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Abstract. We present a new, more constructive proof of von Neumann’s
Min-Max Theorem for two-player zero-sum game — specifically, an al-
gorithm that builds a near-optimal mixed strategy for the second player
from several best-responses of the second player to mixed strategies of
the first player. The algorithm extends previous work of Freund and
Schapire (Games and Economic Behavior ’99) with the advantage that
the algorithm runs in poly(n) time even when a pure strategy for the first
player is a distribution chosen from a set of distributions over {0, 1}n.
This extension enables a number of additional applications in cryptog-
raphy and complexity theory, often yielding uniform security versions of
results that were previously only proved for nonuniform security (due to
use of the non-constructive Min-Max Theorem).
We describe several applications, including a more modular and im-
proved uniform version of Impagliazzo’s Hardcore Theorem (FOCS ’95),
showing impossibility of constructing succinct non-interactive arguments
(SNARGs) via black-box reductions under uniform hardness assumptions
(using techniques from Gentry andWichs (STOC ’11) for the nonuniform
setting), and efficiently simulating high entropy distributions within any
sufficiently nice convex set (extending a result of Trevisan, Tulsiani and
Vadhan (CCC ’09)).

1 Introduction

Von Neumann’s Min-Max Theorem (or Linear Programming Duality, finite-
dimensional Hahn-Banach Theorem) has proved to be an extremely useful tool
in theoretical computer science. Consider a zero-sum game between two players
where for every mixed strategy V for Player 1 (as a distribution over his strat-
egy space V), Player 2 has a response W ∈ W that guarantees E [F (V,W )] ≥ 0,
where F (payoff) can be an arbitrary function. The Min-Max Theorem says
that there must exist a Player 2’s mixed strategy W ∗ (as a distribution over his
strategy space W) that guarantees E [F (V,W ∗)] ≥ 0 for all strategies V ∈ V of
Player 1.
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version of this paper [VZ2] to appear on the Cryptology ePrint Archive.



The Min-Max Theorem gives rise to a number of results in cryptography and
complexity theory such as Impagliazzo’s Hardcore Theorem [Imp], equivalence
of different notions of computational entropy [BSW], the Dense Model Theorem
[RTTV], leakage-resilient cryptography [DP,FR], efficient simulation of high en-
tropy distributions [TTV], impossibility of constructing succinct non-interactive
arguments (SNARGs) via black-box reductions [GW], and simple construction
of pseudorandom generators from one-way functions [VZ1]. In a typical appli-
cation like these, Player 1 chooses V from a convex set V of distributions over
{0, 1}n, and Player 2 chooses W from a set W of (possibly randomized) boolean
functions {0, 1}n → {0, 1} and receives payoff F (V,W ) = E [W (V )] i.e. function
W ’s expected output when input is drawn from the distribution V . For example,
V contains all high entropy distributions over {0, 1}n andW contains all boolean
functions of small circuit size.

A limitation of the Min-Max Theorem is that it is highly non-constructive; it
only asserts the existence of the optimal strategy W ∗ but does not say how it can
be found (algorithmically). Consequently, applications of the Min-Max Theorem
only give rise to results about nonuniform boolean circuits, rather than uniform
algorithms (e.g. we set cryptographic protocols based on nonuniform hardness
rather than uniform hardness assumptions).

To overcome this, we consider the natural algorithmic task of constructing
such an optimal strategy W ∗ for Player 2, given an efficient algorithm for F .
When the sizes of strategy spaces V and W are small (e.g. polynomial) this can
be done by linear programming, for which efficient algorithms are well-known.
However, applications in cryptography and complexity theory such as ones just
mentioned involve exponentially large strategy spaces, and an optimal strategy
W ∗ cannot be found in polynomial time in general. Thus we also require that,
given any mixed strategy V for Player 1, not only does there exist a strategy
W ∈ W for Player 2 with E [F (V,W )] ≥ 0, but such response W can be obtained
efficiently by an oracle (or an efficient uniform algorithm).

Assuming such an oracle, Freund and Schapire [FS] show how to find an
approximately optimal W ∗ for Player 2 in polynomial time and by making
O((log |V|)/ϵ2) adaptive oracle queries, using the idea of multiplicative weight
updates. However, their algorithm still falls short in some of aforementioned ap-
plications where V is a set of distributions over {0, 1}n, and thus V can have
doubly-exponentially many vertices. For example, consider the set of distribu-
tions on {0, 1}n of min-entropy at least k; the vertices of V are uniform distri-

butions on a subset of size 2k, and there are
(
2n

2k

)
such subsets.

We present a Uniform Min-Max Theorem that efficiently finds an approxi-
mately optimal strategyW ∗ for Player 2, given an oracle that for any of Player 1’s
mixed strategy V ∈ V returns some Player 2’s strategy that guarantees reason-
able payoff, even when V is a (sufficiently nice) set of distributions over {0, 1}n.
Our algorithm is inspired by the proof of Uniform Hardcore Theorem of Barak,
Hardt, and Kale [BHK]. Like [BHK], our algorithm uses “relative entropy (KL)
projections” together with multiplicative weight updates (a technique originally
due to Herbster and Warmuth [HW]). Our contribution is the formulation of this



algorithm as providing a Uniform Min-Max Theorem. An advantage of this for-
mulation is that it is more modular, and not specific to the Hardcore Theorem.
Consequently it immediately enables a number of applications, including deriv-
ing uniform versions of many of the aforementioned results, where we now deal
with algorithms rather than nonuniform boolean circuits. Even for the Hardcore
Theorem, where the uniform version was already known [Hol1,BHK], there are
several advantages to deducing it using the Uniform Min-Max Theorem.

