
Efficient Multiparty Protocols via
Log-Depth Threshold Formulae

(Extended Abstract)

Gil Cohen1, Ivan Bjerre Damg̊ard2, Yuval Ishai3, Jonas Kölker2,
Peter Bro Miltersen2, Ran Raz1, and Ron D. Rothblum1

1 Weizmann Institute, Rehovot, Israel
{gil.cohen,ran.raz,ron.rothblum}@weizmann.ac.il

2 Aarhus University, Aarhus, Denmark
{ivan,epona,bromille}@cs.au.dk

3 Technion, Haifa, Israel
yuvali@cs.technion.ac.il

Abstract. We put forward a new approach for the design of efficient
multiparty protocols:
1. Design a protocol π for a small number of parties (say, 3 or 4) which

achieves security against a single corrupted party. Such protocols are
typically easy to construct, as they may employ techniques that do
not scale well with the number of corrupted parties.

2. Recursively compose π with itself to obtain an efficient n-party pro-
tocol which achieves security against a constant fraction of corrupted
parties.

The second step of our approach combines the “player emulation” tech-
nique of Hirt and Maurer (J. Cryptology, 2000) with constructions of
logarithmic-depth formulae which compute threshold functions using
only constant fan-in threshold gates.
Using this approach, we simplify and improve on previous results in
cryptography and distributed computing. In particular:
– We provide conceptually simple constructions of efficient protocols

for Secure Multiparty Computation (MPC) in the presence of an
honest majority, as well as broadcast protocols from point-to-point
channels and a 2-cast primitive.

– We obtain new results on MPC over blackbox groups and other
algebraic structures.

The above results rely on the following complexity-theoretic contribu-
tions, which may be of independent interest:
– We show that for every j, k ∈ N such that m , k−1

j−1
is an inte-

ger, there is an explicit (poly(n)-time) construction of a logarithmic-
depth formula which computes a good approximation of an (n/m)-
out-of-n threshold function using only j-out-of-k threshold gates and
no constants.

– For the special case of n-bit majority from 3-bit majority gates, a
non-explicit construction follows from the work of Valiant (J. Al-
gorithms, 1984). For this special case, we provide an explicit con-
struction with a better approximation than for the general thresh-
old case, and also an exact explicit construction based on standard
complexity-theoretic or cryptographic assumptions.

1 Introduction

Secure multiparty computation (MPC) enables a set of parties to jointly accom-
plish some distributed computational task, while maintaining the secrecy of the
inputs and the correctness of the outputs in the presence of coalitions of dishon-
est parties. Originating from the seminal works of [41,25,4,10], secure MPC has
been the subject of an enormous body of work.

Despite this body of work, MPC protocols remain quite complicated and their
security is difficult to prove. In this work we propose a new general approach to
the construction of efficient1 multiparty protocols in the presence of an honest
majority. This approach enables us to obtain conceptually simple derivations of
known feasibility results (or slightly weaker variants of such results), and also to
obtain new results.

Our approach is inspired by and builds on the “player emulation” technique
of Hirt and Maurer [28], who obtain secure MPC protocols by reducing the
construction of an n-party protocol to the task of constructing a protocol π for
a constant (e.g., three or four) number of parties. The motivation of [28] was to
obtain n-party protocols that are secure with respect to general (non-threshold)
adversary structures. A disadvantage of their n-party protocols is that their
complexity grows exponentially with n. This seems inevitable when considering
arbitrary adversary structures.

Our motivation is very different: We would like to use the atomic protocol
π for constructing efficient n-party protocols in the traditional MPC setting of
threshold adversary structures. Since π only involves a small number of parties,
its design may employ simpler techniques that do not scale well with the number
of corrupted parties. Thus, our goal is to simplify the design of efficient n-party
protocols by reducing it to the design of a simpler atomic protocol π.

To make the approach of [28] scale with the number of parties, we introduce a
new complexity-theoretic primitive: a logarithmic-depth formula2 which is com-
posed only of constant-size threshold gates and computes an n-input threshold
function. The problem of constructing such formulae is closely related to a clas-
sical problem in complexity theory. In this work we also make a contribution to
this complexity-theoretic problem, which may be of independent interest.

In addition to providing conceptually simple protocols, our approach is very
general and can be applied in a variety of settings and models. In contrast to most
traditional MPC protocols, it is not tied to some underlying algebraic structure.
We demonstrate this generality by obtaining new results on MPC over black-box
groups and other algebraic structures, improving on previous results from the
literature.

1 Here and throughout this work, by “efficient” we mean polynomial-time in the num-
ber of parties and the input size.

2 A formula is a circuit with fan-out 1. A logarithmic-depth formula (more precisely,
infinite family of formulas) is one whose depth is O(logn), where n is the num-
ber of inputs. Throughout this paper we consider only monotone formulas without
negations or constants.

Before proceeding to describe the details of our approach, we note that the
goal of designing MPC protocols whose complexity grows (only) polynomially
with the number of parties also has relevance to two-party cryptography. Indeed,
there are general techniques for applying MPC protocols with security in the
presence of an honest majority (where the number of parties grows with the
security parameter) towards two-party tasks such as zero-knowledge proofs and
secure two-party computation [30,31].

1.1 Our Approach

In the following, for simplicity, we consider the case of perfect security against
a passive adversary. In this setting, parties are honest but curious. That is, they
follow the protocol but may attempt to learn secret information based on what
they see. We note that, in contrast to the norm, the extension of this approach
to the case of an active adversary is relatively straightforward.

We first give an overview of the player emulation technique of Hirt and
Maurer [28] and then proceed to describe how we overcome the exponential
blow-up incurred by [28] in the case of threshold adversary structures.

Recall that security of MPC protocols is defined by comparing a real pro-
tocol to an ideal protocol, in which, in addition to the parties involved in the
computation, there is a trusted party. A protocol is deemed secure if for every
adversary in the real protocol controlling a subset of the parties, there is an
equivalent adversary controlling the same subset in the ideal protocol.

