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Abstract. We show how to construct, from any weak pseudorandom
function, a 3-round symmetric-key authentication protocol that is se-
cure against man-in-the-middle attacks. The construction is very effi-
cient, requiring both the secret key and communication size to be only
3n bits long and involving only one call to the weak-PRF. Our techniques
also extend to certain classes of randomized weak-PRFs, chiefly among
which are those based on the classical LPN problem and its more efficient
variants such as Toeplitz-LPN and Ring-LPN. Building an efficient man-
in-the-middle secure authentication scheme from any weak-PRF resolves
a problem left open by Dodis et al. (Eurocrypt 2012), while building
a man-in-the-middle secure scheme based on any variant of the LPN
problem solves the main open question in a long line of research aimed
at constructing a practical light-weight authentication scheme based on
learning problems, which began with the work of Hopper and Blum (Asi-
acrypt 2001).

1 Introduction

The need for light-weight cryptography is increasing rapidly due to the grow-
ing deployment of low-cost devices, such as smart cards and RFID tags, in the
real world. One of the most common cryptographic protocols required on these
devices is a symmetric key authentication protocol in which the prover (usu-
ally referred to as the Tag) authenticates his identity to the verifier (usually
referred to as the Reader). The most direct way in which this protocol can be
constructed is by using a pseudorandom function f (e.g. AES) for which the Tag
and the Reader share a common key. Then the authentication protocol simply
consists of the Reader sending a challenge c to which the Tag replies with f(c),
and the Reader verifies that the received evaluation of c is indeed correct. The
main problem with this approach is that the pseudorandom function, whether
it is a “provably-secure” one based on some mathematical assumption or an
“ad-hoc” block cipher like AES, is usually quite costly for light-weight devices.
For this reason, researchers have worked on designing block ciphers specifically
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for low-cost devices (e.g. [19, 4]). A different approach for solving this problem
is constructing authentication schemes from building blocks that have weaker
security properties than block ciphers or pseudorandom functions. We pursue
this latter avenue of research in the present work.

1.1 Authentication from LPN

The Learning Parity with Noise (LPN) problem was initially shown to have
cryptographic applications by Goldreich et al. and Blum et al. in [11, 3], and
then used as a basis for authentication schemes by Hopper and Blum in their
HB scheme [14]. In this latter paper, a simple LPN-based authentication scheme
was proposed that was secure in the passive attack model. Later work by Juels
and Weis [15], and also by Katz and Shin [16], modified this protocol (the result
was called HB+) to be secure against active adversaries. Nevertheless, even these
schemes had a serious security shortcoming. If the adversary were allowed to
modify the communication between the Tag and the Reader and observe the
response of the reader to verification queries, then, as shown by Gilbert et al.
[7], there exists a very simple attack that can recover the secret key in polynomial
time. Because such a man-in-the-middle attack can be mounted with relatively
small effort, schemes that fall to it cannot be considered secure enough for real-
world applications that require some decent level of security. It was thus a major
open problem to construct an efficient LPN-based authentication scheme that
remains secure against man-in-the-middle attacks.

A notable advance was made by Gilbert et al. [9] who proposed a scheme
(termed HB#) that was able to resist the attack from [7] and was shown to be
secure against restricted man-in-the-middle adversaries. A second contribution
of this work was to offer a solution to another problematic feature of previous
LPN-based protocols. All protocols that are based on LPN require either the key
size or the communication complexity to be square in the security parameter.
Thus either the key size or the communication complexity would have to be
on the order of hundreds of thousands of bits. Since the main motivation for
LPN-based protocols is low-cost hardware, this is clearly unacceptable. To this
end, [9] proposed a protocol based on a related assumption, called Toeplitz-
LPN (see Section 2.2 for definitions), where the communication complexity was
small and the secret key had some structured form which allowed for compact
representations. While there has been no known weakness caused by using the
Toeplitz-LPN assumption, it did turn out that the restricted man-in-the-middle
model introduced in [9] was not sufficient to prevent all practical attacks, and
one such attack was shown by Ouafi et al. [24].

There have been many other proposals, some without security proofs, oth-
ers with claimed proofs that attempted to solve this problem, but all of these
methods were ultimately shown to be flawed (see [8] for a small overview). A
breakthrough finally came in a series of recent papers by Kiltz et al. [18] and
Dodis et al. [6] who constructed relatively-efficient MACs based on the hardness
of the LPN problem. Because MACs immediately give rise to man-in-the-middle
secure authentication schemes, their work also resolved the problem of building



such schemes from the LPN problem. This LPN MAC, however, suffered from
the same drawback as other LPN-based schemes – the key size was prohibitively
large. Thus in order to be useful in practice, the proof techniques would have
to be adapted to work with more compact LPN-related assumptions, such as
Toeplitz-LPN. But the constructions of [18] and [6] made use of certain alge-
braic structure of the LPN-problem, and the proofs turn out to be incompatible
with other previously-considered versions of LPN.

1.2 Authentication from Weak-PRFs

Weak pseudo-random functions are keyed functions whose outputs on random
inputs are indistinguishable from uniform. Weak PRFs are considered to be
much “weaker” primitives than PRFs, and in particular, it is not known how
to transform a weak-PRF into a PRF except by using tree techniques simi-
lar to the classical GGM construction [10]. Additionally, it also appears to be
much easier to build secure weak-PRFs than PRFs. For example, the function
fa(x) = xa mod p is a weak-PRF based on the DDH assumption, whereas the
construction of a PRF based on DDH is much less efficient [22], requiring n
multiplications in addition to the exponentiation in the weak-PRF. Similarly,
the recent construction of lattice-based PRFs [1] first builds a relatively efficient
weak-PRF (which is just fA(x) = Round(Ax mod p), where A ∈ Zm×np , x ∈ Zn
with ‖x‖ small, and the Round(·) function drops a super-logarithmic number of
least-significant bits) and then converts it to a full PRF using techniques similar
to [22, 23]. The resulting lattice-based PRF is both less efficient and requires a
stronger computational assumption than the underlying weak-PRF.