Uniform Hardcore Theorem. Impagliazzo’s Hardcore Theorem ([Imp] and later
strengthened in [KS,Hol1,BHK]) is a fundamental result in complexity theory
that says if a boolean function f is somewhat hard on average, then there must
be a subset of inputs (the hardcore) on which f is extremely hard, and out-
side of which f is easy. There are two approaches to proving the theorem.
One is constructive [Imp,KS,Hol1,BHK] and leads to a Uniform Hardcore The-
orem where hardness of f is measured against uniform algorithms, rather than
nonuniform boolean circuits, and has found several applications in cryptography
[KS,Hol1,Hol2,HHR,HRV]. However, the existing proofs turn out to be adhoc
and do not achieve all of the optimal parameters simultaneously for a Uniform
Hardcore Theorem. Another approach due to Nisan [Imp] (and strengthened in
[Hol1]) uses the (non-constructive) Min-Max Theorem and has the advantage of
simplicity, but is restricted to the nonuniform measure of hardness.

In Section 4, we show that by replacing the use of Min-Max Theorem in the
proof of Nisan [Imp] or Holenstein [Hol1] with our Uniform Min-Max Theorem,
we obtain a new proof of the Uniform Hardcore Theorem with the advantages
of (i) optimal hardcore density; (ii) optimal complexity blow-up; and (iii) mod-
ularity and simplicity.

Construction of Pseudorandom Generators from One-Way Functions. Recently,
we [VZ1] obtained a simplified and more efficient construction of pseudorandom
generators from arbitrary one-way functions, building on the work of [HRV]. Key
to the simplification is a new characterization of a computational analogue of
Shannon entropy, whose proof in the nonuniform setting involves the Min-Max
Theorem. Using the Uniform Min-Max Theorem instead, we proved our char-
acterization of pseudoentropy in the uniform setting, and hence obtain (sim-
pler) pseudorandom generator from arbitrary one-way functions that are secure
against efficient algorithms. We refer to the full version [VZ2] for a more detailed
discussion.

Impossibility of Black-Box Construction of Succinct Non-interactive Argument.
A result of Gentry and Wichs [GW] shows that there is no black-box construc-
tion of succinct non-interactive arguments (SNARGs) from any natural cryp-
tographic assumption. Their result relies on the (mild) assumption that there
exist hard subset membership problems, which is equivalent to the existence of
subexponentially hard one-way functions. One limitation is that they need to
assume nonuniformly secure one-way functions, in part due to their use of the
non-constructive Min-Max theorem (in [GW] Lemma 3.1).



In Section 5, we show how to obtain the analogous result in the uniform
setting by using the Uniform Min-Max Theorem. More specifically, assuming
that there exist subexponentially hard one-way functions that are secure against
uniform algorithms, we show that there is no construction of SNARGs whose
security can be reduced in a black-box way to a cryptographic assumption against
uniform algorithms (unless the assumption is already false).

Simulating Arbitrary Distributions Within a Convex Set. In the full version
[VZ2], we apply the Uniform Min-Max Theorem to show a result analogous to
the main result of Trevisan, Tulsiani, and Vadhan [TTV], which (informally)
says that any high min-entropy distribution X is indistinguishable from some
high min-entropy distribution Y of low complexity. It is shown in [TTV] that
such results can be used to deduce (versions of) the Dense Model Theorem
[GT,TZ,RTTV], the Hardcore Theorem [Imp], and the Weak Regularity Lemma
[FK], by translating the problem to a simpler one where the unknown distribu-
tion X is replaced with the low complexity distribution Y that can be efficiently
analyzed and manipulated.

Our result is more general than [TTV] in the sense that we are no longer
restricted to distributions of high min-entropy. We show that for any sufficiently
“nice” convex set of distributions V, any distribution X ∈ V is indistinguishable
from some distribution Y ∈ V where Y has “low complexity” (for several slightly
different definitions of complexity than [TTV]). One application of this result
is a slight strengthening of the Weak Regularity Lemma of Frieza and Kannan
[FK] that achieves better parameters for graphs that are not dense. Another
application is deducing an “efficient” version of a technical lemma of [GW].
(The efficient version has been independently proved by Chung, Lui, and Pass
[CLP] and applied in the context of distributional zero-knowledge). We note that
our result has an average-case variant, which contains as special case a recent
result of Pietrzak and Jetchev [PJ] on leakage-resilient cryptography.

1.1 Paper Organization

Basic notions from information theory including KL projection are defined in
Section 2. In Section 3 we state and prove the Uniform Min-Max Theorem, and
show that it also implies the standard Min-Max Theorem. In Section 4, 5, we
describe two applications of the Uniform Min-Max Theorem (other applications
can be found in the full version [VZ2]).

2 Preliminaries

Notations. For a natural number n, [n] denotes the set {1, . . . , n}, Un denotes
the uniform distribution on binary strings of length n. For a finite set Σ, UΣ de-
notes the uniform distribution on Σ. For a distribution X, supp(X) denotes the
support of X, and x← X means x is a random sample drawn from distribution



X. We write Avga≤i≤b as a shorthand for the average over all i ∈ {a, . . . , b}.
Conv(·) denotes the convex hull.

For more background on entropy and proofs of the lemmas below, see [CT].

Definition 2.1 (Entropy). For a random variable X, the (Shannon) entropy
of X is defined to be

H(X) = E
x←X

[
log

1

Pr[X = x]

]
.

The min-entropy of X is defined to be

H∞(X) = min
x∈supp(X)

(
log

1

Pr[X = x]

)
.

The notion of KL divergence from random variable A to random variable B is
closely related to Shannon entropy; intuitively it measures how dense A is within
B, on average (with 0 divergence representing maximum density, i.e. A = B, and
large divergence meaning that A is concentrated in a small portion of B).

