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Abstract. We show how to securely obfuscate the class of conjunction
functions (functions like f(x1,...,Zn) = 1 A Ta A T A+ A Tn_2).
Given any function in the class, we produce an obfuscated program which
preserves the input-output functionality of the given function, but reveals
nothing else.

Our construction is based on multilinear maps, and can be instantiated
using the recent candidates proposed by Garg, Gentry and Halevi (EU-
ROCRYPT 2013) and by Coron, Lepoint and Tibouchi (CRYPTO 2013).
We show that the construction is secure when the conjunction is drawn
from a distribution, under mild assumptions on the distribution. Security
follows from multilinear entropic variants of the Diffie-Hellman assump-
tion. We conjecture that our construction is secure for any conjunction,
regardless of the distribution from which it is drawn. We offer supporting
evidence for this conjecture, proving that our obfuscator is secure for any
conjunction against generic adversaries.

1 Introduction

Code obfuscation is the problem of compiling a computer program so as to
make it unintelligible to an adversary, or impossible to reverse-engineer, while
preserving its input-output functionality. Obfuscation has been of long-standing
interest to both the cryptography and security communities. However, despite
the importance of the problem, and its many exciting applications, very few
techniques or effective heuristics are known. In particular, the theoretical study
of the problem (in the “virtual black-box model” [2]) led to a handful of known
constructions, which apply to very limited classes of functions. These include the
class of point functions, and extensions such as multi-point functions, “lockers”
and constant-dimension hyperplanes.

In this work, we present an obfuscator for a new and different class: con-
junction functions. These are functions that take n-bit strings as input and only
accept if a subset of these bits are set to predefined values. Our construction relies
on (asymmetric) multilinear maps, and is instantiated using the new candidate
construction due to Garg, Gentry and Halevi [14].

Previous Results. The goal of an obfuscator is generating a program that pre-
serves the functionality of the original program, but reveals nothing else. One
commonly used formalization of this objective is “virtual black box” obfuscation,
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due to Barak et al. [2]. Our work uses this formalization , as well as alternative
formalizations from subsequent works (see below).

In their work, [2] also proved the impossibility of general-purpose obfusca-
tors (i.e. ones that work for any functionality) in the virtual black box model.
This impossibility result was extended in [15]. While these negative results show
serious limitations on the possibility of general-purpose obfuscation, they focus
on specific (often cryptographic or contrived) functionalities. Thus, they do not
rule out that obfuscation may be possible for many programs of interest.

Positive results on obfuscation focus on specific, simple programs. One pro-
gram family, which has received extensive attention, is that of “point functions”:
password checking programs that only accept a single input string, and reject all
others. Starting with the work of Canetti [6], several works have shown obfusca-
tors for this family under various assumptions [8, 20, 25], as well as extensions [7,
3]. Canetti, Rothblum and Varia [9] showed how to obfuscate a function that
checks membership in a hyperplane of constant dimension (over a large finite
field). Other works showed how to obfuscate cryptographic function classes under
different definitions and formalizations. These function classes include checking
proximity to a hidden point [12], vote mixing [1], and re-encryption [18]. Sev-
eral works [6, 8,17, 18] relaxed the security requirement so that obfuscation only
holds for a random choice of a program from the family, we will also use this
relaxation for one of our results. A different relaxation, known as “best-possible
obfuscation”, which allows the obfuscation to leak non black-box information
was presented in [16].

This Work: Obfuscating Conjunctions. Our main contribution is a new obfus-
cator for conjunctions. A conjunction C' = (W, V) is a function on n bit inputs,
specified by a set W C [n] of “wildcard” entries, and a vector V' € {0,1}" of tar-
get values for non-wildcard entries. The conjunction accepts an input Z € {0, 1}"
if for all i € ([n] \ W), Z[i] = V], i.e. if for all non-wildcard entries in Z, their
values equal those specified in V. We use the convention that if W[i] = 1 then
V]i] = 0 (wildcard entries are ignored, so this does not effect the conjunction’s
functionality).

The class of conjunctions, while obviously quite limited, has a rich combi-
natorial and computational expressive power. They are studied in a multitude
of settings throughout computer science (e.g. in learning theory [19]). One sig-
nificant distinction from previous function classes for which obfuscators were
known, is that a conjunction may ignore some of its input bits (the wildcard
entries). An obfuscator for conjunctions needs to produce a program that hides
which bits are ignored, and which ones are influential.

As an example of the applications of a conjunction obfuscator, consider the
following setting. There are k passwords, each controlling access to a particular
type of resource. Each individual knows some subset of the k passwords, which
corresponds to the resources it is allowed to access. A gatekeeper wishes to check
whether an individual has access to some combination of resources, i.e. whether
the individual knows a particular subset S C [k] of the passwords, without
revealing to an observer which combination it is checking. A conjunction, which
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takes as input k concatenated passwords, can check whether the passwords for
resources in S are correct, while ignoring passwords for resources not in S. An
obfuscation of this conjunction can be made public, and used to check whether an
individual has access to that combination of resources, without revealing which
resources are being checked (nor, of course, what any of the passwords are).