Due to efficiency advantages and lower security requirements, there has been
some research on constructions of cryptographic primitives such as symmetric
encryption and stream ciphers built directly from weak-PRFs (e.g. [5, 21, 25]).
The work along this theme that is most related to ours is the aforementioned
one of Dodis et al. [6], where it is shown how to build a 3-round authentication
scheme secure against active attacks from any weak-PRF. As we mentioned
earlier, the active security model, where the adversary is not allowed to send
any verification queries to the Reader, is not considered strong enough for real-
world applications. And so the problem of constructing man-in-the-middle secure
authentication schemes from arbitrary weak-PRFs remained open.

1.3 Our Results

Our first result is a construction, from any weak pseudorandom function, of a
3-round symmetric-key authentication protocol that is secure against man-in-
the-middle attacks. Our scheme has the exact same communication complexity
as the actively-secure scheme of [6], and only has one extra key element. To be
more precise, the secret keys in our scheme consist of the key of the weak-PRF
plus the description of a pairwise-independent hash function, which requires an
additional two elements, whose size is the output length of the weak-PRF. So if



we assume that both the domain and range of the weak-PRF is n bits, then the
total key size is 3n.

We then extend our construction of a weak-PRF scheme to randomized weak-
PRFs. Randomized weak-PRFs are keyed functions that become computation-
ally indistinguishable from uniform when their outputs are perturbed by some
low-entropy noise. Noisy learning problems such as LPN and LWE [26] can be
equivalently viewed as problems of distinguishing the outputs of a randomized
weak-PRF from the uniform distribution. To get a man-in-the-middle secure
authentication scheme from a randomized weak-PRF, we require just one more
secret key element than our weak-PRF based scheme.

Our constructions, and to some extent their security proofs as well, turn out
to be surprisingly simple. The main insight is that one should embed the n-bit
output of the (randomized) weak-PRF into a finite field of size 2n. Then, in
addition to the secret keys associated to the function, we also create secret keys
in the field which end up being masked by the presumed indistinguishability from
uniform of the (randomized) weak-PRF. We then show how the interplay in the
field between the weak-PRF and the additional secret keys results in protocols
that have the desired man-in-the-middle security.

We prove security of our schemes in the sequential man-in-the-middle model,
in which the adversary simultaneously interacts with one copy of the Tag and
Reader (see Figure 1). The schemes remain secure even if the adversary has ac-
cess to multiple readers (this is shown in the full version of the work), whereas
concurrent access to multiple tags may result in a vulnerability.3 In the stronger
notion of concurrent man-in-the-middle security the adversary is allowed to si-
multaneously communicate with multiple copies of the Tag and Reader. While
the concurrent model is theoretically stronger, we do not believe that it is prac-
tically relevant to the low-cost device setting considered in this paper. In partic-
ular, it is unlikely that a low-cost Tag would have the need (or ability) to simul-
taneously participate in more than one authentication session. Furthermore, it
also seems imprudent that in an ecosystem where one wants to have relatively
strong security, secret keys would be shared among the Tags. Still, constructing
an efficient authentication scheme from generic weak-PRFs that is secure in the
concurrent man-in-the-middle model is an interesting open problem. 4

1.4 Comparison to Other Works

Table 1 compares the results obtained in this paper with those of previous works.
Compared to the protocols that only achieve active security, our scheme achieves
the much stronger man-in-the-middle security at a fairly small cost. In the case
of protocols based on a generic weak-PRF, we extend the security to the man-
in-the middle model at the cost of only one extra secret key element and one
extra field multiplication. We get similar results when comparing our protocol
with actively-secure LPN-based ones.

3 In the full version of the paper, we show that for certain instantiations of a random-
ized weak-PRF there indeed exists a concurrent man-in-the-middle attack.

4 Our current scheme is still secure in the concurrent model against active attacks.



Protocol #r
Security Complexity

assumption active MIM key size com.

weak-PRF [6] 3 weak-PRF
√
ε ? 2n 3n

weak-PRF [this work] 3 weak-PRF qv ·
√
ε 3n 3n

HB+ [15, 16] 3 LPNn,τ
√
ε X [7] 2n 2n2

Random-HB# [9] 3 LPNn,τ
√
ε X [24] 2n2 3n

HB# [9] 3 Toeplitz-LPNn,τ
√
ε X [24] 4n 3n

MAC1 [18] 2 LPNn,τ ε 2λ · ε 2n2 4n

MAC2 [18] 2 LPNn,τ ε Q · ε λn2 4n

Lapin [13] 2 Ring-LPNn,τ ε ? 2n 3n

MAC1 + Lapin 2 Ring-LPNn,τ ε 2λ · ε 6n+ 2λ 4n

3
LPNn,τ

qv ·
√
ε

n2

3nLPN-based [this work] Toeplitz-LPNn,τ 5n
Ring-LPNn,τ 4n

Table 1. Authentication Protocols Based on Weak-PRFs and the LPN-
related Assumptions. Listed is the amount of authentication rounds #r, the se-
curity properties achieved by the protocol and its complexity (with lower order terms
dropped) according to the key size and the communication. Let ε be the advantage
in breaking the assumption, then the term depending on ε is proven to be the best
possible advantage of breaking the protocol in the given model. Q is the amount of
tag and verification queries whereas qv is defined as the amount of verification queries,
which is qv = 1 in the active model. n parameterizes the hardness of the assumption
and λ is the statistical security parameter. [6] gives an alternate construction of MAC1

and MAC2 with better computational complexity, but the rest of the properties are
basically the same.