The technique from [28] is to reduce the design of n-party protocols to the
design of protocols that support only 3 parties (the minimal number of parties
for perfect security in the passive security model).

We proceed to present an informal description of the reduction. Indeed, sup-
pose that the 3-party case has been solved. That is, for every computational task
involving three parties there exists a secure protocol that securely implements
this task when at most one of the parties is passively corrupted.3 We describe
how to use this protocol to securely implement computational tasks using a
larger number of parties.

Consider n parties that wish to securely accomplish some joint computational
task. It is best to think of this task as being specified by an ideal protocol π0
which involves, in addition to the n parties, a trusted party τ . The ideal protocol
is secure (by definition) even if the adversary controls any subset of the parties
that does not contain τ .

Consider a new protocol π1 that involves the n original parties but where
we replace the trusted party τ with three new virtual parties v1, v2, v3. Since in
π0, the trusted party τ is just involved in a computational task, we can use the
given 3-party protocol to simulate τ using v1, v2, v3. When is the new protocol
π1 secure? Since π0 was only insecure whenever the adversary controlled τ and

3 Since we deal with perfect security, the size of the secure protocol depends only on
the size of the original protocol. In particular, any constant size protocol can be
implemented securely in constant size.

since the 3-party protocol is secure as long as the adversary controls at most one
of the virtual parties, π1 is secure as long as the adversary does not control two
or more of the virtual parties.

We continue this process by designing a new protocol π2 in which the virtual
party v1 is itself simulated by three new virtual parties w1, w2, w3. Since π1 is
only insecure whenever the adversary controls more than one of v1, v2, v3 and
since the protocol for emulating v1 is secure when at most one of w1, w2, w3 is
controlled by the adversary, π2 is secure as long as the adversary does not control
either v2 and v3 or one of v2, v3 and two or more of w1, w2, w3.

We continue in this process simulating virtual parties by more virtual parties.
The sets of corrupted parties against which the resulting protocol is secure can
be described by looking at a formula composed of 3-input majority gates which
we denote by Maj3. Each wire represents a virtual party. The protocol π1 can be
represented by a simple formula F1 consisting of a single Maj3 gate where the
three input wires correspond to the virtual parties v1, v2, v3 and the output wire
corresponds to τ . We assign to each input wire corresponding to an honest party
a value of 0 and a value of 1 to those corresponding to dishonest parties. It can
be easily verified that the protocol is secure whenever the formula F1 evaluates
to 0.

Similarly, the protocol π2 can be represented by a formula F2 which is con-
structed from F1 by connecting the input wire corresponding to v1 with an
additional Maj3 gate with three new input wires (corresponding to w1, w2, w3).
It is easy to verify that the new protocol is secure whenever the formula evaluates
to 0.

Suppose that we continue on like this but instead of arbitrarily choosing
which virtual party to simulate, we choose it according to some formula F ,
composed only of Maj3 gates.4 Once we reach the input layer of the formula, we
associate each input variable to a real party and every remaining virtual party
is simulated by the real party associated with the corresponding input wire.

As above, the protocol is secure against every set T of parties on which the
formula F evaluates to 0. (Here and in the following we associate a set T with
its characteristic vector χT .) Thus, to obtain a protocol that is secure for a
particular adversary structure, it suffices to provide a formula that evaluates to
0 on all sets in the structure. Since, in contrast to [28], our goal is merely to
obtain security in the presence of an honest majority, we need only to construct
a formula that computes the majority function (using only Maj3 gates and no
constants).

Such a formula was implicitly constructed by Hirt and Maurer [28] for general
Q2 functions5 and in particular for majority. Unfortunately, the formula of [28]
has linear depth. This yields a protocol whose complexity grows exponentially
with the number of parties, since when traversing the formula we increased the

4 Actually, [28] do not present their construction in the terminology of Maj3 formulae;
we use this presentation since it is more intuitive and is better suited for our purposes.

5 A monotone function f : {0, 1}n → {0, 1} is said to be of type Qd if f(x1) = f(x2) =
. . . = f(xd) = 0 implies that x1 ∨ x2 ∨ . . . ∨ xd 6= 1n.

complexity of the protocol by a constant multiplicative factor (corresponding to
the number of operations in the 3-party protocol) at every layer.

To overcome the exponential blowup, we replace the formula of [28] by a
logarithmic-depth formula (which computes the majority function using only
Maj3 gates). Using the formula-based protocol described above, the logarithmic
depth results in an efficient protocol, namely one whose complexity only grows
polynomially with the number of parties. In Section 1.2 we describe the construc-
tion of a good “approximation” of such a formula as well as exact constructions
under standard complexity-theoretic assumptions.

This approach is indeed very general and can be used in different models
of secure MPC. For example, it can be used to obtain both passive security as
outlined above and active security by using an underlying 4-party protocol that
is secure against one active party and a log-depth threshold formula composed
of two-out-of-four threshold gates (denoted by Th42) which we also construct (see
Section 1.2).

In fact, this reduction gives us a “cookbook” for designing secure multiparty
protocols. The first step is to design a protocol for a constant number of par-
ties that is secure against one dishonest party and the second step is to use a
logarithmic-depth threshold from thresholds formula to obtain an efficient mul-
tiparty protocol that is secure against a constant fraction of corrupted parties.

We demonstrate the generality of this approach by deriving protocols in both
passive and active settings and in different MPC models which differ in the type
of underlying algebraic structure, including models for which no protocols were
known. We also obtain conceptually simple protocols for classical problems in
distributed computing such as broadcast protocols.

