
What Information is Leaked under Concurrent
Composition?

Vipul Goyal1, Divya Gupta2?, and Abhishek Jain3??

1 Microsoft Research, India, vipul@microsoft.com
2 UCLA, divyag@cs.ucla.edu

3 MIT and Boston University, abhishek@csail.mit.edu

Abstract. A long series of works have established far reaching impos-
sibility results for concurrently secure computation. On the other hand,
some positive results have also been obtained according to various weaker
notions of security (such as by using a super-polynomial time simulator).
This suggest that somehow, “not all is lost in the concurrent setting.”
In this work, we ask what and exactly how much private information can
an adversary learn by launching a concurrent attack? Inspired by the
recent works on leakage-resilient protocols, we consider a security model
where the ideal world adversary (a.k.a simulator) is allowed to query
the trusted party for some “leakage” on the honest party inputs. (Intu-
itively, the amount of leakage required by the simulator upper bounds
the security loss in the real world.)
We show for the first time that in the concurrent setting, it is possible
to achieve full security for “most” of the sessions, while incurring signifi-
cant loss of security in the remaining (fixed polynomial fraction of total)
sessions. We also give a lower bound showing that (for general function-
alities) this is essentially optimal. Our results also have interesting impli-
cations to bounded concurrent secure computation [Barak-FOCS’01], as
well as to precise concurrent zero-knowledge [Pandey et al.-Eurocrypt’08]
and concurrently secure computation in the multiple ideal query model
[Goyal et al.-Crypto’10]
At the heart of our positive results is a new simulation strategy that
is inspired by the classical set covering problem. On the other hand,
interestingly, our negative results use techniques from leakage-resilient
cryptography [Dziembowski-Pietrzak-FOCS’08].

1 Introduction

Concurrently Secure Computation. Traditional security notions for cryp-
tographic protocols such as secure computation [38, 16] were defined for a stand-
alone setting, where security holds only if a single protocol session is executed

? Work done in part while visiting Microsoft Research, India.
?? Supported by NSF Contract CCF-1018064 and DARPA Contract Number: FA8750-

11-2-0225. The author also thanks RISCS (Reliable Information Systems and Cyber
Security) Institute. Work done in part while visiting Microsoft Research, India.

2 V. Goyal, D. Gupta, A. Jain

in isolation. Today’s world, however, is driven by networks – the most important
example being the Internet. In a networked environment, several protocol in-
stances may be executed concurrently, and an adversary may be able to perform
coordinated attacks across sessions by corrupting parties in various sessions. As
such, a protocol that is secure in the classical standalone setting may become
completely insecure in the network setting.

Towards that end, over the last decade, a tremendous amount of effort has
been made to obtain protocols with strong composability guarantees under con-
current execution. Unfortunately, a sequence of works have demonstrated far
reaching impossibility results for designing secure protocols in the concurrent
setting [8, 9, 26, 25, 27, 3, 19, 1, 15]. In particular, these works have ruled out se-
cure realization of essentially all non-trivial functionalities even in very restricted
settings such as where inputs of honest parties are fixed in advance (rather than
being chosen adaptively in each session), and where the adversary is restricted
to corrupting parties with specific roles.

What Information is Getting Leaked to the Adversary? Many of these
impossibility results work by designing an explicit “chosen protocol attack”.
Such an attack shows that there exists some information the concurrent ad-
versary can learn in the real world which is impossible to obtain for the ideal
adversary (a.k.a the simulator). Nevertheless, subsequent to these impossibility
results, several prior works have in fact obtained positive results for concur-
rently secure computation according to various relaxed notions of security such
as super-polynomial simulation [31, 4, 10, 13, 24], input indistinguishable compu-
tation [29, 13], multiple-ideal query model [20], etc.4 These results suggest that
somehow, not all security is lost in the concurrent setting. Given the above, the
following natural questions arise:

What and exactly how much private information can the adversary learn by
launching a concurrent attack? Can we “measure” the amount of security loss
that must occur in a concurrent session? Can we achieve full security in some
(or even most) of the sessions fully while incurring security loss in the remaining
sessions?

We believe the above questions are very natural to ask and fundamental to
the understanding of concurrent composition. Indeed, despite a large body of re-
search on the study of concurrent composition, in our opinion, the understanding
of “what exactly is it that goes wrong in the concurrent setting, and, to what
extent” is currently unsatisfactory. The current paper represents an attempt
towards improving our understanding of this question.

A Leaky-Ideal World Approach. We adopt the “leaky-ideal world” approach
of Goldreich and Petrank [17] (recently used in works on leakage-resilient pro-
tocols; see below) to quantify the information leakage to the adversary in con-
currently secure computation. Specifically, generalizing the approach of [17], we

4 There has also been a rich line of works on designing secure computation with some
type of “setup” where, e.g., a trusted party publishes a randomly chosen string [7,
2, 22]. However the focus of the current work is the plain model.

What Information is Leaked under Concurrent Composition? 3

consider a modification of the standard real/ideal paradigm where in the ideal
world experiment, the simulator is allowed to query the trusted party for some
“leakage” on the honest party inputs. The underlying intuition (as in [17]) is
that the amount of leakage observed by the simulator in order to simulate the
view of an adversary represents an upper bound on the amount of private infor-
mation potentially leaked to the real adversary during the concurrent protocol
executions.

We remark that the our ideal model resembles that considered in the recent
works on leakage-resilient secure computation protocols [14, 5, 6]. However, we
stress that in our setting, there is no physical leakage in the real world and in-
stead there are just an (unbounded) polynomial number of concurrent sessions.
Indeed, while [14, 5, 6] use the leaky ideal world approach to bound the security
loss in the real world due to leakage attacks, we use the leaky ideal world ap-
proach to bound the security loss in the real world due to concurrent attacks.
Nevertheless, we find it interesting that there is a parallel between the ideal
world guarantees considered in two unrelated settings: leaky real world, and,
concurrent real world.

We now describe our security model in more detail. Concretely, we consider
two notions of leaky ideal world, described as follows.