1.1 Our Construction and its Security

The main tool in our construction is multilinear maps. In particular, we utilize a
recent candidate for graded encoding (a generalization of multilinear maps) due
to [14].> We prove the security of our obfuscator when the conjunction is chosen
from a distribution with sufficient entropy: namely, when sampling C = (W, V)
from the distribution, even given the wildcard locations W, there is sufficient
(superlogarithmic) entropy in V. We stress that this does not imply that the
attacker is allowed to learn W; on the contrary, we prove that if C' is drawn from
a distribution with the aforementioned property, the adversary cannot learn
anything, wildcard locations included.* As noted above, here we follow several
works [6,8,17,18] which relax the security requirement to hold only when the
circuit to be obfuscated is drawn from a distribution from a certain class (usually
one with sufficient entropy).

We prove the above under two security assumptions on graded encodings
schemes: The first is a translation of the SXDH assumption on bilinear groups to
the setting of graded encoding schemes.? The second assumption is reminiscent
of “Canetti’s Assumption” [6] on Diffie-Hellman groups, which was introduced
for the purpose of obfuscating point functions.

We conjecture that the construction is secure for every conjunction, but we
were unable to produce a proof based on a well-established assumption (natu-
rally, one can always take the security of the obfuscator as an assumption). As
supportive evidence for the conjectured security, we prove that the obfuscator is
secure against generic adversaries: Ones that only use the group structure and
not the representation of the group elements. This is similar to the generic group
model of [24, 21]. The proof of security against generic adversaries is non-trivial,
and we view this as one of our main technical contributions. We note that pre-
vious works on obfuscation [20, 9] have also used the random oracle and generic
group models to provide evidence for the security of constructions.

3 We use the asymmetric variant of the encoding scheme, where there are several
distinct “source groups”.

4 We remark that in this case nothing at all can be learned from black-box access to
the function since it is infeasible to find an accepting input. We also remark that,
for example, the conjunctions used for the k-resource application above naturally
satisfy this condition, because of the entropy in each password.

5 This assumption is actually known to be false for the construction and formulation
of [14]. However, we show a more careful definition of the scheme and the assumption
for which no attack is known. Also, no attack is known for the recent construction
of Coron, Lepoint and Tibouchi [10].
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We proceed with an overview of our construction and results. As we explained,
the obfuscator uses the recent construction of multi-linear maps via graded en-
coding schemes [14]. We begin with a high-level overview on the properties of
multilinear maps that will be used. We then proceed with an overview of our
construction, and state our two main results.

Multilinear Maps and Graded Encoding Schemes: Background. We begin by re-
calling the notion of multilinear maps, due to Boneh and Silverberg [5]. Rothblum
[23] considered the asymmetric case, where the groups may be different (this is
crucial for our construction).

Definition 1.1 (Asymmetric Multilinear Map [5, 23]).
For 7+ 1 cyclic groups Gy, ...,G., Gr of the same order p, a T-multilinear
map e: Gy X ... X Gy = Gr has the following properties:

1. For elements {g; € G;}i=1,...r, index i € [7| and integer a € Z,, it holds
that:

e(gry oy @ Giyerosgr) =a-g(g1,.--,9r)

2. The map e is non-degenerate: when its inputs are all generators of their

respective groups {G;}, then its output is a generator of the target group
Gr.

Recently, [14] suggested a candidate for graded encoding, a generalization of
(symmetric or asymmetric) multilinear maps. See Section 2.2 for a more complete
overview of these objects. For this introduction, we treat them as a generalization
of asymmetric multilinear maps in the following way. For a 7-multilinear map
e, for the group G; of prime order p, we consider the ring Z,. For an element
o € Zp,, we can think of g7 as an “encoding” of o in G;. We denote this by
enc;(o). We note that this encoding is easy to compute, but (presumably) hard
to invert. The multilinear map e lets us take 7 encodings {enc;(0;)}ic(r],0,ez,
and compute the target group encoding ency([]; o). Graded encoding schemes
afford a similar functionality, albeit with randomized and noisy encodings, and
with a procedure for testing equality of encoded elements in the target group.

Our Construction. For a conjunction C' = (W, V') on n-bits inputs, the obfus-
cator uses the graded encoding scheme to obtain the above generalization to an
(n + 1)-multilinear map. For each input entry i € [n], the obfuscator picks ring
elements (p; 0, pi1, 0, ;1) distributed as follows: if ¢ ¢ T, namely the entry
isn’t a wildcard, then the ring elements are independent and uniformly random.
If i € W, namely the entry is a wildcard, then the ring elements are uniformly
random under the constraint that a; o = oy 1. After picking the ring elements,
the obfuscator outputs two pairs of encodings for each i € [n]:

{(wi,b = enci(PLb)a“i,b = enCi(szb : ai7b))}i€[n],be{0,1}

Note that if ¢ € W, then the ratio between the ring elements encoded in u;
and wj o, is equal to the ratio between the ring elements encoded in w; ;1 and w; 1
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(these ratios are, respectively, «; o and 1, which are equal when i € W). We
remark that this part of the obfuscation depends only on the wildcards W, but
not on the values V.