It is also interesting to compare our LPN protocol to the MAC constructions
in [18]. There are three advantages to the MAC constructions – they are only
two rounds, they have slightly tighter reductions to LPN, and they are secure
in the concurrent man-in-the-middle model, whereas our scheme is secure in
the sequential man-in-the-middle model. The advantages of our construction are
that the key sizes and the communication complexities are smaller.

The above-listed differences between our LPN scheme and the MAC schemes
are, in our opinion, fairly minor with several pluses and minuses on both sides.
In practice, it makes almost no difference whether the authentication scheme
is 2 or 3 rounds since the Tag is the one who starts the protocol – thus a 2-
round protocol essentially becomes a 3-round one. And while security tightness
is certainly a desirable property, it is very unclear what effects it has in practice.
Similar public key authentication schemes, such as GQ [12] and Schnorr [27],
have been studied for a long time, yet do not exhibit any weaknesses due to
their non-tight reductions.

The major advantage of our construction is that it is generic and can be
instantiated with virtually any version of the LPN function or a randomized
weak-PRF satisfying a few mild properties (see Section 2.1). For example, our



construction allows for authentication schemes based on the fairly well-studied
Toeplitz-LPN assumption, which seems to provide a very good compromise be-
tween security and computational efficiency. The constructions of [18] and [6], on
the other hand, can only construct MACs from functions with very “algebraic”
properties.

The recent work of Heyse et al. [13] proposed a new LPN-type assumption,
called Ring-LPN, to enable efficient constructions that are compatible with the
MAC transformation in [18]. The assumption is relatively new, and its unclear
at this point whether it has the same hardness as the more well-studied LPN
and Toeplitz-LPN assumptions. Still, even if the Ring-LPN problem is hard, our
LPN protocol can also be instantiated based on this assumption and is more
efficient than the resulting MAC transformation.

2 Preliminaries and Notation

2.1 Function Families and their Properties

In this section we define the important classes of functions that will appear in
the paper. As mentioned earlier, we will be considering embeddings of function
outputs into a finite field. The embedding can be arbitrary, and the simplest one
is to simply think of a function output string s ∈ {0, 1}n as a polynomial in a
finite field F = (Zn2 ,+,×) for appropriately defined addition and multiplication
operations. Thus, without loss of generality, we will assume that all our functions
output elements to some finite field F.

Definition 2.1. A function family H : D→ F is called pairwise-independent if
for all x1 6= x2 ∈ D, y1, y2 ∈ F,

Pr
h

$←H
[h(x1) = y1 ∧ h(x2) = y2] = 1/|F|2

.

Definition 2.2. A function family F : D→ F is said to be a weak-PRF family
if for any polynomial-sized k, randomly-chosen f ∈ F , and randomly-chosen
r1, . . . , rk ∈ D, the distribution of (r1, f(r1)), . . . , (rk, f(rk)) is computationally
indistinguishable from the uniform distribution over (D,F)k.

Even if (r1, f(r1)), . . . , (rk, f(rk)) can be distinguished from the uniform dis-
tribution over (D,F)k, it’s possible that the sequence can become indistinguish-
able if the outputs f(ri) were perturbed by some noise. Such function families
are called randomized weak-PRFs. The noise perturbation can be anything, but
in this paper we will only consider noise distributions with an eye towards LPN
applications. In particular, both the noise and the output of f(ri) are group
elements, and the perturbation consists of adding the two together. This is still
consistent with our requirement of being able to embed the output of all func-
tions into a finite field F since the group needed for LPN can simply be the
underlying additive group of F (see Section 2.2).



Definition 2.3. For a function f(·) : D → F and a distribution χ over F, we
will write fχ(r) to mean a randomized function that generates an element e ∈ F
according to the distribution χ and outputs f(r)+e. A function family F : D→ F
is said to be a randomized weak-PRF family with noise χ if for any polynomial-
sized k, randomly-chosen f ∈ F , and randomly-chosen r1, . . . , rk ∈ D, the distri-
bution of (r1, f

χ(r1)), . . . , (rk, f
χ(rk)) is computationally indistinguishable from

the uniform distribution over (D,F)k.

In order for randomized weak-PRFs to be useful for cryptographic construc-
tions, the range F and the error distribution should have certain characteristics.
For example, the weak-PRFs would be of very little use if the error distribution
χ was just the uniform distribution over F. In this paper we will assume that the
additive group of the field F and the error distribution χ satisfy the following
three properties:

1. There exists a weight function ‖ · ‖ : F → R+ such that the additive group
that underlies the field F satisfies the triangle inequality – that is for all
a, b ∈ F, ‖a± b‖ ≤ ‖a‖+ ‖b‖. Additionally, ‖a‖ = 0 if and only if a = 0.

2. There exists a positive real τ ′ ∈ R such that Pre∼χ[‖e‖ ≤ τ ′] = 1− n−ω(1).5
3. For a positive real α, let β(α) = {z ∈ F : ‖z‖ ≤ α}. We will assume that
|β(2τ ′)|/|F| = n−ω(1).