Ideal world with joint leakage. Let there be m concurrent sessions with the hon-
est party input in the ith session denoted by xi. In the joint leakage model,
the simulator is allowed to query the trusted party with efficiently computable
leakage functions Li and get Li(X) in return (where X = (x1, . . . , xm)). The
constraint is that throughout the simulation, the total number of bits leaked∑
Li(X) is at most ε|X|. If this is the case, we say that the protocol is ε-secure

in the joint leakage model. In this model, our main result is a positive one, as
we discuss below.

Ideal world with individual leakage. In the individual leakage model, in every
session i, the simulator can query with an efficiently computable leakage function
Li and get Li(xi) in return. The constraint is that in every session i, the length
of Li(xi) is at most ε|xi|. If this is the case, we say that the protocol is ε-secure
in the individual leakage model. As we discuss below, in this model, our main
result is a negative one. This brings us to our next model.

1.1 Our Results

We consider the setting of unbounded concurrent composition in the plain model.
We allow for static corruptions and assume that the inputs of honest parties are
a priori fixed. We now describe our main results along with some applications.

I. Positive Result in the Joint Leakage Model. We obtain the following
main result in the joint leakage model:

Theorem 1. (Informally stated.) Let f be any functionality. Assuming 1-out-
of-2 oblivious transfer (OT), for every polynomial poly(n), there exists a protocol
that (ε = 1

poly(n))-securely realizes f in the joint leakage model.

4 V. Goyal, D. Gupta, A. Jain

The round complexity of our protocol is log6 n
ε . We show that this is almost

optimal w.r.t. a black-box simulator: we rule out protocols with round complexity
O(logn)

ε proven secure using a black-box simulator.

Fully preserving the security of most sessions. We note that the simulator for our
positive result, in fact, satisfies the following additional property: rather than
leaking a small fraction of the input in each session, it leaks the entire input
of a small (i.e., ε) fraction of sessions while fully preserving the security of the
remaining sessions. Hence, we get the following interesting corollary:

Theorem 2. Let f be any functionality. Assuming 1-out-of-2 OT, for every
polynomial poly(n), there exists a protocol that (ε = 1

poly(n))-securely realizes f

in the joint leakage model s.t. the security of at most ε fraction of the sessions
is compromised, while the remaining sessions are fully secure.

In fact, our negative result in the independent leakage model (discussed be-
low) indicates that for a general positive result, the above security guarantee is
essentially optimal.

Bounded concurrent secure computation with graceful security degradation. Go-
ing further, observe that by choosing ε < 1

m|X| , we get a construction where

the simulator is allowed no leakage at all if the number of sessions is up to m.
This is because the maximum number of bits simulator is allowed to leak will
be εm|X| which is less than 1. Hence, positive results for bounded concurrent
secure computation [25, 33, 32] follow as a special case of our result. However if
the actual number of sessions just slightly exceed m, the simulator is allowed
some small leakage on the input vector (i.e., total of only 1 bit up to 2m sessions,
2 bits up to 3m sessions, and so on). Thus, the leakage allowed grows slowly as
the number of sessions grow. This phenomenon can be interpreted as graceful
degradation of security in the concurrent setting.

Theorem 3. (Informally stated.) Let f be any functionality. Assuming 1-out-of-
2 oblivious transfer, there exists a protocol that securely realizes f in the bounded
concurrent setting. However if the actual number of sessions happen to exceed
this bound, there is graceful degradation of security as the number of sessions
increase.

A set-cover approach to concurrent extraction. In order to obtain our positive
result, we take a generic “cost-centric” approach to rewinding in the concurrent
setting. For example, in our context, the amount of leakage required by the sim-
ulator to simulate the protocol messages during the rewindings can be viewed
as the “cost” of extraction. Thus, the goal is to perform concurrent extraction
with minimal cost. With this view, we model concurrent extraction as the classi-
cal set-covering problem and develop, as our main technical contribution, a new
sparse rewinding strategy. Very briefly, unlike known concurrent rewinding
techniques [37, 23, 36, 30] that are very “dense”, we rewind “small intervals” of
the execution transcript, while still guaranteeing extraction in all of the ses-
sions. Very roughly, by rewinding small intervals (only a few times), we are able
to minimize the cost and obtain our positive result.

What Information is Leaked under Concurrent Composition? 5

Our sparse rewinding strategy also yields other interesting applications that
we discuss below in (III).

II. Negative Result in the Individual Leakage Model. In the individual
leakage model, our main result is negative, ruling out even non-black-box simula-
tion. Specifically, we give an impossibility result for the OT functionality where
the ideal leakage allowed is (1/2− δ) fraction of the input length (for every pos-
itive constant δ). Note that this is the maximum possible leakage bound such
that the ideal adversary still does not learn the entire input of the honest parties
(which would otherwise result in a trivial positive result).5

Leakage-resilient One-Time Programs. Of independent interest, the techniques
used in our negative result also yield a new construction of one-time programs
[18] where the adversary can query the given hardware tokens once (as usual),
and additionally leak once on the secrets stored in each token in any arbitrary
manner (as long as the total leakage is a constant fraction of the secrets). Our
key technical tool in constructing such a gadget is the intrusion-resilient secret
sharing scheme of [12]. In an independent work, Jain et al. [21] also consider the
problem of constructing leakage-resilient OTPs. See the full version for details.

Put together, results (I) and (II) show that in the concurrent setting, signifi-
cant loss of security in some of the sessions is unavoidable if one wishes to obtain
a general positive result. However on the brighter side, one can make the fraction
of such sessions to be an arbitrarily small polynomial (while fully preserving the
security in all other sessions).

III. Other Applications. As discussed above, along the way to developing our
main positive result, we develop a new sparse rewinding strategy that leads to
other interesting applications. We discuss them below.