To complete the obfuscation, the obfuscator picks independent and uniformly
random ring element p, 11, and outputs a pair of encodings:

(Wnt1 = encri1(pnt1); Unt1 = enCry1(pPpta - H @i v(ip))
1€[n]
N—_———

=Qnt1

To evaluate the obfuscated program on an input & € {0, 1}", we test equality
between two multilinear products:®

7
6(. .. 7ui,.'i"[i]7 ce ,wn+1) = 6(. .. ,’U}af[ﬂ, e ,un+1) (1)

The full construction is in Section 3.

Correctness. Examining the two multilinear products in Eq. (1), the element
encoded in the left-hand side is (Hie[n] Pi,zli) " C.zi)) - Pn+1- The element encoded
in the right-hand side is (Hie[n] Pizli] - @, v[i)) - Pnr1- Thus, Eq. (1) holds if and

only if:
H QG zi] = H Q5 Vi) (2)
i€[n]

i€[n]

For ¢ € W we have o; 9 = o 1, the contributions from the i-th group to both
products in Eq. (2) are identical. For i ¢ W, the contribution from the i-th group
in the left-hand side of Eq. (2) is a; z;). In the right-hand side, the contribution
is a; v[;). Except for a negligible probability of error, Eq. (2) holds if and only if
all these contributions are identical, i.e. if and only if Vi ¢ W : Z[i] = V[i].

Security. Security is not as straightforward. A slightly misleading intuition for
security, is that if a DDH-like assumption holds within each group G; sepa-
rately, then no observer can distinguish from that group’s encodings whether
o0 = oy 1. This is true for each group in isolation, but it is insufficient because
the obfuscation also includes encodings, in group G,,1, of items that are corre-
lated with the items encoded in group . The multilinear map e might allow an
adversary to distinguish whether the i-th entry is a wildcard.

For example, if in C' all the entries are wildcards, the adversary can pick
a random input, run the obfuscation, see that it accepts, and then by flipping
the input bits one-by-one it can determine that all of the entries are wildcards.
This attack clearly demonstrates that (for some conjunctions) an adversary can
determine which entries are wildcards and which aren’t. Note, however, that
(for the specific example of a conjunction that is all-wildcards) this could also
be accomplished using black-box access to the conjunction.

5 For the candidate of [14], the encodings are randomized, but there is a procedure for
testing equality between encoded elements in the target group.
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Indeed, we prove the security of the obfuscator when the conjunction is drawn
from a distribution, under mild assumptions on the distribution’s entropy. We
conjecture that the obfuscator is actually secure for any conjunction, and as
supporting evidence we show that it is secure against generic adversaries. An
overview on both results follows.

Security for High Entropy. We prove the security of our scheme in the case
where C' = (W, V) is drawn from a distribution where the entropy of V' given
W is superlogarithmic. We do so by resurrecting the flawed argument described
above: We use the entropy to remove the dependence between the elements in
Gp+1 and those in the other groups, and then apply DDH in each group.

We start by noting that this dependence is due to the relation

an1 =[] civy (3)
i€[n]

and if we could replace «,, 1 with a completely uniform variable, independent
of the other a’s, we’d be done. To this end, we notice that Eq. (3) describes an
(almost) pairwise independent hash function, whose seed are the values a;p
and whose input is V. We show that such a hash function is a good entropy
condenser, so that almost all of the entropy in V is preserved in ay,1q. (It is
important to notice that the distinguisher has side information which depends
on W, and therefore we must require that the conditional entropy is high.)

Once we establish that «,, 1 has superlogarithmic entropy, we use a “Canetti-
like Assumption” [6]: we assume a high-entropy element in the exponent of a
random group generator is indistinguishable from uniform.” We thus isolate av, ;1
from the dependence on the other a’s, which allows us to apply DDH in groups
G1,...,G,, and obtain the final result: that the obfuscated program comes from
a distribution that can be efficiently simulated. The security proof is in Section 4.

Security in The Generic Model. We prove security against generic adversaries.
A generic adversary is one that succeeds regardless of the representation of the
encoding scheme. This is modeled by allowing it to only manipulate encodings
in the graded encoding scheme via oracle access to an oracle for the operations
that are available using the evparams parameters. We show that for any generic
adversary A, which takes as input an obfuscation and outputs a single bit, there
exists a generic simulator S s.t. for any conjunction C, the adversary’s output
on an obfuscation of C is statistically close to the simulator’s output given
only black-box access to C'. The distribution of the adversary is taken over the
choice of a random graded encoding scheme oracle: an oracle that represents
each encoding in each group using a (long enough) uniformly random string.
In this model, since each element’s encoding is uniformly random, and the
obfuscation contains the encodings of distinct ring elements, the obfuscation
of any conjunction is simply a collection of uniformly random strings. Thus

" Wee [25] showed that these types of assumptions (hardness given only super-
logarithmic entropy) are essential even for obfuscating point functions.
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simulating the obfuscator’s output is easy. The main challenge is that the outputs
to oracle calls on the string in the obfuscation are highly dependant on the
conjunction C. It is thus not clear how the simulator can simulate the oracle’s
outputs. For example, each accepting input & for C specifies two possible inputs
to the oracle implementing the multilinear map, which should both yield the
same encoding in the target group. Indeed, simulating the oracle call outputs
proves challenging. Moreover, the more generalized notion of graded encoding
schemes permits more general generic operations.