The first property essentially makes sure that the randomness in the ran-
domized weak-PRF behaves “nicely” via the triangular inequality.6 The second
property determines the completeness of our protocol. Additionally, because of
the way our security proof works, the completeness of the protocol also plays a
role in the soundness of the protocol.7 Thus this value should be very close to
1. The third property determines the soundness of the protocol. Intuitively, it is
related to the probability that an adversary can randomly guess a response and
be accepted by the verifier.

Due to their similarity, we will be presenting our authentication scheme and
its proof based on weak-PRFs together with the ones based on randomized
weak-PRFs. Since a weak-PRF is just a randomized weak-PRF whose error
distribution χ has its support entirely on 0, it’s easy to see that it can trivially
be made to satisfy the above three properties. We can define the weight function
as ‖x‖ = 1 for all x 6= 0 and set τ ′ = 0. Thus for weak-PRFs we have Pre∼χ[‖e‖ ≤
τ ′] = 1 (and so the protocol will have perfect completeness) and |β(2τ ′)|/|F| =
|{0}|/|F| = 1/|F|.
5 More formally, τ ′ is a function of n, τ ′(n), but we will omit the n throughout the

paper.
6 Even though we are using the standard notation for “norm”, the weight function
‖ · ‖ is not quite a norm because it’s not true that for all integers α, α‖a‖ = ‖αa‖
(since we are working over a finite field).

7 This seems to be a common feature of protocols that have man-in-the-middle security
because the simulator replies to the adversary under the assumption that properly-
formed responses by the Tag are accepted by the Reader. Even though it is not
stated in [18, 6], the soundness of their protocols also depends on their completeness
in exactly the same way as in this work.



2.2 Randomized Weak-PRFs from the LPN Problem and its
Variants

The classical decisional LPNn,τ assumption states that the uniform distribution
over Zn2×Z2 is computationally-indistinguishable from the following distribution:
for a fixed randomly-chosen vector s ∈ Zn2 , output (r, r · s+ e) where r is chosen
uniformly random from Zn2 and e is a Bernoulli random variable that is 1 with
probability τ . By the hybrid argument, it is easy to see that if the fixed secret
is now a matrix S ∈ Zm×n2 then the distribution (r, Sr + e), where r is chosen
as before and e is a vector each of whose coefficients is 1 with probability τ , is
also computationally-indistinguishable from the uniform distribution over Zn2 ×
Zm2 (with a loss of a factor m in the reduction). We now formulate this latter
statement in terms of the randomized weak-PRF notation from the previous
subsection.

Let Bermτ be a distribution over Zm2 where every coordinate is independently
chosen to be 1 with probability τ and 0 with probability 1− τ .

Definition 2.4 (LPN). Let F : Zn2 → Zm2 be a function family indexed by
matrices S ∈ Zm×n2 . For a function fS ∈ F and a vector r ∈ Zn2 , define fS(r) :=
Sr. Then the LPNn,τ assumption implies that F is a randomized weak-PRF
family with noise Bermτ .

In the above definition, the domain D of F is Zn2 . Because we insisted in
Definition 2.3 that the range of the function family F be a finite field (this
will be used in our protocol) and the LPN problem only requires an additive
group structure, we have some freedom as to how to define this field. The LPN
assumption requires the range to have the group structure (Zm2 ,+), thus F can
be any finite field that has (Zm2 ,+) as its underlying additive group. The most
natural definition is F = Z2[x]/(g(x)) where g(x) is a polynomial of degree m
that is irreducible over Z2, and addition and multiplication are just standard
polynomial addition and multiplications modulo 2 and g(x). Thus addition in
(F,+,×) exactly corresponds to addition in (Zm2 ,+).

The randomized weak-PRF based on LPN can also quite naturally be made
to satisfy the three properties after Definition 2.3. The weight function ‖ · ‖ can
be defined to be the Hamming weight. That is, for any element a ∈ Zm2 , ‖a‖
is the number of 1’s in a. With this definition of the weight function, one can
compute, via the Chernoff bound, a τ ′ such that any element e chosen according
to Bermτ satisfies ‖e‖ ≤ τ ′ with overwhelming probability. To satisfy the third
property, we would need that |β(2τ ′)|/|F| = n−ω(1), which is equivalent to the

condition that

(
b2τ ′c∑
i=0

(
m
i

))
/2m = n−ω(1). The above conditions are identical

to those in other authentication protocols, such as [16, 17, 9], and so the LPN
parameters needed to make those schemes secure, also carry over to ours.

Because the LPN problem yields rather inefficient schemes, Gilbert et al. [9]
proposed protocols based on the hardness of the Toeplitz-LPN problem, which is
just like the LPN problem except that the secret matrix S is a Toeplitz matrix.



Tag Adversary Reader

ri - ri + r′i -
ci + c′i� ci�

zi - zi + z′i -
replyi = accept/reject�

Fig. 1. Man-in-the-Middle Attack Model.

Definition 2.5 (Toeplitz-LPN). Let F : Zn2 → Zm2 be a function family in-
dexed by Toeplitz matrices S ∈ Zm×n2 . For a function fS ∈ F and a vector
r ∈ Zn2 , define fS(r) := Sr. Then the Toeplitz-LPNn,τ assumption implies that
F is a randomized weak-PRF family with noise Bermτ .

Heyse et al. [13] recently introduced the Ring-LPN problem, which also re-
sults in more efficient protocols. While the Ring-LPN problem has not been
well-studied, it does have some resemblance to the better-studied Ring-LWE
problem [20] in lattice cryptography, and so there are some reasons to believe
that it might be secure.

