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Abstract. We revisit the question of whether cryptographic protocols can replace
correlated equilibria mediators in two-player strategic games. This problem was
first addressed by Dodis, Halevi and Rabin (CRYPTO 2000), who suggested
replacing the mediator with a secure protocol and proved that their solution is stable
in the Nash equilibrium (NE) sense, provided that the players are computationally
bounded.
We show that there exist two-player games for which no cryptographic protocol can
implement the mediator in a sequentially rational way; that is, without introducing
empty threats. This explains why all solutions so far were either sequentially
unstable, or were restricted to a limited class of correlated equilibria (specifically,
those that do not dominate any NE, and hence playing them does not offer a clear
advantage over playing any NE).
In the context of computational NE, we classify necessary and sufficient crypto-
graphic assumptions for implementing a mediator that allows to achieve a given
utility profile of a correlated equilibrium. The picture that emerges is somewhat
different than the one arising in semi-honest secure two-party computation. Specif-
ically, while in the latter case every functionality is either “complete" (i.e., implies
Oblivious Transfer) or “trivial" (i.e., can be securely computed unconditionally), in
the former there exist some “intermediate" utility profiles whose implementation
is equivalent to the existence of one-way functions.

1 Introduction

The field of game theory offers a variety of ways to reason about the behavior of
rational players. One of the most famous analytic tools for that purpose is that of
Nash equilibrium [14]. In the basic case of two-player games, a Nash equilibrium (NE)
constitutes of two independent plans of action, one for each player, such that no player
can unilaterally benefit by deviating from her own plan. The NE solution concept was
subsequently generalized by Aumann [2], who allowed players to pick their actions in
a correlated way. Correlated equilibria (CE) are in many cases preferable over NE, in
part because they can potentially guarantee higher utility to the players. In order to be
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able to act in a correlated manner, the players are assumed to have access to a mediator
(sometimes referred to as correlation device), that provides them with private, correlated,
recommendations on the action to be taken.

About a decade and a half ago, Dodis, Halevi and Rabin [7] pointed out the possibility
of implementing the mediator without having to refer to any trusted party. To this end,
they proposed the use of secure two-party computation, viewing the correlation device as
a randomized functionality. Their approach, natural from the cryptographic perspective,
gives rise to some game theoretical challenges that need to be addressed. Most notably,
the cryptographic protocol preceding the actual play of the strategic game introduces new
actions that are observable by the players. Since these actions take place sequentially,
the model of the game needs to be adjusted to account for the strategic decisions that
players need to take during the protocol execution. While these actions do not directly
affect the utility in the underlying strategic game, they can nevertheless influence the
players in their decision making. Such pre-play communication is referred to as cheap
talk in the economic literature.

One crucial difference from the mediated setting, which is inherited from the se-
quential nature of protocols, is that one of the players may learn her recommendation
before the other. If this player is not happy with the protocol’s recommendation, she
can simply decide to “abort,” thus preventing the other player from learning his own
recommendation. Another crucial difference is that player A (not necessarily the one
who learns her recommendation first), can reveal extra information to player B, changing
player B’s knowledge and expectation on how player A is going to play.3

Given that such deviations can always be observed, it becomes necessary to specify
what action players take in case deviation is detected. One could attempt to deter
misbehavior by threatening with some punishment. However, it is not a priori clear what
kind of punishment should a player invoke, assuming that the other player is rational.
In the protocol of Dodis et al. [7], an “abort" action is punished by employing the
min-max strategy (that is, the strategy that minimizes the maximal gain of the deviator).
This approach suffers from the well known and often unavoidable shortcoming of being
harmful to the punishing player. Consequently, the threat of playing the min-max strategy
is empty, or in other words not credible. Punishing the other type of deviations, in which
the deviating player reveals extra information, appears to be even more challenging, as a
message reacting to such deviations might not even fall into the scope of the prescribed
protocol (for instance, if the deviating player is the last to learn her recommendation,
meaning that the protocol actually terminates at that point).