The simulator S operates as follows. It feeds the adversary A with a “dummy
obfuscation” containing uniformly random strings. It then follows A’s calls to
the graded encoding scheme (GES) oracle, and tries to simulate the output. For
each call made by A, we show how S can (efficiently) identify a polynomial size
set X of inputs, such that if V& € X,C(Z) = 0, then the oracle’s output is
essentially independent of C' and can be simulated. On the other hand, if there
exists ¥ € X s.t. C(Z) = 1, then the simulator can use its black-box access to
C to identify this input,. Once an accepting input is identified, the simulator
can further use its block-box access to C' to retrieve the conjunction’s explicit
description (W, V) (see Claim 3 below). Once the simulator knows (W, V) it can
(perfectly) simulate the adversary’s behavior. We view this proof of security for
generic adversaries as one of our main technical contributions.

The full specification and treatment of the generic GES model, as well as the
proof of security for generic adversaries, are deferred to the full version due to
space constraints.

2 Preliminaries

Notation. We use A(-,-) to indicate total variation distance (statistical distance).
We use 1 (respectively 0) to denote the all-1 (all-0) vector (the dimension will
be clear from the context).

2.1 Min-Entropy and Extraction

The following are information theoretic tools that will be required in our proof.
The main notion of entropy used in this work is that of average min-entropy
from [11], as well as its smooth version (see Definitions 2.1 and 2.2 below).
We then show that applying a pairwise independent hash function with a large
enough image on an average min-entropy source, roughly preserves the aver-
age min-entropy (that is, it is an entropy condenser). This is derived from the
generalized “crooked” leftover hash lemma [13,4].
We start by defining average min-entropy.

Definition 2.1 (average min-entropy [11]). Let X,Z be (possibly depen-
dent) random variables, the average min entropy of X conditioned on Z is:

H..(X|Z) = —log (Ez [Q—Hoo(mz:z)D
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It follows from the definition that for every deterministic function f (that
may depend on Z):
Hoo (f(X)|Z) < Ho(X12) . (4)

We also use a smooth variant introduced in [11, Appendix A] following [22].

Definition 2.2 (smooth average min-entropy [11]). Let X, Z be as above
and let € > 0, then

H (X|2) H. (X'|Z') .

= max
(X7,27):A((X,Z),(X",2"))<e

We will next show that pairwise independent functions condense average
min-entropy in the following way.

Lemma 2.3. Let X, 7 be random variables, let H be a pairwise independent
hash family with output length > {IF:IOO(X|Z) —2log(1/e) + QJ (represented as

binary string), for some € > 0. Then letting h < H be a properly sampled
function from this family, it holds that

H_(h(X)|Z,h) > Heo(X|Z) — 21og(1/¢) + 1 .

Proof. Let X, Z,H,h, e be as in the lemma statement. Our goal is to show that
there exists a random variable Y such that

A((h(X)727 h)a (Ya Z, h)) <e,

and B _
H.(Y|Z,h) > Hoo(X|Z) —2log(1/e) + 1 .

Let f be the function that outputs the first k bits of its input, for
k= [ﬁo@(xw) — 2log(1/e) + 2J > Hoo(X[Z) - 2log(1/e€) + 1,

and note that f(U) is uniform over {0, 1}* (in fact, we can use any function that
has this property).
We recall that the generalized “crooked” leftover hash lemma [4, Lemma 7.1]
implies that
A(F(R(X)), Z,h), (fU), Z,1)) < e .

Now, consider a 2-step process for sampling the joint distribution (h(X), Z, h):
first, sample (f(h(X)),Z,h) from the appropriate marginal distribution; and
then sample h(X) conditioned on the previously sampled values.

We define Y using using the following process: First, sample a tuple according
to the distribution (f(U), Z, h), and then apply the second stage of the sampling
process from above. The result will be the distribution (Y, Z, h). Clearly,

A((MX), Z, 1), (Y, Z,h)) = A((f(h(X)), Z,h), (f(Y), Z,h)) < e,
—f

—
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where the first equality is since there is a deterministic mapping (f) from the
left hand side to the right hand side, and a randomized mapping (the second
step sampler) from the right hand side to the left hand side.

To conclude, we notice that

Hoo(Y[Z,h) 2 Hoo (f(Y)|Z,h) = Hoo ({0, 1}*|2,h) > Hoo(X]Z)~210g(1/€)+1 .

=k

2.2 Graded Encoding Schemes and Assumptions

We begin with the definition of a graded encoding scheme, due to Garg, Gentry
and Halevi [14]. While their construction is very general, for our purposes a more
restricted setting is sufficient as defined below.

Definition 2.4 (r-Graded Encoding Scheme [14]). A T-encoding scheme
for a ring R is a collection of sets S = {S‘(,a) c {0,1}* : v € {0,1}7,a € R},
with the following properties:

1. For every index v € {0,1}7, the sets {S‘(,a) : a € R} are disjoint, and so they
are a partition of the indexed set Sy = UaeR S‘(,a).