Definition 2.2 (KL divergence). For random variables A and B, the KL
divergence from A to B is defined to be

KL(A ∥ B) = E
a←A

[
log

Pr[A = a]

Pr[B = a]

]
,

or conventionally +∞ if supp(A) ̸⊆ supp(B).
For random variables (X,A) and (Y,B), the conditional KL divergence from

A|X to B|Y is defined to be

KL((A|X) ∥ (B|Y )) = E
(x,a)←(X,A)

[
log

Pr[A = a|X = x]

Pr[B = a|Y = x]

]
.

Thus, conditional KL divergence captures the expected KL divergence from
A|X=x to B|Y=x, over x← X. Like Shannon entropy, it has a chain rule:

Proposition 2.1 (Chain rule for KL divergence). KL(X,A ∥ Y,B) =
KL(X ∥ Y ) + KL((A|X) ∥ (B|Y )).

Note however, that the KL divergence is not a metric; it is not symmetric and
does not satisfy the triangle inequality.

Definition 2.3 (KL projection). Let X be a distribution on Σ, and V be
a non-empty closed convex set of distributions on Σ. Y ∗ ∈ V is called a KL
projection of X on V if

Y ∗ = arg min
Y ∈V

KL(Y ∥ X).

A nice property of KL projection is the following geometric structure (see [CT],
Chap 11, Section 6):



Theorem 2.1 (Pythagorean theorem). Let V be a non-empty closed convex
set of distributions on Σ. Let Y ∗ be a KL projection of X on V. Then for all
Y ∈ V,

KL(Y ∥ Y ∗) + KL(Y ∗ ∥ X) ≤ KL(Y ∥ X).

In particular,
KL(Y ∥ Y ∗) ≤ KL(Y ∥ X).

Assuming KL(Y ∗ ∥ X) is finite, then Pythagorean theorem implies that the
KL projection Y ∗ is unique: for any Y ∈ V which is also a KL projection, the
theorem implies KL(Y ∥ Y ∗) = 0, which holds only when Y = Y ∗.

Finding the exact KL projection is often computationally infeasible, so we
consider approximate KL projection:

Definition 2.4 (Approximate KL projection). We say Y ∗ is a σ-approximate
KL projection of X on V, if Y ∗ ∈ V and for all Y ∈ V,

KL(Y ∥ Y ∗) ≤ KL(Y ∥ X) + σ.

3 A Uniform Min-Max Theorem

Consider a zero-sum game between two players, where the space of pure strate-
gies for Player 1 is V, the space of pure strategies for Player 2 is W, and V is
an arbitrary subset of distributions over [N ]. In this section we present a Uni-
form Min-Max Theorem that efficiently finds an approximately optimal strategy
W ∗ ∈ Conv(W) for Player 2, given an oracle which, when fed any of Player
1’s mixed strategies V ∈ Conv(V), returns a strategy for Player 2 that guaran-
tees good payoff. Our algorithm is inspired by the proof of Uniform Hardcore
Theorem of Barak, Hardt, and Kale [BHK]. Like [BHK], our algorithm uses “rel-
ative entropy (KL) projections” together with multiplicative weight updates (a
technique originally due to Herbster and Warmuth [HW]).

We first state the theorem and mention how it implies standard Min-Max
Theorem.

Theorem 3.1 (A Uniform Min-Max Theorem). Consider a two-player
zero-sum game where the sets of pure strategies for Player 1 and Player 2 are
V ⊆ {distributions over [N ]} and W, and the payoff to Player 2 is defined to
be F (V,W ) = EV [f(V,W )] for some function f : [N ]×W → [−k, k]. Then for
every 0 < ϵ ≤ 1 and S ≥ maxV ∈Conv(V) KL(V ∥ V (1))/ϵ2, after S iterations
Algorithm 3.1 (Finding Universal Strategy) always outputs a mixed strategy W ∗

for Player 2 such that

min
V ∈V

F (V,W ∗) ≥ Avg
1≤i≤S

F (V (i),W (i))−O(kϵ).

(This holds regardless of the arbitrary choice of W (i) and V (i+1) in the algo-
rithm.)

In particular, it suffices to take S ≥ (logN −minV ∈V H(V )) /ϵ2 if we set
V (1) = U[N ] ∈ Conv(V).



Choose an initial strategy V (1) ∈ Conv(V) for Player 1
for i← 1 to S do

Obtain an arbitrary strategy W (i) ∈ W for Player 2
Weight Update:

Let V (i)′ be such that Pr[V (i)′ = x] ∝ e−ϵ·f(x,W
(i))/2k · Pr[V (i) = x]

Projection:
V (i+1) ← an arbitrary ϵ2-approx KL projection of V (i)′ on Conv(V)

end

Let W ∗ be the mixed strategy for Player 2 uniform over W (1), . . . ,W (S)

return W ∗
Algorithm 3.1: Finding Universal Strategy

We now describe how Theorem 3.1 implies the original Min-Max Theorem,
which says

max
W∈Conv(W)

min
V ∈V

F (V,W ) = min
V ∈Conv(V)

max
W∈W

F (V,W ).

For each i, take W (i) to be Player 2’s best response to Player 1’s mixed strategy
V (i), i.e. F (V (i),W (i)) = maxW∈W F (V (i),W ). Theorem 3.1 says for every λ =
O(kϵ) > 0, by setting an appropriate V (1) and sufficiently large S, there exists
W ∗ ∈ Conv(W) with

min
V ∈V

F (V,W ∗) ≥ Avg
1≤i≤S

F (V (i),W (i))− λ

= Avg
1≤i≤S

max
W∈W

F
(
V (i),W

)
− λ

≥ min
V ∈Conv(V)

max
W∈W

F (V,W )− λ,

where the last inequality holds because for every i, maxW∈W F
(
V (i),W

)
≥

minV ∈Conv(V) maxW∈W F (V,W ). Thus, for every λ > 0,

max
W∈Conv(W)

min
V ∈V

F (V,W ) ≥ min
V ∈Conv(V)

max
W∈W

F (V,W )− λ

Taking λ→ 0 gives the Min-Max Theorem.