Definition 2.6 (Ring-LPN). Let g(x) be a polynomial of degree n in Z2[x]
irreducible over Z2 and define the field F to be F = Z2[x]/((g(x)). Let F : F→ F
be a function family indexed by polynomials s ∈ F. For a function fs ∈ F and a
polynomial r ∈ F, define fs(r) := sr. Then the Ring-LPNn,τ assumption implies
that F is a randomized weak-PRF family with noise Bernτ .

2.3 Security Models

All authentication schemes are protocols in which the Tag and the Reader possess
some secret key sk and then perform an interaction in which the Tag must
convince the Reader of his identity. The difference in the security models depends
on the strength that we give the adversary. The three most natural security
models are passive, active, and man-in-the-middle. All three models consist of
two stages. In the first stage, depending on the model, the Adversary is allowed
to have some interaction with the Tag and the Reader. In the second stage, in
all three models, he loses the interaction with the Tag and must interact with
the Reader in hopes of getting the latter to accept the interaction.

Man-in-the-Middle Adversary. The strongest type of Adversary is one who in
the first stage is able to simultaneously interact with the Tag and the Reader and
make verification queries to the Reader. In the second stage, the Adversary loses
access to the Tag, and interacts with the Reader hoping to make the latter accept.



In this paper, the protocols we will be constructing will be sigma protocols (i.e.
have three rounds usually referred to as commit, challenge, and response) and
will use a model that is simpler to describe and is at least as secure as the
man-in-the-middle one. We now describe the security game and the Adversary’s
condition for winning it:

Setup: Generate a secret key and give it to the Tag T and the Reader R.
Attack: Invoke the AdversaryA who has access to T andR and let him interact

with them t times. Each of the interactions is as follows (see Figure 1):
A receives a commitment ri from T and sends a commitment ri+r′i to R. R
responds with a challenge ci and A sends a challenge ci+ c′i to T . T answers
with a valid response zi. A can now send his response zi + z′i for verification
to R. R answers with accept, if (ri + r′i,c

′
i,zi + z′i) is valid according to the

verification function, otherwise he answers with reject.

Winning Condition: We say that the Adversary A wins the game if at some
point he makes a query to R such that (r′i, c

′
i, z
′
i) 6= (0, 0, 0) and the Reader

R sends reply = accept.

Notice that if there is an Adversary who can win the two stage Man-in-the-
Middle game (i.e. where he loses access to the Tag in the second stage and must
get the reader to accept), then he can also win the game described above since
he can simply ignore the messages sent by the Tag in the second stage. Thus
security in the model that we will be using in this paper implies security in the
“more natural” two stage model.

3 Construction Based on a (randomized) weak-PRF

In this section we present our main construction, an authentication protocol
secure against man-in-the-middle attacks from any weak-PRF or a randomized
weak-PRF that satisfies the three properties stated after Definition 2.3. The
protocol based on a weak-PRF is very similar to the one based on a randomized
weak-PRF, and so we present them together in Figure 2. The security proofs are
also very similar, and we also present them together in the next section.

The underlying building blocks of the protocol in Figure 2 are a pairwise-
independent function family H and a family F of randomized weak-PRFs with
noise χ. If F is a family of standard (non-randomized) weak-PRFs, then it’s the
same as a randomized weak-PRF with noise χ, where χ has all of its support
on 0 – thus for all f ∈ F , fχ(·) = f(·). The secret keys of the authentication
scheme are randomly chosen f ∈ F , h ∈ H, and s ∈ F. In the case that F is a
standard weak-PRF family, we do not need the extra key s, and in the protocol
we can assume that s = 1. In the case that F is a randomized weak-PRF family,
we assume that it satisfies the three properties after Definition 2.3. Thus there
is an associated weight function ‖ · ‖ and a value τ ′ such that the error e chosen
from χ satisfies ‖e‖ ≤ τ ′ with overwhelming probability.



F : D→ F (a randomized weak-PRF family with noise χ)
H : D→ F (a pairwise-independent function family)

Keys: f
$← F , h

$← H, s
$← F

Tag Reader

r
$← D r -

c
$← F

c�
z ← fχ(r)s+ h(r)c

z -
Accept iff ‖f(r)− s−1 (z − h(r)c) ‖ ≤ τ ′

Fig. 2. Authentication Protocol Based on a (randomized) weak-PRF. If the
weak-PRF is not randomized, (i.e. the support of the distribution χ is 0 and τ ′ = 0),
then we can set s = 1. In this case, the condition ‖f(r)−s−1 (z − h(r)c) ‖ ≤ τ ′ simplifies
to f(r) = z − h(r)c.

In the first step of the protocol, the Tag picks a random element r ∈ D and
sends it to the Reader. The reader chooses a random c ∈ F and sends it to the
Tag. In its turn, the Tag evaluates fχ(r) and h(r), and sends z = fχ(r)s+h(r)c
back to the Reader, where all addition and multiplication operations take place
in the field F. In the case that F is a standard weak-PRF family, the response
of the Tag is simply z = f(r) + h(r)c. The Reader accepts the Tag if ‖f(r) −
s−1(z−h(r)c)‖ ≤ τ ′. In case of a standard weak-PRF family without noise, this
condition is equivalent to f(r) = z − h(r)c.