2. There are binary operations “+”7 and “—” such that for all v € {0,1}7,
a1,a9 € R and for all uy € S‘(,al), U € S\(,M):

Uy + ug € S‘(,"“Jra'") and up — ug € S‘(,O‘l_o‘ﬁ ,

where a1 + ao and oy — ag are addition and subtraction in R.
3. There is an associative binary operation “x” such that for allvy,ve € {0,1}7

such that vi + vo € {0,1}7, for all ay,as € R and for all u; € S‘(,?l),
uy € 82 it holds that

S(a1~a2)

up X ug € vidva

where o - ag 18 multiplication in R.
In this work, the ring R will always be Z,, for a prime p.

To the reader who is familiar with the [14] work, we note that the above is
the special case of the [14] construction in which we consider only binary index
vectors (in the [14] notation, this corresponds to setting k = 1), and we construct
our encoding schemes to be asymmetric (as will become apparent below when
we define our zero-text index vat = 1).

Definition 2.5 (Efficient Procedures for a 7-Graded Encoding Scheme
[14]). We consider T-graded encoding schemes (see above) where the following
procedures are efficiently computable.
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— Instance Generation: InstGen(1*,17) outputs the set of parameters params,
a description of a T-Graded Encoding Scheme. (Recall that we only consider
Graded Encoding Schemes over the set indices {0,1}7, with zero testing in
the set S7). In addition, the procedure outputs a subset evparams C params
that is sufficient for computing addition, multiplication and zero testing® (but
possibly insufficient for encoding or for randomization,).

— Ring Sampler: samp(params) outputs a “level zero encoding” a € Séa) for
a nearly uniform o €g R.

— Encode and Re-Randomize:® encRand(params,i,a) takes as input an index
i€r] and a € S’(()a), and outputs an encoding u € Sé?), where the dis-
tribution of u is (statistically close to being) only dependent on o and not
otherwise dependent of a.

— Addition and Negation: add(evparams,uy,us) takes u; € S\(,al)mg € S‘(,M),
and outputs w € glontaz) (If the two operands are not in the same in-
dexed set, then add returns 1 ). We often use the notation uy + us to de-
note this operation when evparams is clear from the context. Similarly,
negate(evparams,uy) € Sion),

— Multiplication: mult(evparams, uy,us) takes uj € S"(,?l),uQ € S"(,(f). If vi +
vy € {0,1}7 (i.e. every coordinate in vi+vs is at most 1), then mult outputs
w E S\(,?isf) Otherwise, mult outputs 1. We often use the notation uy X us

to denote this operation when evparams is clear from the context.

— Zero Test: isZero(evparams,u) outputs 1 if u € S;O), and 0 otherwise.

In the [14, 10] constructions, encodings are noisy and the noise level increases
with addition and multiplication operations, so one has to be careful not to go
over a specified noise bound. However, the parameters can be set so as to sup-
port O(T) operations, which are sufficient for our purposes. We therefore ignore
noise management throughout this manuscript. An additional subtle issue is that
with negligible probability the initial noise may be too big. However this can be
avoided by adding rejection sampling to samp and therefore ignored throughout
the manuscript as well.

It is important to notice that our definition deviates from that of [14] as we
define two sets of parameters params and evparams. While the former will be
used by the obfuscator in our construction (and therefore will not be revealed
to an external adversary), the latter will be used when evaluating an obfuscated
program (and thus will be known to an adversary). When instantiating our defi-
nition, the guideline is to make evparams minimal so as to give the least amount
of information to the adversary. In particular, in the known candidates [14, 10],
evparams only needs to contain the zero-test parameter pzt (as well as the
global modulus).

8 The “zero testing” parameter pzt defined in [14] is a part of evparams.
9 This functionality is not explicitly provided by [14], however it can be obtained by
combining their encoding and re-randomization procedures.
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Hardness Assumptions In this work, we will use two hardness assumptions
over graded encoding schemes. The first, which we call “graded external DDH”
(or GXDH, Assumption 2.6 below) is an analog of the symmetric external DH as-
sumption (SXDH), instantiated for the multilinear case. The second assumption
(GCAN Assumption 2.7) is an analog of Canetti’s assumption [6], that taking a
random generator to a high-entropy power results in a random-looking element.
We note that we make these assumptions against non-uniform adversaries.

Assumption 2.6 (Graded External DH). Letting (params, evparams) <
InstGen(1*,17), for all i = 1,...,7, sample r;0,7i 1, ;0,01 < samp(params)
and consider the following values:

w; o < encRand(params, i,r; ) w; 1 < encRand(params,i,r; 1)
u;,0 < encRand(params,i,7; 0 X a;0) u;1 < encRand(params,i,r;1 X a;1)
u} 1 < encRand(params,i,m;1 X a;0)

The GXDH assumption is that for every choice of 7 € N and i* € [7], no
ensemble of polynomial time adversaries can have have non-negligible advantage
in distinguishing the distributions:

(evparams, {(wi,0, wi0, wi1, i1, Uy 1) Yisti (Wis 0, Uiv 0, Wie 1, Ui+ 1))

and
(evparams, {(wi,o, Ui, 0, Wi, 1, Uj, 1, U;'J)}z’;éi*a (wz‘*,o, Ui=,0, Wix 1, U;1))

We note that a stronger version of this assumption, where the distinguisher
is given access to params rather than evparams, was presented in the the early
versions of [14]. It was later shown that this stronger assumption is false, see
later versions of [14] for the attack. We emphasize that no attacks are known if
only evparams is given as above. Furthermore, the new candidate of [10] is not
known to be sensitive to such attacks even if params is given.