Proof (of Theorem 3.1). Consider any V ∈ V. It follows from Lemma A.1 that

KL(V ∥ V (i)′) ≤ KL(V ∥ V (i))− (log e)ϵ

(
F (V (i),W (i))− F (V,W (i))

2k
− ϵ

)
.

Since V (i+1) is a σ-approximate KL projection of V (i)′ on Conv(V),

KL(V ∥ V (i+1)) ≤ KL(V ∥ V (i)′) + σ.

Therefore

KL(V ∥ V (i))−KL(V ∥ V (i+1)) ≥ (log e)ϵ

(
F (V (i),W (i))− F (V,W (i))

2k
− ϵ

)
−σ.



Summing over i = 1, . . . , S and telescoping, we obtain

KL(V ∥ V (1))−KL(V ∥ V (S+1))

≥ (log e)ϵ
S∑

i=1

(
F (V (i),W (i))− F (V,W (i))

2k
− ϵ

)
− Sσ

= (log e)Sϵ

(
Avg1≤i≤S F (V (i),W (i))− F (V,W ∗)

2k
− ϵ

)
− Sσ.

Since KL(V ∥ V (S+1)) ≥ 0, rearranging gives

Avg1≤i≤S F (V (i),W (i))− F (V,W ∗)

2k
≤ KL(V ∥ V (1)) + Sσ

(log e)Sϵ
+ ϵ = O(ϵ)

for σ = ϵ2, S = KL(V ∥ V (1))/ϵ2.

Next we describe an average case variant where the set V of strategies for
Player 1 is a set of distributions of the form (X,C) where C may vary, but
the marginal distribution of X is fixed. This is convenient for a number of appli-
cations (e.g. Section 5, and simple construction of pseudorandom generators from
one-way functions [VZ1]) that involve distinguishers on such joint distributions
(X,C).

Theorem 3.2 (Uniform Min-Max Theorem – Average Case). Let V be
a subset of distributions over [N ]× [q] of the form (X,C) where C may vary, but
the marginal distribution of X is fixed. That is, for every (X,C), (X ′, C ′) ∈ V
and every x ∈ [N ] we have

∑
c Pr[(X,C) = (x, c)] =

∑
c Pr[(X

′, C ′) = (x, c)].

Consider a two-player zero-sum game where the sets of pure strategies for
Player 1 and Player 2 are V and W, and the payoff to Player 2 is defined to be
F ((X,C),W ) = EX,C [f((X,C),W )] for some function f : [N ] × [q] × W →
[−k, k]. Then for every 0 < ϵ ≤ 1 and S ≥ max(X,C)∈Conv(V) KL(X,C ∥
X,C(1))/ϵ2, after S iterations Algorithm 3.2 (Finding Universal Strategy – Av-
erage Case) always outputs a mixed strategy W ∗ for Player 2 such that

min
(X,C)∈V

F ((X,C),W ∗) ≥ Avg
1≤i≤S

F ((X,C(i)),W (i))−O(kϵ).

(This holds regardless of the arbitrary choice of W (i) and C(i+1) in the algo-
rithm.)

In particular, it suffices to take S ≥
(
log q −min(X,C)∈V H(C|X)

)
/ϵ2 if we set

(X,C(1)) = (X,U[q]) ∈ Conv(V) (where U[q] is independent of X).



Choose an initial strategy (X,C(1)) ∈ Conv(V) for Player 1
for i← 1 to S do

Obtain an arbitrary strategy W (i) ∈ W for Player 2
Weight Update:
Let C(i)′ be such that ∀x, a,

Pr[C(i)′ = a|X = x] ∝ e−ϵ·f(x,a,W
(i))/2k · Pr[C(i) = a|X = x]

Projection:
(X,C(i+1))
← an arbitrary ϵ2-approx KL projection of (X,C(i)′) on Conv(V)

end

Let W ∗ be the mixed strategy for Player 2 uniform over W (1), . . . ,W (S)

return W ∗
Algorithm 3.2: Finding Universal Strategy – Average Case

Proof. Note that Algorithm 3.2 is the same as Algorithm 3.1, except for the
difference that here we update C(i) instead of V (i). We show that the combined
effect of the update and KL projection steps is identical in the two algorithms.
Note that we can write V (i)′ as (X(i)′ , gi(X

(i)′)) for the randomized function gi
where Pr[gi(x) = a] ∝ eϵ·f(x,a,W

(i))/2k · Pr[C(i) = a|X = x] for every x and a.
For the same function gi, we have (X, gi(X)) = (X,C(i)′). Thus, we can apply
the following lemma.

Lemma 3.1. Let X ′ be a distribution on [N ] with supp(X ′) ⊇ supp(X ′), and
let g : [N ]→ [q] be a randomized function. Then the KL projection of (X ′, g(X ′))
on Conv(V) equals the KL projection of (X, g(X)) on Conv(V).

Proof. Consider any (X,C) ∈ Conv(V). We have

KL(X,C ∥ X ′, g(X ′))
= KL(X ∥ X ′) + KL((C|X) ∥ (g(X ′)|X ′)) (by chain rule for KL divergence)

= KL(X ∥ X ′) + KL((C|X) ∥ (g(X)|X)) (by def of conditional KL divergence)

= KL(X ∥ X ′) + KL(X,C ∥ X, g(X)). (by chain rule for KL divergence)

Thus the KL projections are the same.

