
Leakage-Resilient Symmetric Cryptography
Under Empirically Verifiable Assumptions

François-Xavier Standaert1, Olivier Pereira1, Yu Yu2

1 ICTEAM/ELEN/Crypto Group, Université catholique de Louvain, Belgium.
2 East China Normal University and Tsinghua University, China.

Abstract. Leakage-resilient cryptography aims at formally proving the
security of cryptographic implementations against large classes of side-
channel adversaries. One important challenge for such an approach to be
relevant is to adequately connect the formal models used in the proofs
with the practice of side-channel attacks. It raises the fundamental prob-
lem of finding reasonable restrictions of the leakage functions that can
be empirically verified by evaluation laboratories. In this paper, we first
argue that the previous “bounded leakage” requirements used in leakage-
resilient cryptography are hard to fulfill by hardware engineers. We then
introduce a new, more realistic and empirically verifiable assumption of
simulatable leakage, under which security proofs in the standard model
can be obtained. We finally illustrate our claims by analyzing the phys-
ical security of an efficient pseudorandom generator (for which security
could only be proven under a random oracle based assumption so far).
These positive results come at the cost of (algorithm-level) specialization,
as our new assumption is specifically defined for block ciphers. Never-
theless, since block ciphers are the main building block of many leakage-
resilient cryptographic primitives, our results also open the way towards
more realistic constructions and proofs for other pseudorandom objects.

Introduction

Physical cryptanalysis is an important concern for cryptographic implementa-
tions. By allowing to circumvent the models in which standard security proofs
are obtained, it can lead to powerful attacks (e.g. key recoveries) against large
classes of devices. Following the publications of papers about side-channel [24],
fault [6] or cold boot attacks [16], a large body of research has investigated so-
lutions to mitigate these security breaches. For this purpose, a natural solution
is to add protection mechanisms directly at the hardware level (i.e. independent
of the algorithm implemented). Examples of such approaches include masking
and hiding against side-channel attacks [26], error-detection codes against fault
attacks [20], and their formal extensions as compilers (e.g. [18, 19]) - leading to
contrasted observations. On the one hand, these countermeasures are useful as
they reduce the amount of information leakage provided by physical implementa-
tions. On the other hand, they usually imply significant performance overheads,
and the security they provide is highly dependent on technological assumptions
(that may turn out to be contradicted in practice). Over the years, and starting

with the seminal work of Micali and Reyzin [27], the question whether a com-
plementary approach exploiting the formalism of modern cryptography could be
used in order to improve physical security consequently triggered the interest of
many researchers. In other words, can we design new cryptographic constructions
and security models in which the guarantees of provable security can be extended
from mathematical objects towards physical ones? And are the results obtained
in these models practically relevant (in terms of performance and security)?

Related work. A look at the recent literature suggests that a wide variety of
tools aiming at reflecting different classes of physical attacks exist, ranging from
quite abstract to more realistic, and for various types of cryptographic primitives.
For example, the bounded retrieval model captures an hypothetical situation in
which the total amount of information leaked through the execution of a crypto-
graphic primitive is bounded [1, 3]. One important drawback of this abstraction
is that quantifying an “overall amount of leakage” is hard for hardware engi-
neers. Besides, if a system is being used continually for a sufficiently long period
of time, the amount of leakage observed by the attacker may exceed any a-priori
determined leakage bound. As a result, alternative models have been proposed,
assuming that the leakage rate is bounded and leaving the overall leakage arbi-
trarily large, e.g. Dziembowski and Pietrzak’s leakage-resilient cryptography [12].
These models have been applied for analyzing different cryptographic primitives,
including PRGs and stream ciphers [13, 30, 38, 39], PRFs and PRPs [11, 13, 38],
signature schemes (e.g. [7, 21]) and public-key encryption (e.g. [2, 22]).

Are we done? Not really. Despite significant progresses and many clever de-
sign ideas, the fundamental problem of formal approaches to physical security
remains to determine reasonable restrictions of the leakage function. Even taking
the simple(st) example of leakage-resilient PRGs (that will be our main concern
in this work), obtaining security proofs in the standard cryptographic setting
turns out to be surprisingly difficult [12, 13, 30, 38, 39]. Intuitively, the proofs ob-
tained so far require a combination of seemingly too weak assumptions (e.g. that
the leakage may come from any polynomial time function) and seemingly too
strong assumptions (e.g. that the information leakage is bounded in a somewhat
unrealistic manner) [35]. Consequences of this imperfect modeling are threefold.
First, it implies design tweaks that seem motivated by proof artifacts more than
physical intuition, and consequently harm performances. Second, obtaining the
proofs requires intricate (though sometimes of independent interest) mathemat-
ical tools, usually leading to loose security bounds. Third and most importantly,
it leaves the question of how to connect the results in leakage-resilient cryptog-
raphy with the practice of side-channel attacks essentially open.

Our contribution. In this paper, we start by investigating the relevance of
different bounded leakage assumptions. In particular, we confront the notion
of HILL pseudoentropy used to prove the leakage-resilience of previous PRGs,
PRFs and PRPs to the operation of actual side-channel attacks, and argue that
it is hard to verify empirically. We then tackle our main problem, i.e. the con-
struction of a leakage-resilient PRG based exclusively on empirically verifiable

assumptions. For this purpose, our central ingredient is the introduction of a spe-
cialized assumption of simulatable leakage. We first show that this requirement
is easier to guarantee than maintaining a high pseudoentropy in a leaking device,
and detail how it can be tested in actual security laboratories. Next, we show the
security of an efficient leakage-resilient PRG under simulatable leakage. Eventu-
ally, we put forward that our new modeling allows mitigating the three issues
listed in the previous paragraph. In particular, it allows major simplifications
of the proofs, with reductions directly connected to our physical assumption
(i.e. the quality of the simulator). From a methodological point of view, the
idea of specialized assumption that we introduce can be seen as an intermediate
path, between fully generic requirements (e.g. bounded leakage that applies to
any algorithm) and implementation-specific ones (e.g. as used in hardware-level
countermeasures). More precisely, our simulatable leakage assumption is spe-
cialized at the algorithm level, and applies to any block cipher. We believe this
intermediate path is interesting, as it allows a better connection between the
theory and practice of side-channel attacks. It is also general enough for being
potentially applicable to the many other symmetric cryptographic primitives.