Since we only provide our distinguisher with evparams, it may not be able
to generate DDH tuples by itself. We therefore provide it with correctly labeled
DDH samples for all groups except ¢*. This is the minimal assumption that is re-
quired for our construction, however we conjecture that a stronger variant where
the adversary is allowed to receive an unbounded number of labeled samples at
any group (including ¢*) is also true.

For our next assumption, we introduce the following notation. Consider a
distribution D over S, = UQGRS‘(,O‘). The distribution enc™!(D) is defined by

the following process: Sample z < D, let a be such that x € S‘(,O‘)7 output .
We also recall the definition of smooth average min-entropy (see Definition 2.2
above).

Assumption 2.7 (“Graded Canetti”). Let (params, pzt) + InstGen(1*,17)
and let {(Dx, Zx)}xen be a distribution ensemble over So x {0,1}*, such that

ﬁgo(enc_l(DAﬂZ,\) > h(N),
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for some € = negl(\) and function h(\) = w(log \).
The GCAN assumption is that no ensemble of polynomial time adversaries
and indices i can have non-negligible advantage in distinguishing the distributions

(params, evparams,w,u, z) and (params, evparams,w,u’, z) ,

where we let: (params, evparams) < InstGen(1*,17), r < samp(params), w <
encRand(params,i,r), (z,2) + (Dx, Z)), u < encRand(params,i,r X x), u’ +
encRand(params,i,samp(params)). (In this definition, the distinguisher is given
both params and evparams.)

This assumption is consistent with out knowledge on candidate graded en-
coding schemes. However, if we want to make an even weaker assumption, we
can set the minimal entropy requirement to be higher than just w(logA). The
constructions in this paper can trivially be adapted to such weaker variants (with
the expected degradation in security).

2.3 Obfuscation

Definition 2.8 (Virtual Black-Box Obfuscator [2]).

Let C = {Cp}nen be a family of polynomial-size circuits, where Cy, is a set
of boolean circuits operating on inputs of length n. And let O be a PPTM algo-
rithm, which takes as input an input length n € N, a circuit C € C,, a security
parameter A € N, and outputs a boolean circuit O(C) (not necessarily in C).

O is an obfuscator for the circuit family C if it satisfies:

1. Preserving Functionality: For every n € N, and every C' € C,, and every
Z € {0,1}™, with all but negl(\) probability over the coins of O:

(O(C 1", 0))(F) = C(2)

2. Polynomial Slowdown: For everyn, A € N and C € C, the circuit O(C,1",1*)
is of size at most poly(|C|,n, \).

3. Virtual Black-Box: For every (non-uniform) polynomial size adversary A,
there exists a (non-uniform) polynomial size simulator S, such that for every
n € N and for every C € C,:

|(554[A((9(C, 1", 1Y) =1] - @[5%‘“, 17,1%) = 1]| = negl(\)

Remark 2.9. A stronger notion of functionality, which also appears in the lit-
erature, requires that with overwhelming probability the obfuscated circuit is
correct on every input simultaneously. We use the relaxed requirement that for
every input (individually) the obfuscated circuit is correct with overwhelming
probability (in both cases the probability is only over the obfuscator’s coins). We
note that our construction can be modified to achieve the stronger functionality
property (by using a ring of sufficiently large size and the union bound).
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Definition 2.10 (Average-Case Secure Virtual Black-Box).

Let C = {Cn}nen be a family of circuits and O a PPTM as in Definition
2.8. Let D = {D, }nen be an ensemble of distribution families D,,, where each
D € D, is a distribution over C,,.

O is an obfuscator for the distribution class D over the circuit family C, if it
satisfies the functionality and polynomial slowdown properties of Definition 2.8
with respect to C, but the virtual black-box property is replaced with:

3. Distributional Virtual Black-Box: For every (non-uniform) polynomial size
adversary A, there exists a (non-uniform) polynomial size simulator S, such
that for every n € N, every distribution D € D,, (a distribution over Cy),
and every predicate P : C,, — {0,1}:

| Pr [A(O(C,1",1%)) = P(C)]— Pr [S€(1I9,1",1*) = P(C)]| = negl())

C~Dp, C~ Dy,
S

Remark 2.11. Our proof of average-case security for the conjunction obfuscator
(Theorem 4.2) is in fact stronger. We show a simulator S that does not even
require black-box access to the circuit C'. Rather, for a circuit C drawn from a
distribution in D, the probability of predicting P(C) from an obfuscation of C,
is the same as the probability of predicting P(C) from a “dummy obfuscation”
that is independent of C. See the proof for further details.

3 Obfuscating Conjunctions

In this section we present our obfuscator for conjunctions ConjObf (Figure 1).
We provide a proof of security for functions that are not determined by the
locations of the wildcards in Section 4. In the full version, we provide evidence of
the security of our construction for any conjunction, by proving that it is secure
against generic adversaries that do not use the representation of the specific
graded encoding scheme.