Simplified feasibility results. The classical results of Ben-Or et al. [4] and Chaum
et al. [10] allow n parties to evaluate an arbitrary function, using secure point-to-
point channels, with perfect security against t < n/2 passively corrupted parties
or t < n/3 actively corrupted parties. We can derive conceptually simpler vari-
ants of these results by applying our approach with π being a 3-party or 4-party
instance of the simple MPC protocol of Maurer [36]. On the one hand our results
are slightly weaker because they either need the threshold t to be slightly sub-
optimal or alternatively require (standard) complexity theoretic assumptions to
construct an appropriate formula for implementing the protocol. It is instructive
to note that the complexity of Maurer’s protocol grows exponentially with the
number of parties. Our approach makes this a non-issue, as we only use the
protocol from [36] with a constant number of parties.6

MPC over blackbox algebraic structures. There has been a considerable amount of
work on implementing MPC protocols for computations over different algebraic

6 While in the present work we apply our approach only to perfectly secure protocols,
one could apply a similar technique to derive the result of Rabin and Ben-Or [38],
namely a statistically secure protocol which tolerates t < n/2 actively corrupted
parties.

structures such as fields, rings, and groups. Algebraic computations arise in
many application scenarios. While it is possible in principle to emulate each
algebraic operation by a sequence of boolean operations, this is inefficient both
in theory and in practice. In particular, the communication complexity of the
resulting protocols grows with the computational complexity of the algebraic
operations rather than just with the bit-length of the inputs and outputs. This
overhead can be avoided by designing protocols which make a blackbox (i.e.,
oracle) use of the underlying structure. The advantage of such protocols is that
their communication complexity and the number of algebraic operations they
employ are independent of the complexity of the structure.

MPC over rings and k-linear maps. The work of Cramer et al. [13] shows how
to efficiently implement secure MPC over blackbox rings. We obtain a simpler
derivation of such a protocol by noting that the simple protocol of Maurer [36]
directly generalizes to work over a blackbox ring. As before, one could not apply
this protocol directly because its complexity is exponential in the number of
parties. We show how to use a similar approach for obtaining the first blackbox
feasibility results for MPC over k-linear maps.

MPC over groups. The problem of MPC over blackbox groups was introduced by
Desmedt et al. [17] and further studied in [39,16,15]. To apply our approach in
the group model, we need to specify the atomic protocol π that we use. For the
case of passive security, we directly construct a simple 3-party protocol that has
security against one corrupted party. This protocol is loosely based on a protocol
by Feige et al. [19] and considerably simplifies the 3-party instance of a general
result from [16].

In the active security model, we rely on the recent work of [15] who obtain
the first MPC protocols with active security in the group model. The complexity
of the protocol of [15] grows exponentially with the number of parties. However,
we only need to employ the [15] protocol for four parties and so we do not suffer
the exponential blowup. Thus, we settle the main problem left open in [15] by
applying our technique to an instance of their results.

We also obtain the first two-party MPC protocols over blackbox groups. In the
passive corruption model, we combine a group product randomization technique
due to Kilian [32] with a “subset sum” based statistical secret sharing of group
elements. We then get security against active corruptions by combining this two-
party protocol with our efficient n-party protocol for the active model via the
IPS compiler [31].

Broadcast. Broadcast is one of the most basic problems in distributed comput-
ing. Recall that in a broadcast protocol a broadcaster wants to send a message
to all other parties. A broadcast protocol should end with all parties holding the
same value, even if some of the parties, possibly including the broadcaster, be-
have adversarially. Obtaining efficient broadcast protocols is a highly nontrivial
task [37,18,22]. Our generic approach for MPC protocols can be used to directly
construct simple broadcast protocols for t < n/3 corrupted parties. We also get

a simplified proof of a result of Fitzi and Maurer [21], showing that an ideal
primitive allowing broadcast for 3 parties (so-called 2-cast) implies broadcast
with t < n/2 corrupted parties. Our proof technique also yields broadcast for
the more general case of Q2 adversaries which was previously an open problem.

1.2 Threshold Formulae from Threshold Gates

Motivated by the above applications to MPC, we consider the problem of con-
structing a logarithmic-depth threshold formula from threshold gates. Before
discussing the general problem, we first discuss the special case of constructing a
logarithmic depth formula composed of Maj3 gates that computes the majority
function. Note that this is exactly the type of formula required in the setting of
passive MPC security.

Majority from Majorities. A closely related problem was considered by
Valiant [40] who proved the existence of a logarithmic-depth monotone formula
that computes the majority function where the formula uses And and Or gates,
both of fan-in 2. As noted independently by several authors [6,26,42,24], a slight
modification of Valiant’s argument shows the existence of a logarithmic-depth
formula composed of Maj3 gates that computes the majority function.

Valiant’s proof is based on the probabilistic method and is non-constructive.
Namely, the proof only assures us of the existence of a formula with the above
properties, but does not hint on how to find it efficiently. Motivated by the
applications presented in Section 1.1, we ask whether Valiant’s proof can be
derandomized using only Maj3 gates and no constants.7 We raise the following
conjecture:

Conjecture 1 (Majority from Majorities). There exists an algorithm A that given
an odd integer n as input, runs in poly(n)-time and generates a formula F on n
inputs, with the following properties:

– F consists only of Maj3 gates and no constants.
– depth(F) = O(log n).
– F computes the majority function on n inputs.

A derandomization for Valiant’s proof for formulas over And and Or gates
follows from the seminal paper of Ajtai, Komlós and Szemerédi [1], though the
latter does not seem to imply a derandomization in the context of Maj3 gates,
where constants are not allowed.8

In this paper we make a significant progress towards proving Conjecture 1. In
particular, we prove that relaxed variants of the conjecture hold. In addition, we
show that the conjecture follows from standard complexity assumptions, namely,

7 We cannot allow the use of the constant 0, as this would correspond to assuming
parties to be incorruptible. The use of the constant 1 alone is not helpful in our
context.

8 Note that And and Or gates can be implemented using Maj3 gates and constants.

E , DTIME(2O(n)) does not have 2εn-size circuits for some constant ε > 0.
Note that the latter follows from the existence of exponentially hard one-way
functions.9 See details in Section 2.