Example Instantiation. We now give an example instantiation of the protocol
using the LPNn,τ assumption from Definition 2.4. The noise distribution χ is
Bermτ and to choose the secret key f , a random S ∈ Zn×m2 is picked and fχ(r) :=
Sr+e where e ∼ Bermτ . Thus f maps the domain Zn2 to Zm2 . As in the discussion
following Definition 2.4, the field F is defined to be Z2[x]/(g(x)) where g(x) is
any irreducible polynomial of degree m. The simplest definition of a pairwise
independent function family that maps Zn2 to F is to index the family by two
polynomials in F. To pick a random element of the family, one randomly picks
a1, a2 ∈ F and defines h(r) = a1r+ a2, where r is treated like a polynomial in F
and multiplication and addition is performed over F.8 The final secret key is a
random polynomial s ∈ F. Thus the secret keys are (S, a1, a2, s).

In the protocol, the Tag chooses an r ∈ Zn2 and sends it to the Reader, who
replies with a randomly-chosen c ∈ F. The Tag receives the c computes fχ(r) =
Sr+e ∈ Zm2 , and treats the result as a polynomial in F. He then multiplies it by

8 To be able to treat r as an element of F, it is important that m ≥ n. If m < n,
then one can define the pairwise-independent function differently (e.g. h(r) = a1r1 +
. . . akrk + ak+1), where r = r1| · · · |rk).



s and adds it to h(r)c = (a1r+ a2)c, and sends the resulting z = fχ(r)s+ h(r)c
to the Reader. The reader computes f(r) = Sr and s−1(z − h(r)c), and accepts
if the weight of f(r)− s−1(z − h(r)c) is less than or equal to τ ′.

Notice that the protocol would be exactly the same for the Toeplitz-LPNn,τ

problem, with the only difference being how S is defined. By having S be a
Toeplitz matrix, the key storage space shrinks from mn + 3m to n + 4m, and
the matrix-vector multiplication Sr can be computed more efficiently. The Ring-
LPNn,τ protocol would also work in essentially the same way. In this case, we set
m = n and have D = F. The secret key S will just be a random polynomial in F
just like s, a1, and a2. Thus Sr will simply be a multiplication of two polynomials
in the field F.

Lemma 3.1 The completeness of the authentication protocol is Pre∼χ[‖e‖ ≤ τ ′].
And in particular, if the weak-PRF is not randomized, the completeness is 1.

Proof. The Tag sets z ← fχ(r)s + h(r)c = (f(r) + e)s + h(r)c, where e ∼ χ.
Thus f(r) − s−1(z − h(r)c) = e, and so the Reader accepts whenever ‖f(r) −
s−1(z − h(r)c)‖ = ‖e‖ ≤ τ ′.

4 Security of the Authentication Scheme

Theorem 4.1 Suppose that the authentication protocol in Figure 2 has com-
pleteness κ and there is a man-in-the-middle adversary who successfully breaks
this scheme with probability ε while making at most qv verification queries. Then
there exists an algorithm which, in the same amount of time, has advantage
1
2

(
κqv−1 (ε/qv − 1/|F|)2 − β(2τ ′)/|F|

)
in breaking the (randomized) weak-PRF

assumption of the family F .

Proof. If an adversary making qv verification queries wins the game, then one of
these qv queries can be thought of as the “winning query”. By “winning query”,
we mean that it is the first accepted query such that (r′i, c

′
i, z
′
i) 6= (0, 0, 0) (where

r′i, c
′
i, z
′
i are as in Figure 1). Once the Adversary sends such a query, he wins the

game. If the Adversary has an ε success probability of winning the MIM-game,
then by an averaging argument there must be some integer i∗ ≤ qv such that
the probability that the Adversary wins the game and query number i∗ is the
“winning query” is at least ε/qv. For the rest of the proof, we will assume that
we know this i∗ (which can be determined a priori by running the adversary on
known inputs.)

The Challenger gives us ordered pairs (ri, yi) ∈ D × F where the ri are
uniformly random in D and the yi are either uniformly random in F or equal to
fχ(ri) (where f is a randomly-chosen function from the (randomized) weak-PRF
family F with noise χ). We will show how to use the adversary who breaks the
authentication protocol with the i∗th winning query to decide which of the two
distribution the Challenger is outputting.

Our security proof is most naturally divided into two cases. In the first case,
the adversary does not modify the ri∗ , in other words, (r′i∗ , c

′
i∗ , z

′
i∗) = (0, c′i∗ , z

′
i∗).



Ch. Simulator (Tag) Adv. Simulator (Reader)

s
$← F, h $← H

(ri, yi)- ri- ri + r′i-

ci
$← F

ci + c′i� ci�
zi ← yis+ h(ri)(ci + c′i)

zi- zi + z′i-
if (r′i, c

′
i, z
′
i) = (0, 0, 0)

then replyi ← “accept′′

else replyi ← “reject′′

replyi�

Fig. 3. Simulating the Tag and the Reader before the Adversary’s i∗th ver-
ification query. If the weak-PRF is not randomized, then we set the secret key s=1
instead of choosing it at random from F.

In the second case, the ri∗ is modified in the winning query. The manner in which
the simulator uses the Adversary’s winning query to respond to the challenger
differs based on whether r′i∗ is 0 or not. For the purposes of improved readability,
throughout the rest of the paper, we will drop the subscript i∗ from all variables
in the winning query. So for example, instead of writing r′i∗ , we simply write r′.