Improved precise concurrent zero knowledge. In the traditional notion of zero-
knowledge, the simulator may run in time which is any polynomial factor of
the (worst-case) running time of the adversarial verifier. The notion of precise
zero-knowledge [28] deals with studying how low this polynomial can be. In
particular, can one design protocols where the running time of the simulator is
only slightly higher than the actual running time of the adversary? Besides being
a fundamental question on its own, the notion of precise zero-knowledge has
found applications in unrelated settings such as leakage-resilient zero-knowledge
[14], concurrently secure protocols [20], etc.

Pandey et al. [30] study the problem of precise concurrent zero-knowledge
(cZK) and give a protocol with the following parameters. Let t be the actual
running time of the verifier. Then, their protocol has round complexity nδ (for

5 Indeed, if the fraction of leakage allowed is 1/2, the ideal adversary can learn one
of the sender inputs by making use of leakage, and, the other by making use of the
“official” trusted party call.

6 V. Goyal, D. Gupta, A. Jain

any constant δ ≤ 1) and knowledge precision c · t where c is a large constant
depending upon the adversary.6

Our sparse rewinding strategy directly leads to a new construction of precise
cZK, improving upon [30] both in terms of round complexity as well as knowledge
precision.

Theorem 4. Assuming one way functions, there exists a cZK protocol with poly-
log round-complexity and knowledge precision of (1 + δ)t (for any constant δ).

Improved concurrently secure computation in the MIQ model. In the quest for
positive results for concurrently secure computation, Goyal et al. proposed the
multiple ideal query (MIQ) model, where for every session in the real world,
the simulator is allowed to query the ideal functionality for the output multiple
times (as opposed to only once, as in the standard definition of secure compu-
tation). They construct a protocol in this model whose security is proven w.r.t.
a simulator that makes a total of c ·m number of ideal queries in total (and c
queries per session, on an average), where c is a large constant that depends on
the adversary and m is the number of sessions.

We note that our security model is intimately connected to the MIQ model
since the additional output queries in this model can simply be viewed as leakage
observed by the simulator in our model. Indeed, our positive result described in
(I) can be stated as an improved result in the MIQ model since leaking the
function output (multiple times) is “no worse” than leaking the entire secret
input of the honest party. We defer further discussion to the full version due to
lack of space.

Theorem 5. (Informally stated.) Let f be any functionality. Assuming 1-out-
of-2 OT, there exists a concurrently secure protocol in the MIQ model with (1 +

1
poly(n)) number of ideal queries per session (on an average).

1.2 Our Techniques

Here we give an overview of the underlying techniques used in our positive result.

A Starting Approach. A well established approach to constructing secure
computation protocols against malicious adversaries in the standalone setting
is to use the GMW compiler [16]: take a semi-honest secure computation pro-
tocol and “compile” it with zero-knowledge arguments. Then, a natural start-
ing point to construct a concurrently secure computation protocol is to follow
the same principles in the concurrent setting: somehow compile a semi-honest
secure computation protocol with a concurrent zero-knowledge protocol (for se-
curity in more demanding settings, compilation with concurrent non-malleable
zero-knowledge [3] may be required). Does such an approach (or minor vari-
ants) already give us protocols secure according to the standard ideal/real world
definition in the plain model?

6 [30] also give a construction requiring only ω(logn) rounds, however, the knowledge
precision achieved in this case is super-linear.

What Information is Leaked under Concurrent Composition? 7

The fundamental problem with this approach is the following. Note that
known concurrent zero-knowledge simulators (in the fully concurrent setting)
work by rewinding the adversarial parties. In the concurrent setting, the adver-
sary is allowed to control the scheduling of the messages of different sessions.
Then the following scenario might occur:

• Between two messages of a session s1, there may exist entire other session s2.

• When the simulator rewinds the session s1, it may rewind past the begin-
ning of session s2. Hence throughout the simulation, the session s2 may be
executed multiple times from the beginning.

• Every time the session s2 is executed, the adversary may choose a different
input (e.g., the adversary may choose his input in session s2 based on the
entire transcript of interaction so far). In such a case, the simulator is re-
quired to leak additional information about the input of the honest party
(e.g., in the form of an extra output as in [20]).

Indeed, some such problem is rather inherent as indicated by various impossibil-
ity results [27, 3, 19, 1, 15]. As stated above, our basic idea will be to use leakage
on the inputs of the honest parties in order to continue in the rewindings (or
look-ahead threads). Our simulator would simply request the ideal functionality
for the entire input of the honest party in such a session. Subsequent to this,
such a session can appear on any number of look-ahead threads: we can simply
use the leaked input and use that to proceed honestly.

Main Technical Problem. The key technical problem we face is the follow-
ing. All previous rewinding strategies are too “dense” for our purposes. These
strategies do not lead to any non-trivial results in our model: the simulator will
simply be required the leak the honest party input in each session. For example,
in the oblivious rewinding strategies used in [23, 36, 30, 20], the “main” thread
of protocol execution is divided into various blocks (2 blocks in [23, 36] and n
blocks in [30, 20]). Each given block is rewound that results in a “look-ahead
thread”. Each session on the main thread will also appear on these look-ahead
threads (in fact, on multiple look-ahead threads). Hence, it can be shown that
our strategy of leaking inputs of sessions appearing in look-ahead threads will
result in leakage of inputs in all sessions. For the case of adaptive rewinding
strategies [37, 35, 11], the problem is even more pronounced. Any given block (or
an interval) of the transcript may be rewound any polynomial number of times
(each time to solve a different session).

Thus, the known rewinding strategies do not yield any non-trivial results in
our model (let alone allow leakage of any arbitrarily small polynomial fraction
of inputs).

Main Idea: Sparse Rewinding Strategies. In order to address the above
problem, we develop a new “cost-based” rewinding strategy. In particular, our
main technical contribution is the development of what we call sparse rewinding
strategies in the concurrent setting. In a sparse rewinding strategy, the main
idea is to choose various small intervals of the transcript and rewind only those
intervals. The main technical challenge is to show that despite rewinding only

8 V. Goyal, D. Gupta, A. Jain

only few locations of the transcript, extraction is still guaranteed for every session
(regardless of where it lies on the transcript).