1 Previous leakage assumptions

In this section, we analyze different assumptions that have been introduced in
previous works, in order to bound the informativeness of a leakage function.
For this purpose, we start by providing a description of leakage traces, as they
are obtained from the power consumption or electromagnetic radiation of actual
cryptographic devices. We then argue that assuming a leakage function with
bounded range, or assuming that the secrets manipulated by a leaking device
have high pseudoentropy, is hardly realistic. By contrast, we list a few alternative
assumptions that are more in line with what hardware designers try to guarantee,
based on unpredictable cipher outputs or hard-to-invert leakage functions.

1.1 Actual leakage traces

We will consider the AES Rijndael as a case study. Note however that the ob-
servations in this section hold for any block cipher. In this context, let us de-
note the encryption of a plaintext x under a key k giving rise to a leakage
trace l as y = AESk(x) l. Since the AES is made of ten rounds, we fur-
ther denote the application of these rounds and their corresponding subtraces as
xi+1 = Rki(xi) li+1, where the initial state is given by the plaintext x0 = x
and the ciphertext is given by the final state y = x10. That is, a full leakage trace
is a vector containing all the rounds subtraces: l = [l0, l1, l2, . . . , l9, l10]. For il-
lustration, we provide a leakage trace obtained from a hardware implementation
of the AES in Figure 1, where each sample can be written as li(t) = Li,t(k, x, ρ),
with ρ a parameter representing the physical randomness (aka noise) in the mea-
surements [27]. In practice, it frequently turns out that the leakage produced

Fig. 1: Exemplary leakage trace of an AES encryption.

when generating an intermediate state xi can be approximated by the sum of a
polynomial function of the bits of xi (denoted as xi[j]) and some noise [32]:

li(t) = Li,t(k, x, ρ) ≈
∑
j

αj xi[j] +
∑
j1 6=j2

βj1,j2 xi[j1] xi[j2] + . . .+ ρi,t. (1)

In the following, and in order to simplify our discussions, we will further assume
that each subtrace is made of a single sample (pointed by the arrows in the figure)

that can be written as li(k, x) = HW(xi) + rphi , with HW the Hamming weight

function and rphi a Gaussian distributed physical noise. Note that these are usual
assumptions is side-channel attacks [26]. Yet, also keep in mind that we can
only loose information by doing this, and that actual adversaries may be more
powerful. Summarizing, we will consider illustrative leakage traces defined as:

l = [HW(x0) HW(x1) . . .HW(x10)] + [rph0 rph1 . . . rph10]. (2)

1.2 Bounded range & HILL pseudoentropy

One of the most demanding assumption regarding the informativeness of the
leakage function is the requirement that its range is bounded to {0, 1}λ, for
some parameter λ. Taking the example of a leaking block cipher implementation
as in the previous subsection, it is easy to observe that a bounded range is
hardly obtained. Starting with our simplifying Hamming weight assumption and
considering an n-bit key, we already have that each of the Nr Hamming weights
in the trace has range ≈ log(n), leading to an output range proportional to
Nr · log(n) (with Nr the number of block cipher rounds). Then, keeping in mind
that the number of samples monitored by an oscilloscope in actual attacks is
much larger than Nr, it turns out that the range of the leakage function is

frequently larger than {0, 1}n. In practice, this large range is directly reflected
by the memory requirements needed to store the measurements. For example,
in a recent work from Eurocrypt 2012, Moradi acquired 200 000 traces, each of
them corresponding to 1µs of power consumption leakage sampled at roughly 109

samples per second, i.e. leading to more than 1.5 Gigabits of data storage [28].

Previous works in leakage-resilient cryptography (e.g. [11–13, 30, 39]), it is ar-
gued that the bounded range assumption can be relaxed. Loosely speaking, these
previous proofs only require that for every key update kj+1 = AESkj (x) l, the
leakage l does not decrease the HILL pseudoentropy of the updated state kj+1

by more than a bounded amount of bits. It is further claimed in [22] that such a
requirement seems much more realistic in practice. Unfortunately, a look at our
example suggests the opposite. Having a pseudoentropy of n−λ bits for kj+1 re-

quires that there exist a dense set of 2n−λ keys k̃ that no efficient distinguisher is
able to tell apart from kj+1 given l. But again considering that the leakage trace
contains a sequence of (pseudorandom) Hamming weights, the number of keys
k̃ that give rise to the correct sequence of Hamming weights rapidly vanishes,
roughly decreasing the pseudoentropy of kj+1 according to n − Nr · log(n). Of
course, the high pseudoentropy requirement is weaker than the bounded range
assumption. For example, having multiple correlated samples in the traces would
not significantly decrease the pseudoentropy of kj+1, while it would increase the
output range of the leakage function. Yet, falsifying the pseudoentropy assump-
tion simply requires that an adversary can check whether the trace l is consistent
with the actual kj+1, allowing him to efficiently distinguish it from most fake k̃’s.

Summarizing, while these simple examples exclude the additional randomness
due to physical noise, they clearly suggest that maintaining high pseudoentropy
in a leaking device is challenging. Interestingly, this observation nicely connects
with the conclusions of Micali and Reyzin, who showed the non-equivalence
between unpredictability and indistinguishability in physically observable cryp-
tography [27]. We argue in the next subsections that also in terms of practical
assumptions, unpredictability is arguably easier to guarantee.

1.3 Side-channel attacks

Most distinguishers published in the literature are based on a divide-and-conquer
strategy, where independent pieces of a masker key (denoted as subkeys) are re-
covered independently. Examples include Kocher et al.’s differential power anal-
ysis [24], Gandolfi et al.’s electromagnetic analysis [14], Chari et al.’s template
attacks [9], Brier et al.’s correlation power analysis [8], Schindler et al.’s stochas-
tic approach [32], Gierlichs et al.’s mutual information analysis [15] and many
variations. These attacks are “standard DPAs” in the sense defined by Mangard
et al. [25], and operate according to the three following steps:

1. Prediction. The adversary predicts subkey-dependent intermediate values
manipulated during the encryption process (e.g. a 1st-round S-box output).