4 Application: Uniform Hardcore Theorem

A fundamental result in complexity theory is Impagliazzo’s Hardcore Theorem
[Imp], which, in the strengthened version due to Klivans and Servedio [KS] and
Holenstein [Hol1], says that every function f : {0, 1}n → {0, 1} that is δ-hard
for poly-sized boolean circuits (that is, every poly-sized circuit fails to compute
f on at least δ fraction of inputs) must be extremely hard on a subset of inputs
of density at least 2δ (the hardcore set) (and may be easy elsewhere). In this
section, we provide a simplified proof of a hardcore theorem with optimal param-
eters, where hardness is defined with respect to uniform algorithms rather than



boolean circuits. Following [Imp], we will deal with hardcore distributions in-
stead of hardcore sets, which are equivalent up to a negligible additive difference
in density, where density of a distribution is defined as follows:

Definition 4.1 (Density of distribution). Let X and Y be distributions over
some finite set Σ. We say X is δ-dense in Y if Pr [Y = x] ≥ δ · Pr [X = x] for
all x ∈ Σ. We say X is δ-dense if it is δ-dense in UΣ (equivalently, having min-
entropy at least log |Σ| − log(1/δ)). We denote by Cm,δ the set of all δ-dense
distributions on {0, 1}m.

The (nonuniform) hardcore theorem with optimal hardcore density 2δ and op-
timal complexity blow-up O(log(1/δ)/ϵ2), is due to [KS] using techniques from
boosting, and an idea of iteratively increasing hardcore size due to Wigderson.
The theorem can be stated as follows:

Theorem 4.1 (Hardcore Theorem [KS]). Let (X,B)1 be a joint distribution
over {0, 1}n×{0, 1} and ϵ > 0. Let B be (t, δ)-hard given X, i.e. for every size t
circuit P it holds that Pr[P (X) = B] ≤ 1− δ. Then there is a joint distribution
(X̂, B̂) that is 2δ-dense in (X,B), such that for every size t′ = t/O(log(1/δ)/ϵ2)
circuit A it holds that Pr[A(X̂) = B̂] ≤ (1 + ϵ)/2.

The original paper of Impagliazzo [Imp] contains both a non-trivial constructive
proof, as well as a much simpler, yet non-constructive proof due to Nisan that
uses the Min-Max Theorem. Nisan’s proof has an appealing simplicity: Assume
for contradiction that there is no hardcore distribution of high density. Then,
by the Min-Max Theorem there is a universal predictor A∗ such that for every

(X̂, B̂) that is dense in (X,B) it holds that Pr
[
A∗(X̂) = B̂

]
> (1 + ϵ)/2. A∗ is

a distribution over circuits of size t, and its prediction probability is taken over
this distribution as well as (X̂, B̂). By subsampling we can assume that A∗ is
uniform over a multiset of S = O(log(1/ϵδ)/ϵ2) circuits of size t, while changing
the advantage ϵ by at most a constant fraction. Given the universal predictor
A∗, one can build a good predictor for B, contradicting the hardness of B given
X, as formalized in Lemma 4.1:

Lemma 4.1 (From universal circuit to predictor [Imp]). Let (X,B) be a
joint distribution on {0, 1}n × {0, 1}. Let A∗ be the uniform distribution over a
multiset of S circuits of size t. Suppose for every joint distribution (X̂, B̂) that

is δ-dense in (X,B) it holds that Pr
[
A∗(X̂) = B̂

]
> (1 + ϵ)/2. Then there is a

circuit P of size O(S · t) such that Pr [P (X) = B] > 1− δ.
Specifically, we can let P (x) = majority{A(x) : A ∈ A∗}. Equivalently, P (x)

outputs 1 with probability

1

2

(
1 + sign

(
Pr[A∗(x) = 1]− 1

2

))
.

1 The version we state is a slight generalization of the version in [KS], which only
allows B to be a deterministic boolean function of X. However, the more general
version follows readily from almost the same proof.



Unfortunately, both proofs in [Imp] yield a non-optimal hardcore density of
δ. Following Nisan’s proof using Min-Max Theorem, Holenstein [Hol1] proves
the hardcore theorem with optimal hardcore density of 2δ (Theorem 4.1), by
strengthening the above lemma to Lemma 4.2 below (using a trick from Levin’s
proof of the XOR Lemma).

Lemma 4.2 (From universal circuit to optimal predictor [Hol1]). Let
(X,B) be a joint distribution on {0, 1}n × {0, 1}. Let A∗ be the uniform distri-
bution over a multiset of S circuits of size t. Suppose for every joint distribution

(X̂, B̂) that is 2δ-dense in (X,B) it holds that Pr
[
A∗(X̂) = B̂

]
> (1 + ϵ)/2.

Then there is a circuit P of size O(S · t) such that Pr [P (X) = B] > 1− (1− ϵ) δ.
Specifically, we can let P (x) output 1 with probability p(x) truncated at 0 and

1 (i.e. min{max{p(x), 0}, 1}), for

p(x) =
1

2

(
1 +

Pr[A∗(x) = 1]− 1
2

ϕ

)
where ϕ is the least number s.t. PrX,B [PrA∗ [A∗(X) = B] ≤ 1/2 + ϕ] ≥ 2δ. (WLOG
ϕ is a multiple of 1/S.)

The drawback of these proofs based on the standard Min-Max Theorem is that
they are non-constructive, and that the complexity blow-up is non-optimal (with
non-optimal settings of S due to probabilistic construction of the multiset).

A constructive proof such as the one by Impagliazzo [Imp] can be inter-
preted as a hardcore theorem for the uniform setting of hardness, where the
hardness is with respect to efficient algorithms rather than small circuits. (See
Theorem 4.2 below for the exact formulation). This Uniform Hardcore Theo-
rem is needed for several important applications ([KS,Hol1,Hol2,HHR,HRV]).
Building on the constructive proof in [Imp], Holenstein [Hol1] also shows a uni-
form hardcore theorem with optimal hardcore density, but is rather involved and
fails to achieve the optimal complexity blow-up O(log(1/δ)/ϵ2). Subsequently,
Barak, Hardt, and Kale ([BHK]) gave an alternative proof of uniform hardcore
theorem achieving optimal complexity blow-up of O(log(1/δ)/ϵ2) (but without
optimal hardcore density), based on ideas of multiplicative weights and Bregman
projection.