In more detail, our rewinding strategy bears similarities with the oblivious
recursive rewinding strategies used in [23, 36]. Our main contribution lies in
showing that a “significantly stripped down” version of their strategy is still
sufficient to guarantee extraction in all sessions. More specifically, recall that
the recursive rewinding strategies in [23, 36] have various threads of executions
(also called blocks) which are at different “levels” and have different sizes. We
carefully select only a small subset of these blocks and carry them out as part
of our rewinding schedule (while discarding the rest). The leakage parameter ε
and the resulting round complexity (which we show to be almost optimal w.r.t.
a black-box simulator) determines what fraction of blocks (and at what levels)
are picked to be carried out in the rewinding schedule. Given such a strategy, we
reduce the problem of covering all sessions to a set cover problem: pick sufficiently
many blocks (each block representing a set of sessions which are “solved” when
that block is carried out as part of the rewinding schedule) such that every
session is covered (i.e., extraction is guaranteed) while still keeping the overall
leakage (more generally, the “cost”) to be low. Indeed, this cost-centric view is
what also allows us to improve upon the precision guarantees in [30].

Additional Challenges. To convert the above basic idea into an actual con-
struction, we encounter several difficulties. The main challenge is to argue ex-
traction in all sessions. Recall that the swapping arguments in prior works [23,
36, 34, 30] crucially rely on “symmetry” between the main thread of execution
and the look-ahead threads (i.e., execution threads created view rewinding). In
particular, to argue extraction, [36, 34] define swap and undo procedures w.r.t.
execution threads that allow to transform a “bad” random tape of the simulator
(that leads to extraction failure) into a “good” random tape (where extraction
succeeds) and back. The idea being to show that every bad random tape, there
exist super-polynomially many good random tapes; as such, with overwhelming
probability, the simulator must choose a good random tape.

In our setting, using such swapping arguments becomes non-trivial. First off,
note that we cannot directly employ the standard greedy strategy for set-cover
problem to choose which blocks must be rewound. Very briefly, this is because
once one swaps two blocks (one on the main thread, and the corresponding one
on a look-ahead thread), the choice of set of blocks which should be chosen
might completely change (this is because the associated “costs” of blocks may
change after swapping). Indeed, any such “biased” strategy seems to be doomed
for failure against adversaries that choose the schedule adaptively. Towards this
end, we use a randomized strategy for choosing which blocks to rewind, with
the goal of still keeping the extraction cost minimal. Nevertheless, despite the
randomized approach, the sparse nature of our block choosing strategy still re-
sults in significant “asymmetry” across the entire rewinding schedule. This leads
to difficulties in carrying out the swap and undo procedures as in [36, 34]. We
resolve these difficulties by using a careful “localized” swapping argument (see
technical sections for details).

What Information is Leaked under Concurrent Composition? 9

Our final protocol is based on compilation with concurrent non-malleable
zero-knowledge [3]. We recall that there are several problems that arise with
such a compilation. First, the security of the [3] construction is analyzed only
for the setting where all the statements being proven by honest parties are fixed
in advance. Secondly, the extractor of [3] is unsuitable for extracting inputs of
the adversary since it works after the entire execution is complete on a session-
by-session basis. Fortunately, these challenges were tackled in the work of Goyal
et al. [20]. Indeed, Goyal et. al. presented an approach which can be viewed as a
technique to correctly compile a semi-honest secure protocol with [3]. We adopt
their approach to construct our final protocol.

2 Our Model

In this section, we present a brief overview of our security model, with details
deferred to the full version. Throughout this paper, we denote the security pa-
rameter by κ.

We define our security model by extending the standard real/ideal paradigm
for secure computation. Roughly speaking, we consider a relaxed notion of con-
currently secure computation where the ideal world adversary (aka, the sim-
ulator) is allowed to leak on the inputs of the honest parties. Intuitively, the
amount of leakage obtained by the simulator in order to simulate the view of a
concurrent adversary corresponds to the “information leakage” under concurrent
composition.

In this work, we consider a malicious, static adversary. The scheduling of the
messages across the concurrent executions is controlled by the adversary. We
allow the adversary to start arbitrarily polynomial number of concurrent session.
Also, we consider the fixed input setting, i.e. the inputs of the honest party
across all sessions is fixed in advance. Finally, we consider computational security
only and therefore restrict our attention to adversaries running in probabilistic
polynomial time.

We consider two security models that differ in the nature of ideal world
leakage available to the simulator. In both of these security models, the real
world is the same as in the standard security model for concurrently secure
computation. The real concurrent execution of Π with security parameter κ,
input vectors x, y and auxiliary input z to A, denoted realΠ,A(κ,x,y, z), is
defined as the output pair of the honest party and A, resulting from the above
real-world process. Also, in each of the ideal world experiments described below,
the ideal execution of a function F with security parameter κ, input vectors x, y
and auxiliary input z to S, denoted idealF,S(κ,x,y, z), is defined as the output
pair of the honest party and S from the ideal execution.

Concurrently Secure Computation in the Joint Leaky Ideal World
Model. In this model, at any time during the ideal world experiment, adversary
may send leakage queries of the form L to the trusted party. On receiving such
a query, the trusted party computes L(x) over honest party inputs x across all
sessions and returns it to the adversary.

10 V. Goyal, D. Gupta, A. Jain

Definition 1 (ε-Joint-Ideal-Leakage Simulator). Let S be a non-uniform
probabilistic (expected) ppt ideal-model adversary. We say that S is a ε-joint-
ideal-leakage simulator if it leaks at most ε fraction of the input vector of the
honest party.

Definition 2 (Concurrently Secure Computation in the Joint Leaky
Ideal World Model). A protocol Π evaluating a functionality F is said to be
ε-secure in the joint leaky ideal world model if for every real model non-uniform
ppt adversary A, there exists a non-uniform (expected) ppt ε-joint-ideal-leakage
simulator S such that for every polynomial m = m(κ), every pair of input vectors
x ∈ Xm, y ∈ Y m, every z ∈ {0, 1}∗s,

{idealF,S(κ,x,y, z)}κ∈N
c≡ {realΠ,A(κ,x,y, z)}κ∈N

Concurrently Secure Computation in the Individual Leaky Ideal World
Model. In this model, for every session i, the ideal adversary may send one leak-
age query of the form (i, L) to the trusted party and learn L(xi) (where xi is
the input of the honest party in session i).