2. Modeling. The adversary models the leakage corresponding to these interme-
diate values (e.g. assuming it depends on the HW of the manipulated data).

3. Comparison. The adversary compares the subkey-dependent models with ac-
tual measurements (e.g. with Pearson’s correlation coefficient). If the attack
is successful, the best comparison holds for the correct subkey candidate.

The result of a standard DPA attack against the AES usually corresponds to 16
lists of 256 scores (typically proportional to subkey likelihoods), that are then
recombined to obtain a master key candidate, e.g. using key enumeration [36].

One consequence of this description is that actual adversaries are usually
not able to exploit all the leakage samples in a trace. In practice, only the
intermediate computations that can be guessed will be useful. Taking our AES
example again, it means that out of a vector l = [l0, l1, l2, . . . , l9, l10], only the
external rounds are exploited (i.e. before the diffusion is complete). Furthermore,
considering an attack exploiting the first-round leakage l1, and under our current
assumption that the AES is implemented in 10 clock cycles, we have:

l1 = HW(x1) + rph1 = HW(x1[0]) + HW(x1[1]) + . . .+ HW(x1[15]) + rph1 , (3)

where x1[i] denotes the ith byte of x1. But actual adversaries are not able to
guess all the 16 bytes of x1 at once either. As a result, a part of this information
is usually considered as “algorithmic noise”. That is, in a (usual) attack where
the 16 AES key bytes are targeted independently, the leakage sample l1 as seen
by the adversary can be rewritten as:

ladv1 [0] = HW(x1[0]) + HW(r1) + . . .+ HW(r15)︸ ︷︷ ︸+rph1 , (4)

algorithmic noise

when targeting the first key byte, whith the ri’s uniformly random unknown
bytes (a similar equation holds for all the key bytes). In other words, only a single
(or at most a couple of) byte Hamming weight(s) is (are) actually considered as
useful signal at a time in this computationally bounded setting.

1.4 One-way & seed-preserving leakage functions, unpredictability

The previous description allows shedding another light on why ensuring high
pseudoentropy for cryptographic keys in leaking devices is challenging. The main
issue is that it requires that these keys remain difficult to distinguish in front
of an adversary who can predict the whole device state (hence, exploit the full
vector of Equation 2 rather than the noisy samples of Equation 4). In fact, this
task is arguably more difficult than the (already difficult) task of securing an
implementation against standard DPA attacks. Therefore, we can at least claim
that constructions that strictly need this assumption to hold for being secure are
not going to “help hardware designers”, as usually advertised by leakage-resilient
cryptography. This observation naturally provides a strong incentive to look at
alternative assumptions that could be easier to fulfill and evaluate.

In general, a weaker assumption than the high HILL pseudoentropy require-
ment is that the leakage function is hard-to-invert, or that the key/seed is compu-
tationally infeasible to predict given the leakage (see [4, 17] for relations between
several forms of pseudoentropy). This is easily seen the minimal assumption
since no security is possible if the adversary can recover the key/seed. It is
also directly connected to the practice of side-channel attacks that usually aim
to predict keys/seeds. Unfortunately, how to build leakage-resilient symmetric
cryptographic primitives under such assumptions remains an open problem. So
far, only some weaker forms of security results have been obtained in this case,
such as the encryption schemes of [10] in the auxiliary-input setting (based on
a non-standard lattice problem), and the leakage-resilient stream cipher in [39]
(assuming PRGs to behave as random oracles that the leakage functions cannot
access). In view of this state-of-the-art, another natural solution would be to
use the simulation paradigm. Namely, to argue that some information reveals
nothing substantial, it suffices to show that it can be efficiently simulated from
some other information that is already part of the adversary’s knowledge. This
approach is empirically verifiable since it challenges the designer to build such
a simulator, and the adversary to break the indistinguishability game. In the
next sections, we argue that in the context of block ciphers, simulatable leak-
age is at least easier to guarantee than high pseudoentropy - and that efficient
leakage-resilient PRGs can be proven secure under this assumption.

2 Simulatable leakage

Concretely, we will study the physical security of a “natural” (i.e. conform to en-
gineering intuition) PRG relying on the iterative application of a length-doubling
2PRG, represented in the left part of Figure 2 (the iterative application of length-
qpling generator qPRG would allow improved efficiency at the cost of more phys-
ical information leakage, and relies on similar security proofs). Furthermore, we
will focus on the block cipher based instantiation of 2PRG represented in the
right part of the figure, where p0 and p1 are public constants (larger expansion
factors q’s are directly obtained by encrypting more pi’s). The (leakage-free) se-
curity of this PRG is easily seen by a hybrid argument. It enjoys many advantages
such as simplicity, efficiency and forward security (see more discussions in [5]).
From a physical security point of view, it also avoids the alternating structure
and large randomness requirements of previously published proposals [13, 30, 38].
However, it turns out to be extremely difficult to prove the leakage-resilience of
this construction in a standard setting (independent of its instantiation).

In order to obtain practically-relevant proofs of leakage-resilience, we want
our assumption to be local (i.e. focusing on a single iteration), and re-usable.
The second condition suggests to consider block cipher implementations for this
purpose. On one hand, they are among the work horses of today’s secure com-
munications [23]. On the other hand, they are frequent targets of side-channel
analysis, with a vast literature on attacks and countermeasures - making them
natural candidates for mitigating the instantiation issues raised in [33]. In the

Fig. 2: Left: leakage-resilient PRG. Right: 2PRG instantiation with block ciphers.

rest of this section, we will consequently define the simulatable leakage assump-
tion for block ciphers (denoted as BC : {0, 1}n×{0, 1}n → {0, 1}n from now on),
and argue about its empirical verifiability. The next section will then show how
to use this assumption to prove the leakage-resilience of the PRG from Figure 2.