As an application of the Uniform Min-Max Theorem (which itself is inspired
by [BHK]), we offer a new proof of the Uniform Hardcore Theorem. Essentially,
our proof simply replaces the use of Min-Max Theorem in Holenstein’s proof (of
the non-uniform hardcore theorem, Theorem 4.1) with the Uniform Min-Max
Theorem. Consequently it has the advantages of (i) optimal hardcore density
2δ; (ii) optimal complexity blow-up O(log(1/δ)/ϵ2); (iii) being more modular
(e.g. compared to [BHK]) and simpler (e.g. compared to Holenstein’s uniform
proof [Hol1]).
Notation. For a distribution Z, let OZ denote the oracle that gives a random
sample from Z when queried.

Theorem 4.2 (Uniform Hardcore Theorem). Let n be a security param-
eter, m = m(n) = poly(n), δ = δ(n), ϵ′ = ϵ′(n), q = q(n) all computable in



poly(n) time, and (X,B) = g(Um) be a joint distribution where g : {0, 1}m →
{0, 1}n×{0, 1} is computable in poly(n) time. Suppose that (X,B) has no hard-
core distribution of density at least 2δ, i.e. there is a time t oracle algorithm A
and infinitely many n, such that for every C ∈ Cm,2δ,

Pr
(x,b)←g(C)

[
AOC (x) = b

]
>

1

2
+ ϵ′.

Then there is a time poly(t, n, 1/δ, 1/ϵ′) randomized algorithm P such that for
infinitely many n,

Pr[P (X) = B] > 1− δ.

Moreover, P is computable with O(log(1/δ)/ϵ′2) oracle queries to A.

Proof (Sketch). (See the full version [VZ2] for a complete proof). We will apply
Theorem 3.1 (Uniform Min-Max Theorem), with

– V = Cm,2δ;
– W = {(deterministic) circuits of size tm+ poly(t)};
– f(z,W ) = I(W (x) = b), where (x, b) = g(z) and I(·) is the indicator func-

tion.

This corresponds to the two-player zero-sum game where Player 1 chooses some
distribution C ∈ Cm,2δ, and Player 2 chooses a tm+poly(t) sized circuit W , with
expected payoff F (C,W ) = E[f(C,W )] = Pr(x,b)←g(C) [W (x) = b] for Player 2.
It turns out that using A, Algorithm 3.1 (Finding Universal Strategy) with KL
projection on the set V = Cm,2δ can be implemented efficiently, such that for
infinitely many n, in each iteration we obtain (from running A) some W with
good prediction probability. This gives us an efficient universal predictor A∗ of
B given X, by the Uniform Min-Max Theorem. From the universal predictor,
we then obtain a (1 − δ)-predictor of B using Lemma 4.2, by searching for the
correct ϕ.

5 Application: Impossibility of Black-Box Construction
of Succinct Non-Interactive Argument

A result of Gentry and Wichs [GW] shows that there is no black-box construction
of succinct non-interactive arguments (SNARGs) from any natural cryptographic
assumption (formally, they consider falsifiable cryptographic assumptions: ones
that are defined by a polynomial-time security game). Their result relies on
the (mild) assumption that there exist hard subset membership problems, which
is equivalent to the existence of subexponentially hard one-way functions. One
limitation is that they need to work in the non-uniform setting, in part due to
their use of the Min-Max Theorem (in [GW] Lemma 3.1). In this section we
show how to obtain the analogous result in the uniform setting by using the
Uniform Min-Max Theorem. More specifically, assuming that there exist subex-
ponentially hard one-way functions that are secure against uniform algorithms,



we show that there is no black-box construction of SNARGs based on cryp-
tographic assumptions where security is measured against uniform algorithms
(unless the assumption is already false).

A succinct non-interactive argument (SNARG) is a non-interactive argument
system where the proof size is bounded by a fixed polynomial, for all instances
and witnesses whose size can be an arbitrarily large polynomial. Formally,

Definition 5.1 (SNARG). Let L be an NP language associated with relation
R. We say that a tuple (G,P, V ) of probabilistic polynomial-time (PPT) algo-
rithms is a succinct non-interactive argument for R if the following properties
hold:

– Completeness: For all (x,w) ∈ R, if we choose (CRS,PRIV)← G(1n),Π ←
P (CRS, x, w), then

Pr [V (PRIV, x,Π) = 0] = negl(n).

– Soundness: For every PPT algorithm (efficient adversary) A, if we choose
(CRS,PRIV)← G(1n), (X,Π)← A(1n,CRS), then

Pr [V (PRIV, X,Π) = 1 ∧X /∈ L] = negl(n).

– Succinctness: For all (x,w) ∈ supp(X,W ) and crs ∈ supp(CRS), the length
of the proof π = P (crs, x, w) is |π| = poly(n)(|x|+ |w|)o(1). We also consider
a weaker variant called slightly succinct, where we require the length of a
proof to be |π| = poly(n)(|x|+ |w|)α+ o(|x|+ |w|) for some constant α < 1.2

Our notion of a falsifiable cryptographic assumption is analogous to [GW], except
that the adversary A is a uniform algorithm instead of circuit:

Definition 5.2 (Falsifiable assumption). Given an interactive PPT algo-
rithm Chal (the challenger), the uniform falsifiable (cryptographic) assumption
(associated with) Chal states that for all (uniform) PPT algorithms H, the prob-
ability that Chal(1n) outputs a special symbol win after interacting with H(1n)
is at most negl(n) for all sufficiently large n.

For any randomized (possibly inefficient) function H, we let BreakH(n) de-
note the above probability and say that H breaks the assumption if BreakH(n) ≥
1/poly(n) for infinitely many n.