Definition 3 (ε-Individual-Ideal-Leakage Simulator). Let S be a non-uniform
probabilistic (expected) ppt ideal-model adversary. We say that S is a ε-individual-
ideal-leakage simulator if it leaks at most ε fraction of the the honest party input
in each session.

Definition 4 (Concurrently Secure Computation in the Individual Leaky
Ideal World Model). A protocol Π evaluating a functionality F is said to be
`-secure in the leaky ideal world model against joint leakage if for every real
model non-uniform ppt adversary A, there exists a non-uniform (expected) ppt
ε-individual-ideal-leakage simulator S such that for every polynomial m = m(κ),
every pair of input vectors x ∈ Xm, y ∈ Y m, every z ∈ {0, 1}∗s,

{idealF,S(κ,x,y, z)}κ∈N
c≡ {realΠ,A(κ,x,y, z)}κ∈N

3 Framework for Cost-based rewinding

Consider two players P1 and P2 running concurrent execution of a two party
protocol Π. Π may consists of multiple executions of the extractable commit-
ment scheme 〈C,R〉 (Section 3.1) and some other protocol messages. These other
protocol messages will depend upon our underlying applications. In particular
we will consider two main applications. In our application of concurrently secure
computation in joint leaky ideal world model, protocol Π is simply the secure
computation protocol. In precise concurrent zero-knowledge protocol, Π will be
a zero-knowledge protocol.

Moreover, each message in the protocol will have an associated fixed non-
zero cost based on the application. In case of concurrent execution of the secure

What Information is Leaked under Concurrent Composition? 11

computation protocol, any message from the adversary which causes our simu-
lator to make an output query to the trusted functionality in the ideal world is
considered a “heavy” message. All other messages are almost “free”. In case of
concurrent precise zero-knowledge, cost of a message is the time taken by the
adversary to generate that message. All messages of the honest prover are unit
cost.

We consider the scenario when exactly one of the parties is corrupted. We
begin by describing the extractable commitment scheme 〈C,R〉.

3.1 Extractable Commitment Protocol 〈C,R〉

Let com(·) denote the commitment function of a non-interactive perfectly bind-
ing string commitment scheme. Let κ denote the security parameter. Let ` =
ω(log κ). Let N = N(κ) which is fixed based on the application. The commit-
ment scheme 〈C,R〉, where the committer commits to a value σ (referred to as
the preamble secret), is described as follows.

Commit Phase:
Stage Init: To commit to a κ-bit string σ, C chooses (` · N) independent

random pairs of κ-bit strings {α0
i,j , α

1
i,j}

`,N
i,j=1 such that α0

i,j ⊕ α1
i,j = σ for all

i ∈ [`], j ∈ [N]. C commits to all these strings using com, with fresh randomness
each time. Let B ← com(σ), and A0

i,j ← com(α0
i,j), A

1
i,j ← com(α1

i,j) for every
i ∈ [`], j ∈ [N].
We say that the protocol has reached Start if message in Stage Init is exchanged.

Challenge-Response Stage:
For every j ∈ [N], do the following:

• Challenge : R sends a random `-bit challenge string vj = v1,j , . . . , v`,j .

• Response : ∀i ∈ [`], if vi,j = 0, C opens A0
i,j , else it opens A1

i,j by sending
the decommitment information.

A slotj of the commitment scheme consists of the receiver’s Challenge and the
corresponding committer’s Response message. Thus, in this protocol, there are
N slots.
We say that the protocol has reached End when Challenge-Response Stage
is completed and is accepted by R.

Open Phase: C opens all the commitments by sending the decommitment in-
formation for each one of them. R verifies the consistency of the revealed values.

This completes the description of 〈C,R〉 which is an O(N) round protocol.
The commit phase is said to the valid iff there exists an opening of commitments
such that the open phase is accepted by an honest receiver.

Having defined the commitment protocol, we will describe a simulator S for
the protocol Π that uses a rewinding schedule to “simulate” the view of the
adversary. For this, we would like to prove an extraction lemma similar to [36,

12 V. Goyal, D. Gupta, A. Jain

30] for the protocol Π, i.e., in every execution whenever a valid commit phase
ends such that the adversary is playing the role of the committer, our simulator
(using rewinding) would be able to extract the preamble secret with all but
negligible probability. Moreover, we would like to guarantee that if the honest
execution has total cost7 C, then the cost incurred by our simulator is only
C(1 + ε(N,κ)), where is ε is a small fraction.

3.2 Description of the Simulator

We describe a new “cost-based” recursive rewinding strategy. We begin by giving
some preliminary definitions that will be used in the rest of the paper.

A thread of execution (consisting of the views of all the parties) is a perfect
simulation of a prefix of an actual execution. In particular, the main thread, is a
perfect simulation of a complete execution, and this is the execution thread that
is output by the simulator. In addition, our simulator will also make other threads
by rewinding the adversary to a previous state and continuing the execution from
that state. Such a thread shares a (possibly empty) prefix with the previous
thread. We call the execution on this thread which is not shared with any of the
previous threads as a look-ahead thread.

We now first give an overview of the main ideas underlying our simulation
technique and then proceed to give a more formal description.

Overview. Consider the main thread of execution. At a high level, we divide
this thread into multiple parts referred to as “sets” consisting of possibly many
protocol messages. The way we define our sets is similar to previous rewinding
strategies [36, 30]. Essentially if the entire execution has cost c, then we divide
the entire main thread into two sets of cost c/2 each, where cost of a set is the
total cost of the messages contained in that set. Next, we divide each of these
sets into two subsets, each of cost c/4. We continue this process recursively till
we have c sets, each of unit cost8. Note that if each message is of unit cost, then
this dividing strategy is exactly identical to [36].9 The novel idea underlying our
rewinding technique is that unlike [36, 30], our simulator only rewinds a small
subset of these sets while still guaranteeing extraction. In other words, unlike [36,
30], ours is a “sparse” rewinding strategy.