2.1 Formal definition

As discussed in Section 1.1, actual leakage traces are made of multiple samples,
each of them being the output of a leakage function. Yet, since our goal is to
define our assumptions in general terms, this section will take advantage of a
slightly more concise notation that is independent of the actual representation
of these traces. That is, we will denote the probabilistic leakage corresponding

to a block cipher execution as: y = BCk(x) l
def
= L(k, x), with L the (global)

leakage function (i.e. including all the samples). In practice, we do not know
how to express this function as a circuit or a program that a computer could
evaluate: we can only sample it by taking leakage measurements from the target
circuit on given inputs. Leakages resulting from a complex physical process,
it is even unclear how efficiently a Turing machine could compute them. For
this reason, they will be available through queries to a public oracle in our
model, and our complexity measures will take the number of these queries into
account: an (s, t)-bounded adversary AL will do at most s queries to L and run
in time at most t. Note that we define the leakage oracle as stateless, to capture
the usual situation in side-channel attacks where leakages only depend on the
current state of the target device and some independent randomness. Using this
notation, the requirement we make on a block cipher implementation is that the
leakages are simulatable. That is, we require that a (stateless) leakage simulator
oracle SL(·, ·, ·) can be built, possibly relying on accessing the implementation
and measuring equipment producing the real leakages. It must be able to return
a simulated leakage corresponding to any (possibly inconsistent) key, plaintext
and ciphertext, and its responses must be such that no efficient adversary A can
guess the bit b in the following q-sim game except with a small advantage.

In this game, the adversary can query the device for the encryption of q
values of his choice. If b = 0, he receives the encryption of his queries and the
corresponding real leakages. If b = 1, he receives the encryption of his queries and
simulated leakages, based on the plaintext and ciphertext, but ignoring the (real)
key k that was used to compute them, which is replaced by another random k∗

Game q-sim(A,BC, L,S, b).
The challenger selects two random keys k and k∗ in {0, 1}n. The output
of the game is a bit b′ computed by AL based on the challenger responses
to a total of at most q adversarial queries of the following type:

Query Response if b = 0 Response if b = 1
Enc(x) BCk(x), L(k, x) BCk(x), SL(k∗, x,BCk(x))

and one query of the following type:
Query Response if b = 0 Response if b = 1

Gen(z, x) SL(z, x, k) SL(z, x, k∗)

in an invocation of SL(·, ·, ·). Independently of these encryption queries, A gets
one more chance of winning the game by being able to query SL(·, ·, ·) on in-
puts of his choice, the ciphertext being the real or random key depending on
b. This extra query captures the case where the key used in a block cipher was
itself a ciphertext from a previous iteration. Note that it departs from the real
world/ideal world paradigm, as SL is invoked for both values of b. This aspect
plays a central role in our further developments. Additional types of (e.g. de-
cryption) queries could be added to the game. However, the two proposed ones
capture the usual situation where a block cipher is used to produce a key, which
is then used to encrypt multiple plaintexts. It can be observed that we do not
use the fact that BC is a block cipher so far. Its invertibility will however be
used in the next subsection, when proposing our instance of leakage simulator.

Definition 1 (q-simulatable leakage). A block cipher BC with leakage func-
tion L has (sS , tS , sA, tA, ε) q-simulatable leakages if there is an (sS , tS)-bounded
simulator SL such that, for every (sA, tA)-bounded adversary AL, we have:

|Pr[q-sim(A,BC, L,S, 1) = 1]− Pr[q-sim(A,BC, L,S, 0) = 1]| ≤ ε.

Note that AL(·,·) can query the leakage function sA times, independently of the
q queries to the target implementation in the q-sim game. In practice, these sA
queries could correspond to profiling efforts to build a leakage model (e.g. as in
step 2 of the attack in Section 1.3). They will also be useful to generate simulated
leakages in our security proofs. As previously mentioned, we will keep small
constant values for q in any practical instantiation of the q-simulatability game.
This choice connects with the observation that 1-simulatability does not imply
q-simulatability without severe security degradation. For example, it is easy to
see that there might be block cipher implementations that offer perfect q − 1
simulatability but not q-simulatability. Consider a block cipher BC′ built from
a block cipher BC as follows: BC′k1···kq (x) := BCk1⊕···⊕kq (x) (for a constant q),
and a leakage function that leaks one of the ki’s every time the device computes.
Clearly, q − 1 leakages will not provide any information about the cipher key,
while the q-th leakage will fully disclose this key, making it trivial to detect the
simulation in our game. In fact, this example also matches the usual intuition
in side-channel attacks that security degrades almost exponentially with the
number of queries, as will be illustrated experimentally in the next subsection.

2.2 Empirical verifiability

To show that the previous simulatability assumption is realistic, we will first
instantiate an efficient simulator SLs&c(·, ·, ·) to be used in the Enc and Gen queries
of the q-sim game, based on a block cipher implementation. We will then discuss
the interpretation of this assumption with respect to actual side-channel attacks.

As suggested by the acronym SLs&c(·, ·, ·), our proposal of simulator is based
on the splitting and concatenation of leakage traces. For this purpose, and as we
now consider concrete instantiation issues, we again need the specific notations
of Section 1.1, and take the case of the AES for illustration. Namely, we will
use y = AESk(x) l = lp‖lc, with lp = [l0, l1, . . . , l5] (resp. lc = [l6, l7, . . . , l10])
denoting the first (resp. second) half of the traces, and || the concatenation
operator. Next, we want to build a simulator for such traces using only the
knowledge of the public values x and y. In this context, a central observation
already made in Section 1.2 is that any known intermediate value during a
cryptographic computation can be exploited to check its consistency with the
leakage. That is, taking the example of (noiseless) Hamming weight samples
for illustration, it is quite easy to check whether the triple (l, x, y) is consistent
by checking whether l0 = HW(x) and l10 = HW(y). Yet, we still have that
the “middle samples” l1, l2, . . . , l8, l9 may not be as easy to exploit since the
intermediate values x1, x2, . . . , x8, x9 are not given to the adversary. As a result,
the goal of the simulator will be to build traces that are at least consistent with
the input/output pair (x, y). This is where the specialization to (invertible) block
ciphers turns out to be useful, leading to the following proposal:

Leakage simulator instantiation SLs&c(k
∗, x, y).