Remark 5.1. An alternative definition of falsifiable assumption allows specifying
a constant β, and says that the probability Chal(1n) outputs win is at most
β + negl(n). However, it turns out that setting β = 0, i.e. our definition above,
is without loss of generality [HH]. We adopt the simpler definition because it is
convenient for our proof.

Next we define black-box reductions:

2 Earlier versions of [GW] contained a minor bug in the definition of slight succinctness.
We use the corrected definition from the current version of their paper.



Definition 5.3 (Adversary and reduction). For a randomized function A
and a constant c ∈ N, we say (A, c) is a (G,P, V )-adversary if |A(1n, crs)| ≤
nc and A violates the soundness condition infinitely often, i.e. if we choose
(CRS,PRIV)← G(1n), (X,Π)← A(1n,CRS), then

Pr [V (PRIV, X,Π) = 1 ∧X /∈ L] ≥ n−c

for infinitely many n. We say (A, c) is an a.e. (G,P, V )-adversary if A violates
soundness for all sufficiently large n.

A uniform black-box reduction showing the soundness of (G,P, V ) based on
a falsifiable assumption Chal is a family of (uniform) probabilistic oracle al-
gorithms {Redc} (one for each c ∈ N) such that for every (G,P, V )-adversary
(A, c), RedAc (1

n) breaks the assumption and runs in time polyc(n) (i.e. a poly-
nomial that depends on c).

For a probabilistic oracle algorithm Red, we say a query (1m, crs) of Red(1n)
has length m. In general, Red(1n) may make queries of various lengths. We say
Red is length-mapping if for all n, all queries of Red(1n) are of the same length
m = m(n); denote this m by queryRed(n). Most reductions in cryptography set
m = n i.e. preserve length; that is, the security parameter of (G,P, V ) is equal
to that of the assumption.

Following [GW], our results assume the existence of hard subset membership
problem.

Definition 5.4 (Uniformly hard subset membership problem). Let n be
a security parameter, L be an NP language associated with relation R. We say
((X,W ), U) is a subset membership problem for R if (X,W ) = (X,W )(n) is a
poly(n)-time samplable joint distribution whose support lies in R, and U = U(n)
a poly(n)-time samplable distribution with Pr[U /∈ L] ≥ n−O(1).

A subset membership problem ((X,W ), U) is a subexponentially hard if X

and U are (2Ω(nδ), 2−Ω(nδ))-indistinguishable for a constant δ > 0. We say it is
exponentially hard if the above occurs and |x|+ |w| = O(nδ) for every (x,w) ∈
supp(X,W ).

This is a relatively mild assumption; for subexponentially hard subset member-
ship problems, their existence is equivalent to the existence of subexponentially
hard one-way functions.

Remark 5.2. Our definition of a hard subset membership problem is a variant
of [GW] that is needed in the uniform setting, but also can be used in the
nonuniform setting of [GW]. In [GW], they require that X is indistinguishable
from a (not necessarily samplable) distribution U whose support is disjoint from
L, whereas we require that U is samplable and allow it to hit L with negligible
probability.

We now state the uniform analogue of the main result of [GW]. Compared to
[GW], our Theorem 5.1 makes the weaker assumption of subexponentially hard
subset membership problem with respect to uniform algorithms, with the con-
clusion that a uniform falsifiable assumption cannot be broken also being weaker
(unless the assumption is false).



Theorem 5.1 (Main theorem). Let L be an NP language associated with
relation R that has a subexponentially hard subset membership problem, and
(G,P, V ) be an non-interactive proof system for R that satisfies the completeness
and succinctness properties. Then for every uniform falsifiable assumption Chal,
one of the following must hold:

– The assumption Chal is false, or
– There is no uniform black-box reduction showing the soundness of (G,P, V )

based on Chal.

The same conclusion also holds if we assume an exponentially hard subset
membership problem, and (G,P, V ) is only slightly succinct.

To prove it in the nonuniform setting, the main idea of [GW] is showing that
any SNARG (G,P, V ) has an inefficient adversary A that can be (efficiently)
“simulated” i.e. there exists an efficient algorithm Sim (the simulator) such that
RedA(1n) ≈ RedSim(1n) for all PPT oracle algorithms Red (cf. [GW] Lemma
4.1). Thus, if there were a black-box reduction Red showing the soundness of
(G,P, V ) based on a falsifiable assumption, then RedA would break the falsifiable
assumption (since A is an adversary) and so would RedSim (since RedA(1n) ≈
RedSim(1n)). In other words, the assumption would be false.

To prove it in the uniform setting, we do the same showing that there is an
adversary (A, c) that can be simulated by a uniform algorithm Sim, with several
necessary tweaks:

Lemma 5.1 (Existence of simulatable adversary). Let L be an NP lan-
guage associated with relation R that has a subexponentially hard subset mem-
bership problem ((X,W ), U), and (G,P, V ) be a non-interactive proof system
for R that satisfies the completeness and succinctness properties. Let n be a
security parameter, (PRIV,CRS) = G(1n), ((X,W ), U) = ((X,W ), U)(n), and
Π = P (CRS, X,W ). Let ℓ = ℓ(n) ≥ n be a polynomial bound on the run-
ning time of G(1n) as well as the proof size |Π|, and c be a constant such that
|X|+ |Π| ≤ nc.

Then for every length-mapping PPT oracle algorithm Red such that queryRed(k) =
ω(1), there is a PPT algorithm Sim and randomized function A satisfying:

– (A, c) is an a.e. (G,P, V )-adversary; and
– Sim simulates A: For all sufficiently large k, w.p. at least 1/poly(k), Sim(1k)

outputs a randomized circuit B such that

BreakRedA(k)− BreakRedB (k) = negl(k).

(WLOG B only takes inputs (1n, ·) where n = queryRed(k).)