Answering the Challenger when r′ = 0. We first show how to simulate the
Tag and the Reader before the Adversary’s i∗th verification query (see Figure 3).
We pick a random s ∈ F and h ∈ H as the secret keys, and upon receiving a pair
(ri, yi) from the Challenger, we send ri to the Adversary. The Adversary can
then modify this and forward ri + r′i to the Reader. The Reader picks a random
ci ∈ F, sends it to the adversary, who then sends the possibly modified challenge
ci + c′i to the Tag. The Simulator playing as the Tag computes h(ri)(ci + c′i)
using his secret key h, and then uses the yi received from the challenger together
with his other secret key s, to send zi = yis+ h(ri)(ci + c′i). After receiving zi,
the Adversary may send zi + z′i to the verifier and make a verification query.

Notice that if the Challenger sends (ri, yi = fχ(ri)), then the responses of
the Tag are exactly what they should be if the secret key were (f, s, h). Thus
if (r′i, c

′
i, z
′
i) = (0, 0, 0), the Reader who always sends “accept” is correct with

probability κ (the completeness of the protocol). And if (r′i, c
′
i, z
′
i) 6= (0, 0, 0),

the response of “reject” is also correct since the i∗th verification query has
not yet been reached. Because the simulator has faithfully simulated the valid
Tag and Reader up to this point with probability κqv−1, the Adversary’s i∗th
query will be the “winning one” (i.e. (r′, c′, z′) 6= (0, 0, 0) and ‖f(r + r′) −
s−1 ((z + z′)− h(r + r′)c) ‖ ≤ τ ′) with probability κqv−1ε/qv. Additionally, be-
cause z = fχ(r)s+h(r)(c+ c′), we also have ‖f(r)− s−1(z−h(r)(c+ c′))‖ ≤ τ ′.



Ch. Simulator (Tag) Adv. Simulator (Reader)

(r, y)- r- r-

c
$← F

c+ c′� c�
z ← ys+ h(r)(c+ c′)

z- z + z′-
if ‖s−1 (z′ + h(r)c′) ‖ ≤ 2τ ′

then reply ← “not random′′

else reply ← “random′′

reply�

Fig. 4. Answering the Challenger after the Adversary’s i∗th verification
query if r′=0.

Thus by the triangular inequality, we obtain ‖s−1 (z′ + h(r)c′) ‖ ≤ 2τ ′. If this
condition is satisfied, we respond to the challenger that the ordered pairs he was
sending were indeed of the form (ri, yi = fχ(ri)).

Lemma 4.1 If the challenger were sending valid pairs, i.e. (ri, yi = fχ(ri))
∀i, then ‖s−1 (z′ + h(r)c′) ‖ ≤ 2τ ′ should be satisfied with probability at least
κqv−1ε/qv.

On the other hand, if the Challenger were sending uniformly random pairs
(ri, yi) ∈ (D,F) then we will show that the adversary is not be able (except with a
negligible probability) to come up with (c′, z′) 6= (0, 0) that satisfy the inequality
‖s−1 (z′ + h(r)c′) ‖ ≤ 2τ ′. Notice that if the yi are uniform and independent of
the ri, the secret keys h, s chosen by the simulator are information-theoretically
hidden throughout the interaction in Figure 3. Therefore the Adversary’s behav-
ior will be exactly the same as in the case where s and h are chosen after he sends
his i∗th query. In Lemma 4.2, we use this to show that even an all-powerful ad-
versary cannot produce a query z+z′ such that ‖s−1(z′+h(r)c′)‖ ≤ 2τ ′, except
with probability β(2τ ′)/|F|.

Lemma 4.2 If the ordered pairs (ri, yi) sent by the challenger are uniformly
random in D × F, then the probability that even an all-powerful adversary can
output (c′, z′) 6= (0, 0) such that ‖s−1 (z′ + h(r)c′) ‖ ≤ 2τ ′ is at most |β(2τ ′)|/|F|.

Proof. We first handle the case where f is a weak-PRF without any noise (i.e.
the support of the distribution χ is 0 and τ ′ = 0). In this case, the extra ran-
dom key s is not necessary in the protocol (i.e. s = 1) and so the condition
‖s−1 (z′ + h(r)c′) ‖ ≤ 2τ ′ becomes 0 = z′ + h(r)c′. Since y is uniformly ran-
dom in F and independent of everything else, the value z that the adversary
receives is also uniformly random and independent of the pairwise independent
hash function h. Thus the adversary will behave in the same way if the function



h were chosen after the adversary chooses c′ and z′. Notice that the adversary
must set c′ 6= 0 because otherwise z′ is also necessarily 0. Thus,

∀r ∈ D, z′ ∈ F, c′ ∈ F \ {0},Pr
h

[0 = z′ + h(r)c′] = Pr
h

[h(r) = −z′c′−1] = 1/|F|.

The proof for case where the support of χ is not restricted to 0 is similar,
except that it also uses the unpredictability of the key s. The full proof is given
in the full version. ut

Answering the Challenger when r′ 6= 0. We now deal with the case where
the Adversary’s winning query changes the randomness r to r + r′. Performing
the simulation until the i∗th query is exactly the same as before (i.e. see Figure
3). Similarly, if the Challenger sends (ri, yi = fχ(ri)), then the responses of the
Tag are exactly what they should be if the secret key were (f, s, h). And so, as
before, the Adversary’s i∗th query will be the “winning one” with probability
κqv−1ε/qv. The difference from the previous part lies in how we will use the
Adversary’s response in the i∗th query to respond to the challenger. Unlike
the previous case, we will now need to rewind the adversary and receive two
responses for the same value of r + r′ (see Figure 5). By the Reset Lemma [2,
Lemma 3.1], the adversary will respond correctly to two distinct challenges c0 and

c1 with probability κqv−1 (ε/qv − 1/|F|)2. If the Adversary successfully replies to
the two queries, then we have ‖f(r + r′)− s−1(z0 + z′0 − h(r + r′)c0)‖ ≤ τ ′ and
‖f(r + r′) − s−1(z1 + z′1 − h(r + r′)c1)‖ ≤ τ ′. Thus, by the triangle inequality,
we have the condition ‖s−1((z0 + z′0)− (z1 + z′1)− h(r + r′)(c0 − c1))‖ ≤ 2τ ′. If
this is satisfied, we reply to the challenger that the ordered pairs he was sending
were indeed of the form (ri, yi = fχ(ri)).