We now describe our rewinding strategy by using an analogy to the classical
set covering problem. Recall that in the set covering problem, there is a universe
of elements and sets. Each set contains some elements and has a fixed cost. The
goal is to choose a minimum cost collection of these sets which covers all the
elements in the universe. In our setting, we think of each session as an element
in the universe. If there are m concurrent sessions {1, 2, . . . ,m}, we have m
elements in our universe. Now consider the sets defined above in our setting. A

7 Cost of an execution is the total cost of all the messages sent and received.
8 Note that due to this dividing strategy, we allow a message to be “divided” across

multiple sets.
9 If cost of a message is the time taken by the adversary to generate that message,

then this dividing strategy is exactly identical to [30].

What Information is Leaked under Concurrent Composition? 13

set is said to cover an element i if it contains a complete slot of session i. Recall
that the cost of a set is the sum of the cost of messages in this set. We want
to consider a minimum cost collection C of these sets which together covers all
the elements in the universe (i.e. all the sessions). Intuitively, we wish to rewind
only the sets in C. At a high level, this is the strategy adopted by our simulator.
Due to reasons as discussed in Section 1.2, we adopt a slightly modified strategy
in which the collection C is picked via a randomized strategy. Recall that for
all i there 2i sets with cost c/2i. Very briefly, for each collection of sets which
have same cost, we pick a fixed small fraction of these sets. We will prove that
using this strategy we will cover each session ω(log κ) times in order to guarantee
extraction. As we will see later on, with this strategy, we are able to guarantee
that the simulator performs extraction with all but negligible probability while
incurring a small overhead.

Formal description of the simulator We begin by introducing some notation
and terminology. Let C be the total cost of main execution10. Without loss of
generality, let C = 2x for some x ∈ N. Let p(κ) = ω(log κ), and q(κ) = ω(1).
Recall that N is the number of challenge-response slots in 〈C,R〉.
Thread at recursion level RL. We say that the main thread belongs to recur-
sion level 0. The look-ahead threads which fork off the main thread are said to
be at recursion level 1. Recursively, we say that look-ahead threads forking off
a thread at recursion level RL belong to recursion level (RL + 1).

Sets and set levels. Let T be the main thread or a look-ahead thread with
cost c at recursion level RL. We define the sets and the set levels of T as follows:
The entire thread T is defined as one set at recursion level RL and set level 0
with cost c. We denote it as set0RL. Now divide set0RL into two sets at recursion

level RL and set level 1 of cost c/2 each. We denote the first set as set1,1RL and

the second set as set1,2RL . Let seti,1RL, set
i,2
RL, . . . , set

i,2i

RL be 2i sets at set level i, each of

cost c/2i, where seti,jRL is the jth set at set level i. Divide each set seti,jRL into two
sets at set level (i + 1) each of cost c/2i+1. We continue this recursively till we
reach set level log c where each set has cost 1. This way we have L = log c + 1
set levels (0, 1, . . . , log c) with total sets 2c− 1.

For ease of notation, we will denote each set seti,jRL as a tuple (s-point, e-point)
where s-point denotes the cost of the thread T from the start of T till the start
of seti,jRL and e-point to denote the cost of thread from the start of T till the end

of seti,jRL. Thus by definition cost of a set seti,jRL is (e-point − s-point). This will
help us in describing our simulation strategy.

Simulator S. We now proceed to describe our simulation strategy which consists
of procedures Simulate, PickSet and SimMsg. More specifically, S simply
runs Simulate(C, st0, φ, 0, rm, rs) to simulate the main thread at recursion level
0 with cost C when st0 is the initial state of A. S starts with empty history of
messages, i.e. hist = ∅. Also, S uses two separate random tapes rm and rs to

10 This cost C is always bounded by some polynomial in κ, i.e., C ≤ κα for some
constant α.

14 V. Goyal, D. Gupta, A. Jain

The Simulate(c, st, hist,RL, rm, rs) Procedure.

1. Compute psets = {(s-pointj , e-pointj)} ← PickSet(c, r), where r is randomness of appro-

priate size from rs. Update rs = rs\r. Let J = |psets|.
2. Create a list ˜psets from psets as follows: For each entry (s-pointj , e-pointj) ∈ psets, initialize

stj = ⊥ and histj = ⊥. Insert (s-pointj , e-pointj , stj , histj) into ˜psets. We order the list by
increasing order of e-point.

3. If c = 1, (st′, hist′, r′m, ˜psets)← SimMsg(0, 1, st, hist, rm, ˜psets). Output: (st′, hist′, r′m, rs).

4. Otherwise (i.e., c > 1),
• Initialize ctr = 0.

• While (j < J)

• (st′, hist′, r′m, ˜psets)← SimMsg(ctr, e-pointj − ctr, st, hist, rm, ˜psets).

• Set ctr = e-pointj , r
0
m = r′m, r0s = rs.

• Let there exist ` entries {(s-pointji , e-pointji , stji , histji)}i∈[`] in ˜psets such that

e-pointji = e-pointj .

• For each i ∈ [`],

(st′ji
, hist′ji

, rim, r
i
s)← Simulate((e-pointji − s-pointji), stji , histji ,RL+1, ri−1

m , ri−1
s).

• Set hist = hist′ ∪ (
⋃

i hist
′
ji
), st = st′, rm = r`m, rs = r`s and j = j + `.

• If (ctr < c)

• (st′, hist′, r′m, ˜psets)← SimMsg(ctr, c− ctr, st, hist, rm, ˜psets).

• Update hist = hist′, st = st′, rm = r′m.

• Output: (st, hist, rm, rs).

Fig. 1. The cost-based content oblivious simulator Simulate

generate messages and choose sets respectively. Finally, S returns its output as
the view of the adversary. We begin by describing these procedures in detail.