We start by defining the class of conjunctions, and a useful property thereof.

Definition 3.1 (n-bit Conjunction).
For an input length n, a conjunction C = (W, V) : {0,1}"™ — {0,1} is a predicate
on n-bit inputs, which is defined by two vectors W,V € {0,1}™. For every input
Z e {0,1}", C(&) = 1 iff for all i € [n], W[i] = 1 or V[i] = Z[i]. For the
sake of unity of representation, we require that whenever W i) = 1, it holds that
Vi =0.

We often alternate between treating W as an index vector and treating it as
a subset of [n]. If i € W then we say that i is a wildcard location.

Definition 3.2 (Conjunction Ensemble).

A conjunction ensemble C = {Cp}nen is a collection of conjunctions Cy, :
{0,1}™ — {0, 1}, one for each input length.
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Claim. There exists an efficient algorithm B, such that for any conjunction C' =
(W, V), and any accepting input & of C, B can recover (W, V):

VO = (W,V),VE: C(F) =1, B (@) =(W,V)
Proof. Take n = |Z|, the algorithm B enumerates over the bits of Z. For each
bit 4, it flips the i-th bit of #: Z() = Z @ e;, and checks whether C(£(?)) = 1.

If so, then i must be a wildcard: Wi] = 1 and V[i] = 0. Otherwise, i is not a
wildcard: Wi] = 0 and V[i] = Z[i].

Obfuscator ConjObf, on input (1*,1",C = (W, V))

1. generate (params, evparams) < InstGen(1*,1"T1)
2. for i € [n]:

if i € W, then: @i = ai1 + samp(params) € S*° = §{*")

if i ¢ W, then: a;,0 + samp(params) € Séa"*")7 ai1 + samp(params) € Séai,l)
3. for i € [n]:

ri,0 < samp(params) € Sépi“’)’ri’l + samp(params) € S(()p“’)

8i,0 < Ti,0 X G0 € Sép“o‘ai")), Siq 4 Tiq X aig € Sépi,l'ai,l)
w;,0 < encRand(params,i,r; o) € Séfi,o)
w;,1 < encRand(params,i,r;1) € Sé,?i,l)
u;,0 < encRand(params, i, s;0) € Sé,ioi,o-ai,o)

) e Séfi,l'ai.l)

c SéH’iE[n]o‘i,V[i])

u;,1 < encRand(params, i, s; 1
4. ant1 + (Hiepai,vi)

Tnt1 < samp(params) € S((Jp”+1)

(P 1115 a; . )
Sp+1 < T4l X Any1 € SO ntlitien] Y, V[i]
Wn41 < encRand(params,n+ 1,rn41) € Séi?jjil)

nt+1- e, vii
Un+1 ¢ encRand(params,n + 1, s,41) € Séi;;l €ln @i viil)

5. output the obfuscation:

(evparams, {(wi,0,1i,0), (Wi,1,%i,1) }icin]; (Wnt1, Unt1))

Evaluation, on input € {0,1}"

pnt1-(ie[n) Pi, 2] %4, 7 (i)
Lt ¢ (Wnt1 X Migpyui ) € S<(1,1,+..1.,1) cimiPiati @sat)

P41 (i) via) (Hign) P, z[4])
2.t/ (unt1 X Higpwi) € S((1,1,4.4,1) emaivia) (Tiepnizi)

3. output the bit: isZero(evparams, (t —t')).

Fig. 1. Obfuscator for Conjunctions.

Our obfuscator for the class of conjunctions is presented in Figure 1. Cor-
rectness follows in a straightforward manner as described in the following lemma
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(the proof is omitted). We note that the error is one sided, it is always the case
that if C'(Z) = 1 then for the obfuscated program O¢(Z) = 1 as well.

Lemma 3.3 (Obfuscator Functionality). Let C be an n-variable conjunction
and consider its obfuscation Oc = ConjObf(C,1",1*). Then for all T,

Pr[Oc(Z) # C(Z)] < poly(n)/p ,

where p = 29X s the order of the group in the graded encoding scheme, and
the probability is taken over the randomness of ConjObf.

As a concluding remark, we note that if our graded encoding scheme has the
property that p > 2™ (which is indeed achievable in the candidate of [14]), then
a stronger correctness guarantee, as mentioned in Remark 2.9, can be achieved
by using the union bound. In this parameter range, the proof of security also
becomes somewhat simpler (see Section 4). However, we want to present our
scheme in the most generic way so as to be compatible with possible choices of
the security parameter and with future graded encoding schemes.

4 Security from GXDH and GCAN

In this section we prove that ConjObf is a secure distributional black box obfus-
cator for any distribution over the conjunctions family for which the function is
hard to determine (i.e. has super-logarithmic entropy) even if the locations of
all the wildcards are known. Namely, there is sufficient min-entropy in V' even
given W (recall that V[i] = 0 wherever W[i] = 1).