Lemma 4.3 If the Challenger were sending valid pairs, i.e. (ri, yi = fχ(ri)) ∀i,
then ‖s−1((z0 + z′0) − (z1 + z′1) − h(r + r′)(c0 − c1))‖ ≤ 2τ ′ should be satisfied

with probability at least κqv−1 (ε/qv − 1/|F|)2.

On the other hand, if the Challenger were sending uniformly random pairs
(ri, yi) ∈ (D,F) then we will show that the adversary is not be able (except with
a negligible probability) to come up with (r′, c′, z′) where r′ 6= 0 that satisfy
‖s−1((z0 + z′0) − (z1 + z′1) − h(r + r′)(c0 − c1))‖ ≤ 2τ ′. As before, notice that
if the yi are uniform and independent of the ri, the secret keys h, s chosen by
the simulator are information-theoretically hidden throughout the interaction in
Figure 3. Therefore the Adversary’s behavior will be exactly the same as in the
case where s and h are chosen after he outputs his i∗th query the first time.
When we rewind the Adversary, we also end up rewinding the left-hand side
of the simulator, which will end up revealing some information about h. But
we use the pairwise-independent property of h to show (in Lemma 4.4) that
even an all-powerful adversary still cannot produce a query z + z′ such that
‖s−1((z0 + z′0) − (z1 + z′1) − h(r + r′)(c0 − c1))‖ ≤ 2τ ′, except with probability
β(2τ ′)/|F|.



Ch. Simulator (Tag) Adv. Simulator (Reader)

(r, y)- r- r + r′-

c0, c1
$← F

c0 + c′0� c0�
z0 ← ys+ h(r)(c0 + c′0)

z0- z0 + z′0-
c1 + c′1� c1�

z1 ← ys+ h(r)(c1 + c′1)

z1- z1 + z′1-
if ‖s−1((z0 + z′0)− (z1 + z′1)−

h(r + r′)(c0 − c1))‖ ≤ 2τ ′

then reply ← “not random′′

else reply ← “random′′

reply�

Fig. 5. Answering the Challenger after the Adversary’s i∗th verification
query if r′ 6=0.

Lemma 4.4 If the ordered pairs (ri, yi) sent by the challenger are uniformly
random in D × F, and r′ 6= 0, and c0 6= c1, then the probability that even an
all-powerful adversary can output z′0 and z′1 such that ‖s−1((z0 + z′0) − (z1 +
z′1)− h(r + r′)(c0 − c1))‖ ≤ 2τ ′ is at most |β(2τ ′)|/|F|.

Proof. For simplicity, we will define w = (z0 + z′0)− (z1 + z′1). The information
given to the adversary (in the two rewindings) by the simulator playing as the
tag is z0 = ys+h(r)(c0+c′0) and z1 = ys+h(r)(c1+c′1). This is exactly the same
as receiving z0 and z̃ = z0 − z1 = h(r)(c0 + c′0 − (c1 + c′1)). Notice that since z0
contains the term ys, the value of z0 is uniform and independent of the function
h. The value of z̃, on the other hand, does depend on h(r). So the behavior of
the adversary would be unchanged if we chose z0 uniformly at random, chose a
random element u for h(r) and set z̃ = h(r)(c0+c′0−(c1+c′1)), and then after the
adversary picks z′0, z

′
1, we finally choose h (conditioned on the already set value

of h(r)). Thus we have that ∀t ∈ β(2τ ′), c0 6= c1 ∈ F, r ∈ D, r′ 6= 0, w, s, u ∈ F

Pr
h

[s−1(w − h(r + r′)(c0 − c1)) = t |h(r) = u] = Pr
h

[h(r + r′)

= (w − st)(c0 − c1)−1 |h(r) = u] = 1/|F|

where (c0 − c1)−1 exists since we assumed c0 6= c1 and the last equality is true
because h is a pairwise-independent function and r′ 6= 0. ut

Combining Lemmas 4.1, 4.2, 4.3, and 4.4 gives the statement of Theorem 4.1. ut



5 Discussion and Open Problems

In this work we presented a very efficient 3-round authentication scheme that
utilizes only one call to a (randomized) weak-PRF, and proved it secure against
sequential MIM attacks. The security proof can be extended to the scenario
where Adversary is allowed to concurrently interact with many copies of the
Reader (this will be shown in the full version of the paper). Another simple
extension is the conversion of the scheme into an interactive message authen-
tication scheme by sending r||µ in lieu of just r in the first round and setting
z ← fχ(r)s+ h(r||µ)c in the third round, where µ is the message digest.

We believe that the most interesting (theoretical) question left open by our
work is to construct a MIM-secure authentication scheme that is secure in the
full concurrent setting (i.e. where the Adversary is also allowed to concurrently
interact with multiple provers). Such a scheme can be easily constructed by
first creating a PRF from a weak-PRF using O(n) calls to the weak-PRF. The
challenge is thus to construct such a scheme using just one, or even a constant
number, of (randomized) weak-PRF invocations.
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