1. Run y′ = AESk∗(x) lp||α;

2. Compute x′ = AES−1k∗ (y);
3. Run y = AESk∗(x′) β||lc;
4. Output lp||lc;

It is easy to verify that this simulator instance generates leakages that are con-
sistent with the public values x and y, since in practice it does nothing else
than generating traces from these values with a randomly generated key and
concatenating them. Hence, it can be implemented using the same hardware as
the target device containing the correct key. Note also that the same instance
can directly be used in the Gen queries by adapting its inputs.

Interpretation. The assumption in this section suggests that there exists situ-
ations in which the leakage of a cryptographic implementation can be simulated
without knowing all its secrets. For this purpose, our instance of simulator essen-
tially relies on the possibility to use the same hardware as the one manipulating
the actual cipher key. We believe this fact nicely captures the idea that the only
secret in a cryptographic implementation should indeed be this key (not the de-
vice manipulating it). The assumption is also expressed as a game that can be
tested by evaluation laboratories, since they could control both keys k and k∗. In

practice, the main question naturally is whether the probability to win the q-sim
game can remain sufficiently low in front of actual side-channel distinguishers.
There are two natural strategies that could be considered to answer it:

1. Performing standard DPA attacks exploiting the first and last encryption
round leakages, e.g. trying to find an inconsistency between the x’s and y’s.

2. Targeting the middle rounds where concatenation occurs to find a direct
inconsistency in the trace, possibly based on the key information gathered.

Starting with the first type of distinguishers, an important observation is that
resisting them is at least easier than guaranteeing high HILL pseudoentropy
for a block cipher key. This relates to the previously observed fact that attacks
checking the consistency between the traces and the device state are not possible
in the q-sim game, since the key is not given to the adversary. In other words,
the device state is not known and can only be guessed, just as usually con-
sidered in side-channel analysis. Of course, being more realistic than the HILL
pseudoentropy assumption does not imply empirical verifiability yet. Typically,
there is little hope to ensure any security for small and unprotected devices (e.g.
8-bit microcontrollers), as key recovery is usually possible with very limited data
complexities in these cases [34]. Under certain hypotheses, it is even possible to
exploit the middle round leakages against such devices [31]. By contrast, a reason-
ing in the lines of Section 1.2 suggests that the simulatable leakage assumption
could be realistic for (unprotected but parallel) hardware implementations.

For example, Figure 3 depicts the security evaluation of the best attack per-
formed against such an implementation during the DPA Contest V2 (after two
years of public investigations) [29, 37]. It indicates that as long as the number
of queries q remains limited (e.g. below 10), the success probability in recover-
ing the key (hence, in finding inconsistencies between x’s and y’s) remains close
to 2−128 in this case. Say that an adversary would try to exploit the q first-
and last-round leakages corresponding to his Enc queries, together with the last-
round leakage of his additional Gen query, and would be able to combine this
information efficiently (which is unlikely in view of the large number of key can-
didates that remain possible after attacks with low data complexity). Then the
amount of information leakage would at most be multiplied by three, still leav-
ing comfortable security margins. Therefore, as long as our leakage-resilient PRG
iterates qPRG’s with small enough q’s, we can conclude that this first strategy
will not succeed against this hardware implementation1. Note that the linearity
of the min/max bounds on Figure 3 typically illustrates the exponential security
degradation (in time) that was mentioned in the previous subsection.

1 Leakage-resilient constructions as proposed in this (and previous) works are natu-
rally interesting in the context of small embedded devices as well, in combination
with other hardware level countermeasures. In particular, they simplify the goal of
protecting an implementation against arbitrary number of queries into the easier
goal of protecting it against a bounded number of queries. We gave the example of
the DPA Contest V2 for illustration, and because it is publicly available.

Fig. 3: Security evaluation for best attack of the DPA contest v2.

Although the second strategy is admittedly less investigated, we argue that
it can also be verified for a wide variety of implementations based on the follow-
ing reasoning. What is needed for this strategy to fail is an efficient method for
concatenating side-channel traces in an indistinguishable manner. For this pur-
pose, the key observation is that most current microelectronic devices are based
on sequential logic circuits. As illustrated in Figure 4 for a couple of rounds of
an AES implementation, such circuits essentially update some memory elements
(i.e. the registers in dark gray on the figure) every clock cycle. And the length
of these clock cycles is selected according to the longest delay needed to perform
a round (aka the critical path), with some security margin. One consequence
of this setup is that the circuit activity (hence, its leakage) is maximum at the
beginning of each cycle (when the round computation actually takes place), and
rapidly decreases afterwards. As indicated in the figure, the fact that each clock
cycle should anyway be longer than the critical path guarantees that there exist
samples with little or no activity. Interestingly, these points where no activity
occurs usually contain no exploitable information. This observation actually con-

Fig. 4: Selection of samples for the concatenation of leakage traces.

nects with the intuition from side-channel attacks that only a few samples in the
measurements contain useful signal, i.e. the so-called “points of interest”. For
example, the Signal-to-Noise Ratio (SNR) curves in [26] (Section 4.3.1) illus-
trate this fact. In general, concatenating traces exactly at their non-informative
points can be done without risk of being distinguishable, since both the actual
traces and the simulated ones would exhibit a noise following the same distri-
bution at these points. Hence, our assumption for this second strategy to fail
boils down to the existence of a couple of points without interest in the traces
(which we believe is generally verified) and the ability to detect them. The latter
task is relatively easy since (i) any side-channel distinguisher (e.g. the ones in
Section 1.3) can be used for this purpose and (ii) the simulator can predict the
full state corresponding to his fake inputs, hence allowing it to easily plot SNR
curves. For illustration we performed such concatenations in the context of ac-
tual power traces and compared their spectrum with the one of original traces,
without being able to detect any significant bias. As a result, we conclude that
security against this second type of distinguishers can sometimes be ensured too.