Procedure Simulate. The procedure is used to simulate any thread T at
recursion level RL of cost c. It takes the following set of inputs. (a) The cost c
of thread T . (b) The state st of the adversary at the beginning of T . (c) The
history hist of messages seen so far in simulation. (d) Recursion level RL of T .
(e) The random tape rm which is used to generate messages of the honest party.
(f) The random tape rs used by PickSet to choose sets.

At a high level, Simulate procedure when invoked on a set of inputs (c, st, hist,
RL, rm, rs) does the following:

1. It invokes PickSet procedure to choose a list of sets on T , say psets, which
it will rewind. Here each set will be denotes by the corresponding tuple
(s-point, e-point).

2. Next, Simulate augments each entry of psets with two additional entries to
create a new list ˜psets where each entry consists of (s-point, e-point, st, hist),
where st is the state of the adversary and hist is the history of simulation at
s-point. State st and history hist at s-point are populated by the procedure
SimMsg (described below) when simulation reaches s-point.

3. Simulate generates messages for the thread iteratively till the end of the
thread is reached as follows:

What Information is Leaked under Concurrent Composition? 15

1. It invokes the SimMsg procedure to generate the messages from current
point of simulation to the next e-point of some set in ˜psets.

2. For each of the sets which end at this point, it calls Simulate procedure
recursively to create new look-ahead threads at recursion level RL + 1.

3. Finally, it merges the current history of messages with messages seen on
the look-ahead threads.

4. It returns (st′, hist′, r′m, r
′
s), where st′ is the state of the adversary at the end

of the thread, hist′ is the updated collection of messages, r′m and r′s are the
unused parts of the random tapes rm and rs respectively.

The figure 1 gives a formal description of Simulate procedure.

Algorithm PickSet. At a high level, given the main thread or a look-ahead
thread T at recursion level RL with cost c, it chooses a fixed fraction of sets across
all set levels of T where our simulator would rewind. More formally, on input
(c, r), where c is the cost of T and r is some randomness, PickSet(c, r) returns

a list of sets psets= {(s-pointj , e-pointj)} consisting of
⌊
p(κ)·q(κ)·log3 κ

N · 2i
⌋

sets

at random at set level i for every i ∈ [log c].

Note that the sets picked by PickSet depend only on the cost c of the thread
T and randomness r and not on the protocol messages of T .

Procedure SimMsg. This procedure generates the messages by running the
adversary step by step11, i.e. incurring unit cost at a time. It takes the following
set of inputs. (a) The partial cost ctr of the current thread simulated so far.
(b) The additional cost c for which the current thread has to be simulated.
(c) The current state st of the adversary. (d) The history hist of messages seen
so far in simulation. (e) The random tape rm to be used to generate messages.
(f) The list ˜psets of the sets chosen by PickSet for thread T .

SimMsg generates messages on thread T one step at a time for c steps as
follows:

1. If the next scheduled message is the challenge message in an instance of
〈C,R〉, it chooses a challenge uniformly at random. Also, if the next sched-
uled message is some other protocol message from honest party, it uses the
honest party algorithm to generate the same.

2. If the next scheduled message is from A, SimMsg runs A for one step and
updates st and hist. Note that it is possible that A may not generate a
message in one step.

3. If the current point on the thread corresponds to the s-point of some sets in
˜psets, it updates the corresponding entries with current state st of A and

history hist of messages.

11 We will assume that it is possible to run the adversary one step at a time. We
elaborate on this in our applications.

16 V. Goyal, D. Gupta, A. Jain

Finally it outputs the final state st of the adversary, updated history hist of
messages, unused part r′m of random tape rm and updated list ˜psets. Procedure
SimMsg is described formally in Figure 2.

The SimMsg(ctr, c, st, hist, rm, ˜psets) Procedure.

For i = 1 to c do the following:

– Next scheduled message if from honest party to A: If the next scheduled message is
a challenge message of 〈C,R〉, choose a random challenge message using randomness from
rm. Else, if the next message is some other message from honest party, send this message
according to honest party algorithm using randomness from rm. Feed this message to A.
Next scheduled message is from A: If the next scheduled message is from A, run A from
its current state st for exactly 1 step. If an output, β, is received and if β is a response message
in 〈C,R〉, store β in hist as a response to the corresponding challenge message. Update st to
the current state of A. If it is some other message of the protocol, store it in hist.

– If there exists k entries {(s-pointjy , e-pointjy , stjy , histjy)}y∈[k] in ˜psets such that s-pointjy =

ctr + i. For each y ∈ [k] update stjy = st and histjy = hist.

Let r′m be the unused part of rm. Output: (st, hist, r′m, ˜psets).

Fig. 2. The SimMsg Procedure

Lemma 1. (Extraction lemma) Consider two parties P1 and P2 running poly-
nomially many (in the security parameter) sessions of a protocol Π consisting
of possibly multiple executions of the commitment scheme 〈C,R〉. Also, let one
the parties, say P2, be corrupted. Then there exists a simulator S such that ex-
cept with negligible probability, in every thread of execution simulated by S, if
honest P1 accepts a commit phase of 〈C,R〉 as valid, then at the point when that
commit phase is concluded, S would have already extracted the preamble secret
committed by the corrupted P2.

Lemma 2. Let C be the cost of the main thread. Then the cost incurred by our
simulator is bounded by

C · (1 + (log∗ κ)2 logC log4 κ
N) when 〈C,R〉 has N ≥ log6 κ slots.

4 Our Results

We now state the main results in this paper.

Positive Results. As the main result of this paper, we construct anO(N) round
protocol Π that ε-securely realizes any (efficiently computable) functionality F
in the joint leaky ideal world model for any ε > 0. More formally, we show the
following:

Theorem 6. Assume the existence of 1-out-of-2 oblivious transfer protocol se-
cure against honest but curious adversaries and collision resistent hash func-
tions. Then for any ε > 0, for any functionality F , there exists an O(N) round
protocol Π that ε-securely realizes F in the joint leaky ideal world model, where

N = (log6 κ)
ε .