Threshold Formulae from Threshold Gates. Motivated by applications to
the active MPC setting, and being a natural complexity-theoretic problem on its
own, we initiate the study of a generalization of the majority from majorities
problem, which we call the threshold from thresholds problem.

For integers 2 ≤ j ≤ k, define the threshold function Thkj : {0, 1}k → {0, 1}
as follows. Thkj (x) = 1 if and only if the Hamming weight of x is at least j. Note

that Maj3 = Th32.
Unlike the majority from majorities problem, it is not a priori clear what

threshold function, if any, can be computed by a log-depth formula composed
only of Thkj gates, even if no explicit construction is required.

We make significant progress also on this question. Roughly speaking, we
provide an explicit construction of a logarithmic depth formula composed solely
of Thkj gates, that well approximates Thnn/m, where m = k−1

j−1 . For further details,
see Section 2.3.

Organization. In Section 2 we state our results and in Section 3 we present the
proof techniques of the complexity-theoretic part. For an overview of the appli-
cations to cryptography and distributed computing, as well as formal statements
and full proofs of our results, see the full version.

2 Our Results

We first describe the applications of our approach in cryptography and dis-
tributed computing, and then proceed to the complexity-theoretic results.

2.1 Cryptographic Results

We start by stating known results that we rederive using our approach, and later
state our new results.

In the passive Ring-MPC model, we get the following results.

– If the majority from majorities conjecture (Conjecture 1) holds then we
obtain an explicit MPC protocol that has optimal security in the passive
model. That is, it is secure as long as at most a 1

2 −Ω(1
n) fraction of the n

parties (more precisely, t < n/2) are passively corrupted.
As noted above and stated formally in Theorem 3, Conjecture 1 follows from
widely-believed conjectures in complexity theory and cryptography.

9 We find it curious that perfectly secure MPC results are based on the existence of
(sufficiently strong) one-way functions.

– An unconditional explicit and close to optimal protocol in the passive model
in which the fraction of dishonest parties is at most 1

2 − 2−O(
√
logn) out of

the n parties (in contrast to the optimal threshold of 1
2 −Ω(1

n)).
– A randomized construction of an optimal protocol in the passive model. By

randomized construction we mean that the protocol is constructed by a ran-
domized algorithm which may fail with negligible (undetectable) probability,
but otherwise outputs the description of a perfect protocol.

We obtain the following result in the active Ring-MPC model.

– An explicit but non-optimal protocol that is secure against any active ad-
versary that controls at most a 1

3 − Ω(1√
logn

) fraction of the n parties (in

contrast to the optimal bound of 1
3 −Ω(1

n)).

Next we state our new results in the blackbox group model, introduced by
Desmedt et al. [17,16]. In this model the function computed by the protocol is
specified by an arithmetic circuit over a (possibly non-Abelian) group, and the
parties are restricted to making blackbox access to the group. (This includes or-
acle access to the group operation, taking inverses, and sampling random group
elements.) In particular, the number of group operations performed by the pro-
tocol should not depend on the structure of the group or the complexity of
implementing a group operation using, say, a Boolean circuit.

– Group-MPC, passive: The best explicit protocol of [16] offers perfect se-
curity against a 1

nε fraction of passively corrupted parties, for any constant
ε > 0, where n is the total number of parties.
We improve upon the latter by constructing an explicit protocol that has
perfect security against an (almost optimal) 1

2 − 2−O(
√
logn) fraction of pas-

sively corrupted parties. Alternatively, we get an optimal bound of 1
2 −Ω(1

n)
assuming the majority from majorities conjecture, via a non-uniform con-
struction, or under standard derandomization or cryptographic assumptions.

– Group-MPC, active: In a recent work, Desmedt et al. [15] constructed a
secure MPC protocol in the group model with security against an active
adversary. However, their result only gives a protocol whose complexity de-
pends exponentially on the number of parties, regardless of the corruption
threshold.
We construct an efficient secure MPC protocol in the group model where an
active adversary can control (an almost optimal) 1

3 − Ω(1√
logn

) fraction of

the n parties.
– Secure two-party computation over groups: We construct the first se-

cure two-party protocols over blackbox groups. Our protocols offer statistical
security against active corruptions (assuming an oblivious transfer oracle)
and rely on the afforementioned n-party protocols over black-box groups.

Finally, our protocols for the Ring-MPC model described above can be gen-
eralized to yield the following new result for MPC over k-linear maps.

– MPC over k-linear maps: We show that, for any constant k and any
basis B of k-linear maps over finite Abelian groups, there are efficient MPC
protocols for computing circuits over B which only make blackbox access
to functions in B and group operations. This generalizes previous results
for MPC over blackbox rings [13], which follow from the case k = 2, and
can potentially be useful in cryptographic applications that involve complex
bilinear or k-linear maps. These protocols are perfectly secure against a
1
k − Ω(1√

logn
) fraction of passively corrupted parties or a 1

k+1 − Ω(1√
logn

)

fraction of actively corrupted parties.

2.2 Distributed Computing Results

Broadcast. It is well known that broadcast can be implemented over point-
to-point channels if and only if less than a third of the parties are actively
corrupted [37,18] or, more generally, if and only if no three of the subsets the
adversary may corrupt cover the entire set of parties [28,20], a so called Q3-
adversary.

In this paper we show that a trivial broadcast protocol for 4 parties where one
is actively corrupted easily implies the result of [20] using existing constructions
of (super-logarithmic depth) formulae. Substituting instead our own logarithmic
depth formula constructions implies a simple polynomial-time broadcast protocol
for less than n(1

3 −Ω(1√
logn

)) corrupted parties.