Challenges. As for any cryptographic assumption, the claim that the simulat-
able leakage requirement is empirically verifiable will take strength with further
investigations by physical cryptanalysts. In this respect, we believe that a central
benefit of our security game is that it can be challenged using the techniques
developed by the cryptographic hardware community. In order to stimulate re-
search in this direction, we conclude this section by stating three challenges:

C1 (constructive). Design alternative instances of simulators. For example,
the proposal in this section relies on the splitting and concatenation of leak-
age traces, based on the ability to detect “points without interest”. But more
sophisticated techniques for mixing the traces could be investigated.

C2 (constructive). Given any instance of simulator, design efficient block ci-
pher implementations with q-simulatable leakages, for the largest possible
q’s. This challenge concurs with the one of securing these implementations
against side-channel key recoveries with data complexity bounded to q.

C3 (destructive). Given a block cipher implementation and an instance of
simulator, break the q-sim game with non-negligible advantage.

Regarding this last challenge, we finally note that falsifying the simulatable
leakage assumption for one given instance of block cipher implementation and
simulator does not imply that it cannot be verified at all. Our hope and belief is
that it will be verified for a sufficiently wide range of realistic implementations.

3 Security analysis and proofs under simulatable leakages

We now want to show that the PRG of Figure 2 is secure when implemented with
a secure block cipher that has 2-simulatable leakages (as previously mentioned,
the proof would be similar for any constant value of q). The property we require
from BC is to be a PRF. Our PRF adversary is a regular interactive Turing

machine, augmented with an access to a leakage oracle L(·, ·). While this oracle
is independent of the PRF challenger, nothing theoretically precludes that it
might do some cryptanalytic work, and we therefore include the number of times
it is queried in the adversary’s total computational power.

Definition 2 (pseudorandom function). A block cipher BC : {0, 1}n×{0, 1}n
→ {0, 1}n is a (s, t, ε) pseudorandom function (PRF) in the presence of leakage
function L if, for every (s, t)-bounded adversary AL(·,·), we have that:

|Pr[AL(·,·),BCk(·) = 1]− Pr[AL(·,·)F(·) = 1]| ≤ ε,

where k is a random key in {0, 1}n and F is a random function.

Note that if the leakage function was polynomial time, this definition would
be strictly equivalent to the standard definition of a PRF. However, it remains
an open problem to determine the exact complexity of such physical functions
(which essentially corresponds to the cost of solving Maxwell’s equations for a
complex circuit). Therefore, and despite it is unlikely that actual leakage func-
tions perform any cryptanalytic work, we believe it is conceptually cleaner to
keep track of their queries separately, as specified in Definition 2.

The first step towards showing the security of our stream cipher consists in
proving that one call of the 2PRG construction remains secure when it leaks and
when the computation of its seed also leaks, as expressed in the next lemma. All
bounds include the number of calls to the leakage function and the running time.

Lemma 1 (single iteration). Let BC : {0, 1}n×{0, 1}n → {0, 1}n with leakage
function L be an (s, t, εprf) PRF having (sS , tS , s, t, εsim) 2-simulatable leakages,
and let SL be an appropriate (sS , tS)-bounded leakage simulator. Then, for every
k−, p0, p1 in {0, 1}n and every (s− 3sS , t−max(tprf , tsim))-bounded distinguisher
DL, the following inequation holds:

|Pr[DL(y+, k+, L(k, p0), L(k, p1),SL(k−, p1, k)) = 1]−
Pr[DL(y+∗, k+∗,SL(k, p0, y

+∗),SL(k, p1, k
+∗),SL(k−, p1, k)) = 1]| ≤ εprf + εsim,

with k, y+∗, k+∗
R←− {0, 1}n, y+ = BC(k, p0), k+ = BC(k, p1), tprf being equal to

3tS augmented with the time needed to make 2 oracle queries to the PRF chal-
lenger and select a random key uniformly in {0, 1}n, and tsim being the time to
relay the content of two Enc and one Gen queries from and to a q-sim challenger.

Proof. The proof makes use of an intermediary distribution that provides round
outputs computed with one key and leakages simulated with another key. Details
appear in the long version of the paper on the IACR ePrint archive.

Based on this Lemma, we show that the last output after l iterations of 2PRG
remains pseudorandom even in the presence of the public outputs and leakages
for all the previous iterations. For this purpose, we first specify our PRG instance:

Definition 3 (PRG instance). We denote as PRG(k0) the pseudorandom gen-
erator in Figure 2 with n-bit initial state k0. Each iteration of PRG expands the
current state by running a length-doubling PRG (2PRG : {0, 1}n → {0, 1}2n) fol-
lowing the recurrence (yi, ki) = 2PRG(ki−1), and produces y1, y2, . . . as output.

Next, we define our notion of leakage-resilient stream cipher as follows:

Definition 4 (leakage-resilient stream cipher). Let PRG be the stream ci-
pher of Definition 3 and let L(ki) = L(ki, p0)||L(ki, p1) be the leakages from its
ith iteration. The implementation of this PRG is (l, s, t, ε)-LR-pseudorandom if,
for every (s, t) bounded distinguisher DL, the following inequation holds:

|Pr[DL(y1, · · · , yl, L(k0), · · · , L(kl−1)) = 1] −
Pr[DL(y1, · · · , yl−1, Un, L(k0), · · · , L(kl−1)) = 1])]| ≤ ε,

with k0 and Un uniformly random values chosen in {0, 1}n.

We can now state our main theorem, which shows the leakage-resilience of
the stream cipher above and offers tight bounds: we only require 2-simulatable
leakages, and the security degrades linearly with the number of rounds.

Theorem 1. Let BC : {0, 1}n × {0, 1}n → {0, 1}n be a block cipher that is
an (s, t, εprf) PRF with a leakage function L and (sS , tS , s, t, εsim) 2-simulatable
leakages. Then, the implementation of PRG instantiated with BC is (s′, t′, ε′, l)-
LR-pseudo-random, where s′ = s − (2l − 1)(sS + 1), ε′ = 2l(εprf + εsim), and
t′ = t − t12 where t12 is 2ltS augmented with the time needed to sample 2l
random n-bit strings and evaluate BC 2l times, plus the time needed to relay
these block cipher inputs, outputs and leakages from and to oracles2.