Definition 4.1 (equivocality given wildcards). Let C be the class of con-
Junctions, and let D = {Dx} be an ensemble of families of distributions. We say
that D is equivocal given the wildcards if there exists h(A) = w(log A) such that
for all D € Dy, if (V,W) < D then

H..(V|W) > h()) .

We will prove the security of ConjObf for such functions under the GXDH
and GCAN assumptions (see Section 2.2).

Theorem 4.2. Based on the GXDH and GCAN assumptions, the algorithm
ConjObf is an average-case black-box obfuscator for ensembles of distribution
families that are equivocal given the wildcards.

Proof. We start by stating a claim that will be used later on in the proof.

Claim. Let p be prime and let k¥ € N be integer. Consider the hash family H C
{0,1}F — Zy,, where each function in H is defined by a sequence ag, a1, ..., aj €
Z,, and
Hao,al,.“,ak (xla s 7:1;16) =ap - H a?i 3
1€[k]

then H is pairwise independent.
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This claim follows in a straightforward manner since H (defined therein) is
a random linear function “in the exponent”.

Consider a function C' = (W, V) drawn from a distribution Dy, and consider
the distribution of a properly obfuscated program ConjObf(C). We will show,
using a sequence of hybrids, that this distribution is computationally indistin-
guishable from one that does not depend on C, even for a distinguisher who
knows the value of the predicate P(C). This will immediately imply a simulator.
We note that our proof works even for P(C') with multiple-bit output, so long
as h(A) — |P(C)] = w(log A).

1. In this hybrid, we use ConjObf as prescribed:
O¢ = ConjObf(C) = (params,pzt, {(w“”uixb)}ie[n],be{o,l} , (Wht1, Un+1))

2. We change the algorithm so that a; ;, & S(()O). This is implemented efficiently
by rejection sampling, using the zero-test procedure. In this hybrid, therefore,
@ p is uniform in L.

This hybrid only incurs a negligible poly(\)/p statistical distance in the
distribution of O¢ compared to the previous hybrid.

3. We change step 4 of the obfuscator. In particular, we will now sample a1 +

samp(params) (conditioned on it not being zero, as above). This means that
Gpy1 € S(ga"“) for a random oy, 41 € Zj.
We will now show that the resulting O¢ distribution is computationally
indistinguishable from the previous hybrid under the GCAN assumption
(Assumption 2.7), even when the distinguisher knows P(C'). Namely, we
will show that for some negligible €, the distributions in the previous hybrid
are such that

B (| {00 wi) s pe o) - P(O) =wllogd) . (5)

which will allow us to apply GCAN and conclude that «.,+1 can be replaced
by a uniform variable.

To show that Eq. (5) holds, we present a slightly different way to generate
the variables c;; (note that from this point and on, we are a completely
information-theoretic setting, so we will not worry about computational as-
pects). We will first sample {&; 5 }ie[n)befo,1y completely uniformly in Zy,
and then set «;; as follows. If W[i] = 0 then a; 0 = &; 0, ;1 = &;1; and if
Wil =1 then a; 0 = a;1 = &; 0. Note that the resulting distribution of the
a’s is exactly as prescribed. Further notice that

Qg1 = H Oél Vi) 2/1[7,] H Al V[z & V[i] H azO H 047, 1/0110
i€[n] [n]
(6)
where the second equality is since « and & only differ where Wi] = V[i] = 0.
By Claim 4 it follows, therefore, that a,41 is the output of a pairwise-
independent hash function applied to V.
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We proceed to apply Lemma 2.3. Note that Hoo (V|W, P(C)) > Hoo (VW) —
|P(C)| > h(M\) — 1. Therefore there must exist h’'(\) = w(logA) such that
W (M) < h(\) —1, and in addition the length of o, is at least h'(\)/3 + 2.
We can thus apply Lemma 2.3 with e = 277" ()/3 = negl(X\) to argue that

HE (ani1|W, P(C), {dip}) = H'(N)/3 = w(logA) . (7)

Finally, Eq. (5) follows by noticing that there is an invertible mapping be-
tween W, {&ip} and {(wip, i) }icin) pefoy-

It is interesting to note that this hybrid (and therefore our entire argument)
works not only for predicates. In fact, ¢-bit functions of the circuit C' can be
used, so long as h(\) — £ = w(log A).
At this point, O¢ does not depend on V' anymore, however it still depends
on W via step 2 of ConjObf.

4. We again allow a;; to be zero. The statistical difference is poly(\)/p =
negl(\), as above.

5. We change step 2 of the obfuscator to always act as if i € W, namely o, ¢
and a; 1 are uniform and independent.
A sequence of n hybrids will show that any adversary distinguishing this
distribution from the previous one, can be used to break GXDH with only
a factor n loss in the advantage. This implies that the hybrids are compu-
tationally indistinguishable assuming GXDH. Note that knowledge of P(C)
(or even of C in its entirety) is useless for the distinguisher at this point.

After the last hybrid, we are at a case where all a;p, 75 b, Gny1, Tny1 are
completely independent of each other, and are sampled in the same way regard-
less of (V,W). It follows that our final distribution is independent of C, but
produces O¢ indistinguishable from ConjObf(C') (even given P(C)). Since this
distribution is efficiently sampleable (via the process we describe in the proof),
the theorem follows.
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