The same conclusion also holds if we assume an exponentially hard subset mem-
bership problem, and that (G,P, V ) is only slightly succinct.

Note that Lemma 5.1 is only stated for length-mapping reductions (unlike [GW]).
We remove this restriction in the full version [VZ2] where we prove the main



theorem (for which we use the fact that the simulatable adversary (A, c) is an
a.e. adversary).

We defer the complete proof of Lemma 5.1 to the full version [VZ2], and offer
an overview below.

Overview of Proof of Lemma 5.1. The proof is set up as follows. Given a
subexponentially hard subset membership problem ((X,W ), U), we can WLOG
assume that X and U are (2dℓ, 2−dℓ)-indistinguishable for a sufficiently large
constant d, where ℓ = ℓ(n) is a bound on the length of the proof output by
P (crs, x, w) for (x,w) ∈ supp(X,W ) and crs ∈ supp(CRS). (If X and U are

only (2n
δ

, 2−n
δ

)-indistinguishable for some δ > 0, we simply re-index, replac-
ing X(n) with X((dℓ)1/δ)).) If ((X,W ), U) is exponentially hard, we can also
ensure that X and U are (2dℓ, 2−dℓ)-indistinguishable by re-indexing so that
ℓ ≤ poly(n)·(|x|+|w|)α+o(|x|+|w|) = O(|x|+|w|)/d for all (x,w) ∈ supp(X,W )
and crs ∈ supp(CRS).

Consider the joint distribution (CRS, X,Π) where CRS = CRS(n) is the dis-
tribution of common reference string, and Π = Π(n) is the ℓ-bit proof produced
by P for the instance/witness pair (X,W ). Using the fact that Π is short (by
succinctness), it turns out that the 2−dℓ-indistinguishability of X and U — and
hence of (CRS, X) and (CRS, U), by samplability of CRS — implies there is no
universal distinguisher D∗ (as a 2O(ℓ) time algorithm) that 2−O(ℓ)-distinguishes
(CRS, X,Π) from all (CRS, U,Π ′), where Π ′ is an ℓ-bit string arbitrarily jointly
distributed with (CRS, U). This is extracted from the proof of a technical lemma
of Gentry and Wichs ([GW] Lemma 3.1) and doesn’t require the use of the
Min-Max Theorem.

We consider the two-player zero-sum game where Player 1 selects a distribu-
tion Π ′ on {0, 1}ℓ jointly distributed with (CRS, U), then Player 2 selects a small
circuit D and receives (expected) payoff E[D(CRS, X,Π)] − E[D(CRS, U,Π ′)].
Recall that the Uniform Min-Max Theorem – Average Case (Theorem 3.2)
builds a sequence — which we denote by Listn — of Π ′ jointly distributed
with (CRS, U), and says that if for each Π ′ ∈ Listn we can obtain a 2−O(ℓ)-
distinguisher D between (CRS, X,Π) and (CRS, U,Π ′) e.g. by some 2O(ℓ) time
algorithm FindDist, then we can obtain a universal 2−O(ℓ)-distinguisher D∗ (as a
2−O(ℓ) time algorithm) for all possible Π ′. Since such D∗ cannot exist (by pre-
vious discussion), it must be that for every 2O(ℓ) time algorithm FindDist there
is some Π ′ ∈ Listn for which FindDist fails to produce a 2−O(ℓ)-distinguisher D.
Note that Listn actually depends on FindDist (indeed it is obtained by running
Algorithm 3.2 using FindDist to select the actions for Player 2).

We will use FindDist to construct the simulatable adversary A as follows. Con-
sider any Π ′ ∈ Listn for which FindDist fails to produce a 2−O(ℓ)-distinguisher.
We let A be the randomized function such that A(1n,CRS) = (U,Π ′). For an ap-
propriate choice of FindDist, such an A will always be an a.e. adversary. Indeed,
if A is not an a.e. adversary then (PRIV, U,Π ′) does not pass the soundness test,
whereas (PRIV, X,Π) passes the completeness test, hence we can use the verifier
V to construct a distinguisher between (CRS, X,Π) and (CRS, U,Π ′). Choosing
FindDist to produce this distinguisher yields an a.e. adversary A.



Thus we only need to argue that, for an appropriate choice of FindDist, A
is also simulatable. Our simulation is the algorithm S such that S(1n,CRS) =
(X,Π). If we appropriately construct FindDist from the reduction Red and chal-
lenger Chal, then we can show that

BreakRedA(k)− BreakRedS (k) ≤ 1/poly(k) · 2−O(ℓ),

where ℓ = ℓ(n) for n = queryRed(k). (Otherwise, we could use Red and Chal
to construct a 2−O(ℓ)-distinguisher between (CRS, A(1n,CRS)) = (CRS, X,Π)
and (CRS, S(1n,CRS)) = (CRS, U,Π ′).) This completes the proof provided that
2−O(ℓ) ≤ 1/poly(k), which follows if Red does not make queries that are too
short. If instead 2−O(ℓ) > 1/poly(k), then we construct a simulator for A differ-
ently — by simply outputting a random element of Listn, which will equal A and
be a perfect simulator w.p. 1/|Listn| = 1/2O(ℓ) ≥ 1/poly(k). (Gentry and Wichs
[GW] handle short queries using nonuniformity, by hardcoding all the answers.)
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A Omitted Lemmas

Lemma A.1 (Multiplicative weight update decreases KL). Let A,B be
distributions over [N ] and f : [N ]→ [0, 1] any function. Define random variable
A′ such that

Pr[A′ = x] ∝ eϵ·f(x) Pr[A = x]

for 0 ≤ ϵ ≤ 1. Then KL(B ∥ A′) ≤ KL(B ∥ A)−(log e)ϵ (E[f(B)]− E[f(A)]− ϵ).

Proof. See the full version [VZ2].
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