Proof. We rely on Lemma 1 and on a hybrid argument. The full proof appears
in the long version of the paper on the IACR ePrint archive.

We may observe that this proof, like the one of Lemma 1, does not make
full use of the power of the adversary in the q-sim game. They could indeed
accommodate a non-interactive variant of game in which the plaintexts of the
Enc and Gen queries are fixed, and the key of the Gen query is chosen randomly.

Conclusion

This paper suggests that the specification of realistic leakage assumptions may
allow simplifying the proofs of natural constructions (such as the stream cipher
in Figure 2), for which one intuitively expects an improved resistance against
practical side-channel attacks. While the simulatable leakage requirement intro-
duced in this work naturally raises open questions regarding the implementation

2 We do not include these relay times in the operation counts, because we assume
them to be small compared to the time needed for the block cipher evaluations.

scenarios in which it can be fulfilled (e.g. the challenges in Section 2.2), we can at
least claim that it is more realistic than requirements such as the bounded range
or high HILL pseudoentropy used in previous proofs for similar (symmetric cryp-
tographic) constructions. Interesting scopes for further investigations include the
application of simulatability to other primitives, and the quest for more generic
yet empirically verifiable assumptions that could be exploited to analyze the
leakage of cryptographic implementations.

Acknowledgements. We thank Ran Canetti and Martijn Stam for interesting
discussions and useful suggestions. This work has been funded in parts by the Eu-
ropean Commission through the ERC project 280141 (acronym CRASH) and the
European ISEC action grant HOME/2010/ISEC/AG/INT-011 B-CCENTRE
project. François-Xavier Standaert is an associate researcher of the Belgian
Fund for Scientific Research (FNRS-F.R.S.). Yu Yu was supported by the Na-
tional Basic Research Program of China Grant 2011CBA00300, 2011CBA00301,
the National Natural Science Foundation of China Grant 61033001, 61172085,
61061130540, 61073174, 61103221, 11061130539, 61021004 and 61133014.

References

1. Adi Akavia, Shafi Goldwasser, and Vinod Vaikuntanathan. Simultaneous hardcore
bits and cryptography against memory attacks. In Omer Reingold, editor, TCC,
volume 5444 of Lecture Notes in Computer Science, pages 474–495. Springer, 2009.

2. Joël Alwen, Yevgeniy Dodis, Moni Naor, Gil Segev, Shabsi Walfish, and Daniel
Wichs. Public-key encryption in the bounded-retrieval model. In Henri Gilbert,
editor, EUROCRYPT, volume 6110 of Lecture Notes in Computer Science, pages
113–134. Springer, 2010.

3. Joël Alwen, Yevgeniy Dodis, and Daniel Wichs. Leakage-resilient public-key cryp-
tography in the bounded-retrieval model. In Shai Halevi, editor, CRYPTO, volume
5677 of Lecture Notes in Computer Science, pages 36–54. Springer, 2009.

4. Boaz Barak, Ronen Shaltiel, and Avi Wigderson. Computational analogues of
entropy. In 7th International Workshop on Randomization and Approximation
Techniques in Computer Science (RANDOM 2003), pages 200–215, 2003.

5. Mihir Bellare and Bennet S. Yee. Forward-security in private-key cryptography. In
Marc Joye, editor, CT-RSA, volume 2612 of Lecture Notes in Computer Science,
pages 1–18. Springer, 2003.

6. Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the importance of
checking cryptographic protocols for faults (extended abstract). In Walter Fumy,
editor, EUROCRYPT, volume 1233 of Lecture Notes in Computer Science, pages
37–51. Springer, 1997.

7. Elette Boyle, Gil Segev, and Daniel Wichs. Fully leakage-resilient signatures. In
Kenneth G. Paterson, editor, EUROCRYPT, volume 6632 of Lecture Notes in
Computer Science, pages 89–108. Springer, 2011.

8. Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analysis
with a leakage model. In Marc Joye and Jean-Jacques Quisquater, editors, CHES,
volume 3156 of Lecture Notes in Computer Science, pages 16–29. Springer, 2004.

9. Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks. In Burton
S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar, editors, CHES, volume 2523 of
Lecture Notes in Computer Science, pages 13–28. Springer, 2002.

10. Yevgeniy Dodis, Yael Tauman Kalai, and Shachar Lovett. On cryptography with
auxiliary input. In Michael Mitzenmacher, editor, STOC, pages 621–630. ACM,
2009.

11. Yevgeniy Dodis and Krzysztof Pietrzak. Leakage-resilient pseudorandom functions
and side-channel attacks on feistel networks. In Tal Rabin, editor, CRYPTO,
volume 6223 of Lecture Notes in Computer Science, pages 21–40. Springer, 2010.

12. Stefan Dziembowski and Krzysztof Pietrzak. Leakage-resilient cryptography. In
FOCS, pages 293–302. IEEE Computer Society, 2008.

13. Sebastian Faust, Krzysztof Pietrzak, and Joachim Schipper. Practical leakage-
resilient symmetric cryptography. In Emmanuel Prouff and Patrick Schaumont,
editors, CHES, volume 7428 of Lecture Notes in Computer Science, pages 213–232.
Springer, 2012.

14. Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromagnetic anal-
ysis: Concrete results. In Çetin Kaya Koç, David Naccache, and Christof Paar,
editors, CHES, volume 2162 of Lecture Notes in Computer Science, pages 251–
261. Springer, 2001.

15. Benedikt Gierlichs, Lejla Batina, Pim Tuyls, and Bart Preneel. Mutual information
analysis. In Elisabeth Oswald and Pankaj Rohatgi, editors, CHES, volume 5154
of Lecture Notes in Computer Science, pages 426–442. Springer, 2008.

