	Comparison

	Automatic Construction of Differential Characteristics
	Types of Trails
	Algorithm
	Finding pairs

	Application to Skein-256
	Short Description of Threefish and Skein
	Building Characteristics
	General Results
	Collision Attacks
	Free-start Collision Attack
	Free-tweak Free-start Near-collision Attack

	Collision Pairs for reduced compression functions of Skein-256