Broadcast from 2-cast. In [21], Fitzi and Maurer identify a minimal primitive
that allows to improve the n

3 corruption threshold: if we are given the ability
to broadcast among any subset of 3 parties for free, a so-called 2-cast primitive,
then broadcast becomes possible when less than n

2 parties are corrupted. It is
natural to ask whether 2-cast also implies broadcast secure against general Q2-
adversaries (where no two corruptible subsets cover the entire set of parties).
This problem was previously open.

We apply our approach to construct broadcast protocols based on a 2-cast
primitive. Together with existing constructions of (super-logarithmic depth) for-
mulae composed of Maj3-gates, this immediately implies a construction of broad-
cast from 2-cast for every Q2-adversary, resolving the above problem. Substi-
tuting instead our logarithmic-depth formula constructions, we get a simplified
derivation of polynomial-time protocols for the case of an honest majority con-
sidered in [21]. We do not know if the formula based approach also implies the
results in [11], which consider generalizations of the 2-cast primitive.

2.3 Complexity-Theoretic Results

In this section we describe our results on constructing threshold formulae from
threshold gates. For the special case of computing majority from Maj3 gates we
obtain stronger results which we state first.

Majority from Majorities Our first complexity-theoretic result shows that
given a small promise on the bias of the input (defined as the difference between
the normalized Hamming weight and 1/2), Conjecture 1 holds.

Theorem 2. There exists an algorithm A that given an odd integer n as input,
runs in poly(n)-time and computes a formula F on n inputs, with the following
properties:

– F consists only of Maj3 gates and no constants.
– depth(F) = O(log n).

– ∀x ∈ {0, 1}n such that bias(x) ≥ 2−O(
√
logn) it holds that F (x) = Maj(x).

Our second result shows that under standard complexity hardness assump-
tions, Conjecture 1 holds.

Theorem 3. If there exists an ε > 0 such that E , DTIME(2O(n)) does not
have 2εn-size circuits then Conjecture 1 holds. In particular, if there exist expo-
nentially hard one-way functions then Conjecture 1 holds.10

In fact, the proof of Theorem 3 explicitly presents an algorithm for construct-
ing a formula as in Conjecture 1 given the truth table of any function in E, on
a suitable number of inputs, that cannot be computed by 2εn-size circuits.

Thresholds Formulae from Threshold Gates

Lemma 4. There exists an algorithm A that given t, j, k ∈ N as input, where
j, k are constants in t such that j ≥ 2 and k ≥ 2j− 1,11 runs in exp(t)-time and
generates a formula F with the following properties:

– F has mt+ 1 inputs, where m =
⌊
k−1
j−1

⌋
.

– F consists only of Thkj gates and no constants.
– depth(F) = O(t).
– ∀x ∈ {0, 1}mt+1 it holds that F (x) = Thmt+1

t+1 (x).

Lemma 4 generalizes results of [2,28,3], who proved it for particular values
of j and k, and uses a similar technique. We note that the depth of the formula
generated in Lemma 4 is linear, which is too large for our applications. Never-
theless, the following theorem, which uses Lemma 4 as a building block, shows
that a formula with logarithmic depth can be generated efficiently assuming a
sufficient “bias” on the input.

10 A one-way function f is exponentially hard if there exists an ε > 0 such that every
family of 2εn-size circuits can invert f with only 2−εn probability. If there exists such
a function f , then the language Lf is in E but does not have 2εn-size circuits, where
Lf = {(y, x′, 1n) : y has a preimage of length n under f which starts with x′}.

11 Throughout the paper we assume, without loss of generality, that k ≥ 2j − 1. The
complementary case can be reduced to this one by using Thkk−j+1 gates and inter-
preting 0 as 1 and vice versa.

Theorem 5. There exists an algorithm A that given n, j, k ∈ N as input, where
j, k are constants in n such that j ≥ 2 and k ≥ 2j− 1, runs in poly(n)-time and
generates a formula F on n inputs, with the following properties:

– F consists only of Thkj gates and no constants.
– depth(F) = O(log n).
– ∀x ∈ {0, 1}n with normalized Hamming weight at least 1

m + Ω(1√
logn

), it

holds that F (x) = 1, where m =
⌊
k−1
j−1

⌋
.

– ∀x ∈ {0, 1}n with normalized Hamming weight at most 1
m − Ω(1√

logn
), it

holds that F (x) = 0.

Note that Theorem 2 is not a special case of Theorem 5 (with j = 2, k = 3)
as the required promise on the bias in Theorem 2 is exponentially smaller than
that in Theorem 5.

We do not know whether an analog of Conjecture 1 is plausible for the
threshold from thresholds problem, even without the time-efficiency requirement.
Theorem 5 might serve as evidence for the affirmative. However, the probabilistic
argument used in the majority from majorities problem (see, e.g., [24]) breaks
for this more general case. We consider this to be an interesting open problem
for future research.

3 Proof Overview of Complexity-Theoretic Results

In this section we give an overview of our complexity-theoretic constructions. For
simplicity, we start by giving an overview of our construction of a logarithmic-
depth formula composed of Maj3 gates, and no constants, that computes the
majority function for inputs with constant bias. That is, we informally describe
an efficient algorithm that given n, ε as inputs, where ε > 0 is constant in n,
outputs a logarithmic-depth formula with n inputs which computes the majority
function correctly on inputs with bias at least ε. It is not hard to see that it
is enough to construct a logarithmic-depth circuit, since such a circuit can be
efficiently converted to an equivalent logarithmic-depth formula.

To this end, we design an algorithm called ShrinkerGenerator that given n, ε as
inputs, generates a constant-depth circuit Shrinker with n inputs and n

2 outputs,
composed of Maj3 gates and no constants, such that

∀x ∈ {0, 1}n bias(x) ≥ ε =⇒ bias(Shrinker(x)) ≥ ε.

Thus, Shrinker shrinks the number of variables to half while maintaining the
bias, assuming the input has a sufficiently large bias. By repeatedly calling
ShrinkerGenerator on inputs n, n2 ,

n
4 , . . . , 2 (with the same ε) and concatenat-

ing the resulting circuits, one gets a logarithmic-depth circuit that computes the
majority function assuming the input has large enough bias.