16. J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson, William
Paul, Joseph A. Calandrino, Ariel J. Feldman, Jacob Appelbaum, and Edward W.
Felten. Lest we remember: Cold boot attacks on encryption keys. In Paul C. van
Oorschot, editor, USENIX Security Symposium, pages 45–60. USENIX Associa-
tion, 2008.

17. Chun-Yuan Hsiao, Chi-Jen Lu, and Leonid Reyzin. Conditional computational
entropy, or toward separating pseudoentropy from compressibility. In Moni Naor,
editor, EUROCRYPT, volume 4515 of Lecture Notes in Computer Science, pages
169–186. Springer, 2007.

18. Yuval Ishai, Manoj Prabhakaran, Amit Sahai, and David Wagner. Private cir-
cuits ii: Keeping secrets in tamperable circuits. In Serge Vaudenay, editor, EU-
ROCRYPT, volume 4004 of Lecture Notes in Computer Science, pages 308–327.
Springer, 2006.

19. Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hardware
against probing attacks. In Dan Boneh, editor, CRYPTO, volume 2729 of Lecture
Notes in Computer Science, pages 463–481. Springer, 2003.

20. Marc Joye and Michael Tunstall. Fault Analysis in Cryptography. Springer, 2012.
21. Jonathan Katz and Vinod Vaikuntanathan. Signature schemes with bounded leak-

age resilience. In Mitsuru Matsui, editor, ASIACRYPT, volume 5912 of Lecture
Notes in Computer Science, pages 703–720. Springer, 2009.

22. Eike Kiltz and Krzysztof Pietrzak. Leakage resilient elgamal encryption. In
Masayuki Abe, editor, ASIACRYPT, volume 6477 of Lecture Notes in Computer
Science, pages 595–612. Springer, 2010.

23. Lars R. Knudsen and Matthew Robshaw. The Block Cipher Companion. Informa-
tion security and cryptography. Springer, 2011.

24. Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
Michael J. Wiener, editor, CRYPTO, volume 1666 of Lecture Notes in Computer
Science, pages 388–397. Springer, 1999.

25. Stefan Mangard, Elisabeth Oswald, and François-Xavier. One for all – all for one:
unifying standard differential power analysis attacks. IET Information Security,
5(2):100–110, 2011.

26. Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power analysis attacks -
revealing the secrets of smart cards. Springer, 2007.

27. Silvio Micali and Leonid Reyzin. Physically observable cryptography (extended
abstract). In Moni Naor, editor, TCC, volume 2951 of Lecture Notes in Computer
Science, pages 278–296. Springer, 2004.

28. Amir Moradi. Statistical tools flavor side-channel collision attacks. In David
Pointcheval and Thomas Johansson, editors, EUROCRYPT, volume 7237 of Lec-
ture Notes in Computer Science, pages 428–445. Springer, 2012.

29. Telecom ParisTech. http://www.dpacontest.org/, retrieved on aug. 1, 2012.
30. Krzysztof Pietrzak. A leakage-resilient mode of operation. In Antoine Joux, editor,

EUROCRYPT, volume 5479 of Lecture Notes in Computer Science, pages 462–482.
Springer, 2009.

31. Mathieu Renauld, François-Xavier Standaert, and Nicolas Veyrat-Charvillon. Al-
gebraic side-channel attacks on the AES: Why time also matters in DPA. In
Christophe Clavier and Kris Gaj, editors, CHES, volume 5747 of Lecture Notes in
Computer Science, pages 97–111. Springer, 2009.

32. Werner Schindler, Kerstin Lemke, and Christof Paar. A stochastic model for dif-
ferential side channel cryptanalysis. In Josyula R. Rao and Berk Sunar, editors,
CHES, volume 3659 of Lecture Notes in Computer Science, pages 30–46. Springer,
2005.

33. François-Xavier Standaert. How leaky is an extractor? In Michel Abdalla and
Paulo S. L. M. Barreto, editors, LATINCRYPT, volume 6212 of Lecture Notes in
Computer Science, pages 294–304. Springer, 2010.

34. François-Xavier Standaert, Benedikt Gierlichs, and Ingrid Verbauwhede. Partition
vs. comparison side-channel distinguishers: An empirical evaluation of statistical
tests for univariate side-channel attacks against two unprotected cmos devices. In
Pil Joong Lee and Jung Hee Cheon, editors, ICISC, volume 5461 of Lecture Notes
in Computer Science, pages 253–267. Springer, 2008.

35. François-Xavier Standaert, Olivier Pereira, Yu Yu, Jean-Jacques Quisquater, Moti
Yung, and Elisabeth Oswald. Leakage resilient cryptography in practice. In
Ahmad-Reza Sadeghi and David Naccache, editors, Towards Hardware-Intrinsic
Security, Information Security and Cryptography, pages 99–134. Springer Berlin
Heidelberg, 2010.

36. Nicolas Veyrat-Charvillon, Benôıt Gérard, Mathieu Renauld, and François-Xavier
Standaert. An optimal key enumeration algorithm and its application to side-
channel attacks. In Lars R. Knudsen and Huapeng Wu, editors, Selected Areas in
Cryptography, volume 7707 of Lecture Notes in Computer Science, pages 390–406.
Springer, 2012.

37. Nicolas Veyrat-Charvillon, Benôıt Gérard, and François-Xavier Standaert. Security
evaluations beyond computing power. In Thomas Johansson and Phong Q. Nguyen,
editors, EUROCRYPT, volume 7881 of Lecture Notes in Computer Science, pages
126–141. Springer, 2013.

38. Yu Yu and François-Xavier Standaert. Practical leakage-resilient pseudorandom
objects with minimum public randomness. In Ed Dawson, editor, CT-RSA, volume
7779 of Lecture Notes in Computer Science, pages 223–238. Springer, 2013.

39. Yu Yu, François-Xavier Standaert, Olivier Pereira, and Moti Yung. Practi-
cal leakage-resilient pseudorandom generators. In Ehab Al-Shaer, Angelos D.
Keromytis, and Vitaly Shmatikov, editors, ACM Conference on Computer and
Communications Security, pages 141–151. ACM, 2010.