What Information is Leaked under Concurrent Composition? 17

In the case when ε = 1/poly(κ), we do not need to assume the existence of colli-
sion resistent hash functions. Protocol Π is essentially the protocol of [20] instan-
tiated with N -round concurrently-extractable commitment scheme described
earlier in the paper. The security analysis of the protocol is done using the
simulation technique described earlier.

Negative Results. We also present strong impossibility results for achieving
security in both the individual and joint leaky ideal world model. First, we prove
the following result:

Theorem 7. There exists a functionality f such that no protocol Π ε-securely
realizes f in the individual leaky ideal world model for ε = 1

2 − δ, where δ is any
constant fraction.

Additionally, we prove a lower bound on the round-complexity of protocols
for achieving ε-security in the joint leaky ideal world model, with respect to
black-box simulation. Specifically, we prove the following result:

Theorem 8. Let ε be any inverse polynomial. Assuming dense cryptosystems,
there exists a functionality f that cannot be ε-securely realized with respect to

black-box simulation in the joint leaky ideal world model by any log(κ)
ε round

protocol.

References

1. Agrawal, S., Goyal, V., Jain, A., Prabhakaran, M., Sahai, A.: New impossibility
results on concurrently secure computation and a non-interactive completeness
theorem for secure computation. In: CRYPTO (2012)

2. Barak, B., Canetti, R., Nielsen, J., Pass, R.: Universally composable protocols with
relaxed set-up assumptions. In: FOCS (2004)

3. Barak, B., Prabhakaran, M., Sahai, A.: Concurrent non-malleable zero knowledge.
In: FOCS (2006)

4. Barak, B., Sahai, A.: How to play almost any mental game over the net - concurrent
composition using super-polynomial simulation. In: Proc. 46th FOCS (2005)

5. Bitansky, N., Canetti, R., Halevi, S.: Leakage-tolerant interactive protocols. In:
TCC (2012)

6. Boyle, E., Garg, S., Jain, A., Kalai, Y.T., Sahai, A.: Secure computation against
adaptive auxiliary information. In: CRYPTO (2013)

7. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-
party and multi-party secure computation. In: STOC (2002)

8. Canetti, R., Fischlin, M.: Universally composable commitments. In: CRYPTO
(2001)

9. Canetti, R., Kushilevitz, E., Lindell, Y.: On the limitations of universally compos-
able two-party computation without set-up assumptions. In: Eurocrypt (2003)

10. Canetti, R., Lin, H., Pass, R.: Adaptive hardness and composable security in the
plain model from standard assumptions. In: FOCS (2010)

11. Deng, Y., Goyal, V., Sahai, A.: Resolving the simultaneous resettability conjecture
and a new non-black-box simulation strategy. In: FOCS (2009)

12. Dziembowski, S., Pietrzak, K.: Intrusion-resilient secret sharing. In: FOCS (2007)

18 V. Goyal, D. Gupta, A. Jain

13. Garg, S., Goyal, V., Jain, A., Sahai, A.: Concurrently secure computation in con-
stant rounds. In: Eurocrypt (2012)

14. Garg, S., Jain, A., Sahai, A.: Leakage-resilient zero knowledge. In: CRYPTO (2011)
15. Garg, S., Kumarasubramanian, A., Ostrovsky, R., Visconti, I.: Impossibility results

for static input secure computation. In: CRYPTO (2012)
16. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: STOC

(1987)
17. Goldreich, O., Petrank, E.: Quantifying knowledge complexity. In: FOCS (1991)
18. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: One-time programs. In: CRYPTO

(2008)
19. Goyal, V.: Positive results for concurrently secure computation in the plain model.

In: FOCS (2012)
20. Goyal, V., Jain, A., Ostrovsky, R.: Password-authenticated session-key generation

on the internet in the plain model. In: CRYPTO (2010)
21. Jain, A., Prabhakaran, M., Sahai, A., Wadia, A.: Oblivious transfer from any leaky

functionality. In: Personal Communication (2013)
22. Katz, J.: Universally composable multi-party computation using tamper-proof

hardware. In: Eurocrypt (2007)
23. Kilian, J., Petrank, E.: Concurrent and resettable zero-knowledge in poly-

loalgorithm rounds. In: STOC (2001)
24. Lin, H., Pass, R.: Black-box constructions of composable protocols without set-up.

In: CRYPTO (2012)
25. Lindell, Y.: Bounded-concurrent secure two-party computation without setup as-

sumptions. In: STOC (2003)
26. Lindell, Y.: General composition and universal composability in secure multi-party

computation. In: FOCS (2003)
27. Lindell, Y.: Lower bounds for concurrent self composition. In: TCC (2004)
28. Micali, S., Pass, R.: Local zero knowledge. In: STOC (2006)
29. Micali, S., Pass, R., Rosen, A.: Input-indistinguishable computation. In: FOCS

(2006)
30. Pandey, O., Pass, R., Sahai, A., Tseng, W.L.D., Venkitasubramaniam, M.: Precise

concurrent zero knowledge. In: Eurocrypt (2008)
31. Pass, R.: Simulation in quasi-polynomial time, and its application to protocol com-

position. In: Eurocrypt (2003)
32. Pass, R.: Bounded-concurrent secure multi-party computation with a dishonest

majority. In: STOC (2004)
33. Pass, R., Rosen, A.: Bounded-concurrent secure two-party computation in a con-

stant number of rounds. In: FOCS (2003)
34. Pass, R., Tseng, W.L.D., Venkitasubramaniam, M.: Concurrent zero knowledge,

revisited. In: Manuscript (2012)
35. Pass, R., Venkitasubramaniam, M.: On constant-round concurrent zero-knowledge.

In: TCC (2008)
36. Prabhakaran, M., Rosen, A., Sahai, A.: Concurrent zero knowledge with logarith-

mic round-complexity. In: FOCS (2002)
37. Richardson, R., Kilian, J.: On the concurrent composition of zero-knowledge proofs.

In: Eurocrypt (1999)
38. Yao, A.C.C.: How to generate and exchange secrets. In: FOCS (1986)