A key object we use in the design of ShrinkerGenerator is a Boolean sampler.
Roughly speaking, a Boolean sampler is a randomized algorithm which on input
x ∈ {0, 1}n approximates the Hamming weight of x by reading only a small

number of the bits of x. More precisely, a (d, ε, δ)-Boolean sampler is a random-
ized algorithm that on input x ∈ {0, 1}n with normalized Hamming weight ω,
samples at most d bits of x, and outputs β ∈ [0, 1] such that Pr[|ω−β| ≥ ε] ≤ δ.

We will use a special type of samplers which take their samples in a non-
adaptive fashion, and their output is simply the average of the sampled bits. For
any ε, δ > 0 there exist efficient (d, ε, δ)-Boolean samplers, with d = O(ε−2 ·δ−1),
that on inputs of length n use only log n random bits.

Because such a sampler is non-adaptive and simply outputs the average of
the sampled bits, it can be represented as a bipartite graph G = (L,R,E), with
|L| = |R| = n. For an input x ∈ {0, 1}n, the i’th vertex in L is labeled with the
i’th bit of x. Each vertex in R represents one of the possible log n bit random
strings used by the sampler. Each right vertex r is connected to the d left-vertices
that are sampled by the algorithm when r is used as the random string.

The algorithm ShrinkerGenerator on inputs n, ε starts by constructing a graph
G that represents a (d, ε2 ,

1
8)-Boolean sampler, with d = poly(1

ε) = O(1). It then
arbitrarily chooses half of the right vertices in G and discards the rest. This
gives a bipartite graph G′ = (L′, R′, E′) with |L′| = n, |R′| = n

2 and constant
right-degree d. The circuit Shrinker that the algorithm ShrinkerGenerator outputs
is given by placing a circuit that computes the majority function on d inputs for
every right vertex. The inputs of this majority circuit are the neighbors of the
respective right vertex. Note that as d is constant, a constant-depth circuit that
computes the majority function on d inputs can be found in constant time.

As for the correctness of the construction, assume now that x ∈ {0, 1}n has
some constant bias ε and, without loss of generality, assume that the bias is
towards 1 (i.e., wt(x) ≥ (1

2 + ε)n). Then, by the guarantee of the sampler, for
all but 1

8 of the right vertices in the original graph G, the fraction of neighbors
with label 1 of a right vertex is at least 1

2 + ε − ε
2 >

1
2 . Thus, all but 1

8 of the
(constant-size) majority circuits located in R output 1. Hence, the fraction of

majority circuits that output 0 in R′ is at most n/8
n/2 = 1

4 ≤
1
2 − ε, as desired.

3.1 Supporting Sub-Constant Bias

For sub-constant ε, the sampler technique described above is wasteful, as it
requires us to use a sequence of O(log n) layers with fan-in O(ε−2). For sub-
constant ε, this results in a circuit with a super-logarithmic depth. However, we
observe that one layer of fan-in O(ε−2) circuits is enough to amplify the bias
from ε to 0.4 (rather than just keep the bias at ε). This reduces us to the constant
bias case, which can be solved as above with an additional O(log n)-depth.

Thus, in order to obtain an O(log n)-depth circuit on n inputs, that computes
majority correctly for inputs with bias at least ε, it is enough to construct an
O(log n)-depth circuit with O(ε−2) inputs that computes majority correctly on
all inputs.

Using a naive brute-force algorithm, one can efficiently find an optimal-depth
circuit on roughly log n inputs that computes majority. By plugging this circuit
into the above scheme, one immediately gets an O(log n)-depth circuit that com-
putes majority on n inputs with bias roughly ε = Ω(1√

logn
).

We improve on this by using an additional derandomization idea. Specif-
ically, we construct an O(log n)-depth circuit on 2O(

√
logn) inputs, that com-

putes majority (under no assumption on the bias). Thus, we obtain an explicit
construction of a circuit that computes majority assuming the bias is at least
ε = 2−O(

√
logn).

We first describe a randomized construction of an O(logm)-depth circuit on

m inputs for majority, where m is set, in hindsight, to 2O(
√
logn). Our construc-

tion only uses O(log2m) random bits (compared to poly(m) random bits used
in Valiant’s construction). We then show how to derandomize this construction.

Our randomized construction works as follows. Consider an input x ∈ {0, 1}m
with bias ε. Suppose that we sample uniformly and independently at random 3
bits of x and compute their majority. It is shown in [24] that the majority’s bias
is at least 1.2ε (as long as ε is not too large).

Thus, by placing m majority gates of fan-in 3, and selecting their inputs
from x uniformly and independently at random, the output of the m majority
gates will have bias of at least 1.1ε with overwhelming probability. By composing
O(log (1/ε)) such layers, we can amplify the bias to a constant. Note that this
construction uses O(m · logm · log(1/ε)) random bits.

To save on the number of random bits used (which is essential for the de-
randomization step), instead of sampling the inputs of each one of the m gates
uniformly at random, we choose them in each layer using a 6-wise independent
hash function. While 3-wise independence suffices for the expectation of the bias
to be as before, the 6-wise independence guarantees that the outputs of the ma-
jority gates in each layer are pairwise independent. Using tail inequalities we
show that, with probability 1− o(1), the bias increases in each layer as before.

By composing O(log (1/ε)) such layers, each of which requires O(logm) ran-
dom bits, we obtain a circuit as desired. The total number of random bits used
is O(log (m) · log (1/ε)), which is bounded by O(log2m). We derandomize the

construction by placing all 2O(log2 m) majority circuits that can be output by the
randomized construction and taking the majority vote of these circuits.

Since we have a guarantee that almost all (a 1− o(1) fraction) of the circuits
correctly compute majority, it is enough to compute the majority vote at the
end using a circuit with 2O(log2 m) inputs that works for, say, constant bias. Such
a circuit, with depth O(log2m), can be constructed in time 2O(log2 m) by the
constant-bias scheme described earlier.

As we set m = 2O(
√
logn), we get a poly(n)-time uniform construction of an

O(log n)-depth circuit on 2O(
√
logn) inputs that computes majority correctly on

all inputs. This circuit is then used in the scheme described above.

Threshold formulae from thresholds gates. The scheme described above works
also in the more general setting of threshold from thresholds. Indeed, in the
paper we present the scheme in the general setting. To apply the scheme in
the thresholds setting, one needs to construct a small circuit that computes the
required threshold formula, to be used by ShrinkerGenerator. We accomplish this
by extending results of [2,28,3].

4 The Player Emulation Technique

The formulas obtained in the previous section can be used to construct efficient
multiparty protocols via the “player emulation” technique from [28]. Variants of
this technique, also referred to as player virtualization or simulation, were used
for different purposes in several other works (e.g. [5,9,27,14,31,35,34]). While
implementing player emulation in the passive security model is quite straight-
forward, in the active security model it requires more care. In the following we
give more details on the implementation of this technique.

Recall that in a single player emulation step, the role of a party τ partici-
pating in a protocol Π is replaced by a secure protocol π which involves a small
set of parties v1, . . . , vk, along with the parties of Π. We will typically let k = 3
(resp., k = 4) in the case of security against a passive (resp., active) adversary,
and let π be a protocol which remains secure as long as at most one of the emu-
lating parties vi is corrupted. Furthermore, the total computational complexity
of all parties in π (which is typically cast in some algebraic computation model)
is only bigger by a constant factor than that of the emulated party τ in Π. As
explained in the Introduction, a logarithmic-depth threshold formula defines a
sequence of such player emulation steps which result in transforming an atomic
protocol π for a constant number of parties into an efficient n-party protocol
which tolerates an optimal or near-optimal fraction of corrupted parties.

The application of the player emulation technique in [28] is formulated in a
specialized framework for secure MPC and is restricted to the protocol compiler
of BGW [4].12 However, the technique is quite insensitive to many of these
details and can be applied with other protocols and notions of security from the
literature.

A conceptually simple way for implementing a player emulation step is by
viewing the role of τ in Π as a reactive ideal functionality, which interacts with
the parties in Π (receiving incoming messages as inputs and delivering outgoing
messages as outputs), and maintains a state information during this interaction.
The protocol π emulating τ then needs to realize the corresponding functionality
using the emulating parties vi instead of τ . Note that protocol π does not only
involve the players emulating τ . It also specifies how players communicating with
τ should translate their messages into whatever format π uses13.

The protocol π can satisfy any composable notion of security that applies to
reactive functionalities, namely one which ensures that π can be securely used
as a substitute for τ in an arbitrary execution environment if at most a single vi

12 Since the atomic protocols π we employ in this work all have a similar high-level
structure to the BGW protocol, they can be used within the framework of [28] in a
similar way.

13 Alternatively, if the communication channels are modeled as an ideal functionality,
one can extend the definition of this functionality so it will do the translation, and
then in a final step implement the translation. This leads in some cases to a slightly
simpler protocol in the end.

is corrupted. The protocols π we use in this work all satisfy the standard notion
of UC-security from [8], which suffices for this purpose.14

Alternatively, it is possible to implement a player emulation step by only
relying on protocols for secure function evaluation which satisfy the standard
definitions of standalone security [7,23]. The idea is to first ensure that only a
single message is sent in each round of Π, and then implement a round in which
τ interacts with party P by a protocol involving P and the emulating parties
vi. The functionality realized by such a protocol is determined by the choice of
a concrete (robust) secret sharing scheme which is used to distribute the state
of τ between the emulating parties.

Acknowledgements. Ishai was supported by the European Research Council as
part of the ERC project CaC (grant 259426). Damgåard, Kölker and Miltersen
acknowledge support from the Danish National Research Foundation and The
National Science Foundation of China (under the grant 61061130540) for the
Sino-Danish Center for the Theory of Interactive Computation, within which
part of this work was performed; and also from the CFEM research center (sup-
ported by the Danish Strategic Research Council) within which part of this work
was performed. Cohen, Raz and Rothblum were supported by ISF (Israel Science
Foundation) grants and by the I-CORE Program of the Planning and Budgeting
Committee.

References

1. M. Ajtai, J. Komlós, and E. Szemerédi. An o(n log n) sorting network. In STOC,
pages 1–9, 1983.

2. S. Akers and T. Robbins. Logical design with three-input majority gates. Computer
Design, 45(3):12–27, 1963.

3. O. Barkol, Y. Ishai, and E. Weinreb. On locally decodable codes, self-correctable
codes, and t-private PIR. Algorithmica, 58(4):831–859, 2010.

4. M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In
STOC, pages 1–10, 1988.

5. G. Bracha. An O(log n) expected rounds randomized byzantine generals protocol.
J. ACM, 34(4):910–920, 1987.

6. P. Bro Miltersen. Lecutre notes. Available from author, 1992.

7. R. Canetti. Security and composition of multiparty cryptographic protocols. J.
Cryptology, 13(1):143–202, 2000.

8. R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In FOCS, pages 136–145, 2001.

14 In particular, all these protocols are perfectly secure with a straight-line black-box
simulator, which was shown in [33] to imply UC-security in the case of secure function
evaluation. We note that while standard UC-security is cast in an asynchronous
network model and does not guarantee output delivery, it can be extended to capture
synchronous protocols which guarantee output delivery (cf. [12, Chapter 4]).

9. D. Chaum. The spymasters double-agent problem: Multiparty computations se-
cure unconditionally from minorities and cryptographically from majorities. In
CRYPTO, pages 591–602, 1989.

10. D. Chaum, C. Crépeau, and I. Damg̊ard. Multiparty unconditionally secure pro-
tocols (extended abstract). In STOC, pages 11–19, 1988.

11. J. Considine, M. Fitzi, M. K. Franklin, L. A. Levin, U. M. Maurer, and D. Metcalf.
Byzantine agreement given partial broadcast. J. Cryptology, 18(3):191–217, 2005.

12. R. Cramer, I. Damg̊ard, and J. B. Nielsen. Secure Multiparty Computation and
Secret Sharing - An Information Theoretic Appoach. 2012. Book draft, available
at http://www.daimi.au.dk/∼ivan/MPCbook.pdf.

13. R. Cramer, S. Fehr, Y. Ishai, and E. Kushilevitz. Efficient multi-party computation
over rings. In EUROCRYPT, pages 596–613, 2003.

14. I. Damg̊ard, Y. Ishai, M. Krøigaard, J. B. Nielsen, and A. Smith. Scalable multi-
party computation with nearly optimal work and resilience. In CRYPTO, pages
241–261, 2008.

15. Y. Desmedt, J. Pieprzyk, and R. Steinfeld. Active security in multiparty compu-
tation over black-box groups. In SCN, pages 503–521, 2012.

16. Y. Desmedt, J. Pieprzyk, R. Steinfeld, X. Sun, C. Tartary, H. Wang, and A. C.-
C. Yao. Graph coloring applied to secure computation in non-abelian groups. J.
Cryptology, 25(4):557–600, 2012.

17. Y. Desmedt, J. Pieprzyk, R. Steinfeld, and H. Wang. On secure multi-party com-
putation in black-box groups. In CRYPTO, pages 591–612, 2007.

18. D. Dolev. The byzantine generals strike again. J. Algorithms, 3(1):14–30, 1982.
19. U. Feige, J. Kilian, and M. Naor. A minimal model for secure computation (ex-

tended abstract). In STOC, pages 554–563, 1994.
20. M. Fitzi and U. M. Maurer. Efficient byzantine agreement secure against general

adversaries. In DISC, pages 134–148, 1998.
21. M. Fitzi and U. M. Maurer. From partial consistency to global broadcast. In

STOC, pages 494–503, 2000.
22. J. A. Garay and Y. Moses. Fully polynomial byzantine agreement for n > 3t

processors in t+ 1 rounds. SIAM J. Comput., 27(1):247–290, 1998.
23. O. Goldreich. Foundations of Cryptography: Volume 2, Basic Applications. Cam-

bridge University Press, New York, NY, USA, 2004.
24. O. Goldreich. Valiant’s polynomial-size monotone formula for majority. http:

//www.wisdom.weizmann.ac.il/~oded/PDF/mono-maj.pdf, 2011.
25. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or A

completeness theorem for protocols with honest majority. In STOC, pages 218–229.
ACM, 1987.

26. A. Gupta and S. Mahajan. Using amplification to compute majority with small
majority gates. Computational Complexity, 6(1):46–63, 1996.

27. D. Harnik, Y. Ishai, E. Kushilevitz, and J. B. Nielsen. OT-combiners via secure
computation. In TCC, pages 393–411, 2008.

28. M. Hirt and U. M. Maurer. Player simulation and general adversary structures in
perfect multiparty computation. J. Cryptology, 13(1):31–60, 2000.

29. S. Hoory, A. Magen, and T. Pitassi. Monotone circuits for the majority function.
In APPROX-RANDOM, pages 410–425, 2006.

30. Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Zero-knowledge proofs from
secure multiparty computation. SIAM J. Comput., 39(3):1121–1152, 2009.

31. Y. Ishai, M. Prabhakaran, and A. Sahai. Founding cryptography on oblivious
transfer - efficiently. In CRYPTO, pages 572–591, 2008. Preliminary full version
in http://www.cs.illinois.edu/∼mmp/research.html.

http://www.wisdom.weizmann.ac.il/~oded/PDF/mono-maj.pdf
http://www.wisdom.weizmann.ac.il/~oded/PDF/mono-maj.pdf

32. J. Kilian. Founding cryptography on oblivious transfer. In STOC, pages 20–31,
1988.

33. E. Kushilevitz, Y. Lindell, and T. Rabin. Information-theoretically secure protocols
and security under composition. SIAM J. Comput., 39(5):2090–2112, 2010.

34. Y. Lindell, E. Oxman, and B. Pinkas. The IPS compiler: Optimizations, variants
and concrete efficiency. In CRYPTO, pages 259–276, 2011.

35. C. Lucas, D. Raub, and U. M. Maurer. Hybrid-secure mpc: trading information-
theoretic robustness for computational privacy. In PODC, pages 219–228, 2010.

36. U. M. Maurer. Secure multi-party computation made simple. Discrete Applied
Mathematics, 154(2):370–381, 2006.

37. M. C. Pease, R. E. Shostak, and L. Lamport. Reaching agreement in the presence
of faults. J. ACM, 27(2):228–234, 1980.

38. T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with
honest majority (extended abstract). In D. S. Johnson, editor, STOC, pages 73–85.
ACM, 1989.

39. X. Sun, A. C.-C. Yao, and C. Tartary. Graph design for secure multiparty compu-
tation over non-abelian groups. In ASIACRYPT, pages 37–53, 2008.

40. L. G. Valiant. Short monotone formulae for the majority function. J. Algorithms,
5(3):363–366, 1984.

41. A. C.-C. Yao. Protocols for secure computations (extended abstract). In FOCS,
pages 160–164, 1982.

42. U. Zwick. Lecture notes. http://www.cs.tau.ac.il/~zwick/circ-comp-new/

six.ps, 1996.

http://www.cs.tau.ac.il/~zwick/circ-comp-new/six.ps
http://www.cs.tau.ac.il/~zwick/circ-comp-new/six.ps

	Efficient Multiparty Protocols via Log-Depth Threshold Formulae