The issue of empty threats is classically handled by the requirement of subgame
perfection (SPE), which requires strategies to be in equilibrium at any point during the
protocol execution. This requirement insures that any threat is credible. One problem with
subgame perfection, that is particularly acute when modeling behavior of computationally
bounded players in a cryptographic protocol, is the requirement of optimality at any
point in the protocol execution. This problem was first addressed by Gradwohl, Livne
and Rosen [9], who by defining empty threats in an explicit manner, were able to reason

3 For instance, the second player to learn his own recommendation could make his private view
of the protocol public, thus revealing his recommendation to the first player and rendering the
correlation device useless.



about sequential rationality in face of computationally bounded players. In addition
to this modeling, their work proposed a simple cryptographic protocol for the class of
convex hull Nash equilibria (i.e., correlated equilibria that can be expressed as a convex
combination of the Nash equilibria of the game), assuming the existence of one-way
functions. To avoid empty threats, their solution punishes the aborting player with her
“worst" NE (i.e., the NE yielding the lowest payoff amongst all NE in the game). Indeed,
since the punishment is a Nash equilibrium, a rational punishing player has no incentive
to deviate from it, which renders the threat of playing this NE credible.

One significant shortcoming of the Gradwohl et al. [9] solution is that it only applies
to convex combinations of Nash equilibria. Unfortunately, such equilibria are not very
interesting since they do not enjoy the most beneficial feature of CE, namely the ability
of dominating the payoffs achieved by any NE. This leaves open the question of whether
there exists a sequentially rational cryptographic protocol for implementing the mediator
in the cases where playing a CE is preferable over playing any NE.

1.1 Our Results

A necessary requirement for guaranteeing sequential rationality is the ability for a player
to threaten credibly. For this to be possible the threat must consist of a rational plan of
action. Otherwise, there is no guarantee that a rational player will follow through in
case she is tested. We formalize this intuition by putting forward the notion of Nash
equilibrium punishable CE. These are correlated equilibria for which the expected utility
of any player given a recommendation by the mediator is never smaller than in her worst
NE. This notion turns out to be crucial for implementing the mediator of a CE using a
cryptographic protocol.

Theorem 2 (informal). A correlated equilibrium can be implemented in a sequentially
rational way using cryptographic cheap talk if and only if it is Nash equilibrium punish-
able.

Given the above theorem, it is natural to ask whether every CE is NE-punishable.
An affirmative answer would have implied that any player receiving an unsatisfactory
recommendation from the cryptographic protocol can be threatened from aborting in a
credible way.

Our answer to this question is negative. We show that there exist games with CE that
are not NE-punishable. Moreover, these games have utility profiles that can be obtained
only by those CE that are not NE-punishable (and so cannot be achieved by other NE-
punishable equilibria). Additionally, both players prefer these utility profiles to utility
profile of some other NE-punishable CE, thus both would be in favor of implementing
such preferable CE.

Theorem 1 (informal). There exist infinitely many strategic games with preferable CE
that cannot be achieved by sequentially rational cryptographic cheap talk.

The above theorem explains why all solutions so far were either sequentially unstable,
or were restricted to a limited class of correlated equilibria.

In addition to the above results, we classify necessary and sufficient cryptographic
assumptions for implementing a mediator that allows to achieve a given utility profile of



a CE by a protocol that is in computational NE. We show that there are non-trivial CE in
the convex hull of Nash equilibria4 (CHNE) which can be implemented via cheap talk
only if one-way functions exist.

Theorem 3 (informal). If the payoff of all non-trivial convex hull Nash equilibria can
be achieved via cryptographic cheap talk then one-way functions exist.

As shown by Gradwohl et al. [9], if one-way functions exist then all non-trivial CE in
the convex hull of NE can be implemented via computational (and moreover sequentially
rational) cheap talk. Taken together these results fully characterize the assumptions under
which all convex hull NE can be implemented. We also show that there exist CE outside
CHNE which can only be cheap talk implemented if OT exists.

Theorem 4 (informal). If the payoff of all correlated equilibria outside the convex hull
of NE can be achieved via cryptographic cheap talk then there exists a protocol for
oblivious transfer (OT).

As shown by Dodis et al. [7], if there exists a protocol for OT then all correlated
equilibria (including those outside the convex hull of NE) can be implemented via
computational (but not necessarily sequentially rational) cheap talk. Taken together these
results show that OT is complete for implementing all CE (regardless of the issue of
sequential rationality). We conjecture that implementing any CE outside the CHNE and
provide evidence to support the conjecture. We leave it as an open problem to prove or
disprove the conjecture.

These are to our best knowledge the first results of this type. Previous work on
rational cryptography has focused on sufficiency of cryptography for implementing
equilibria. Our results suggest an intriguing connection between the distinction between
CE and CHNE on one hand and the distinction between Cryptomania and Minicrypt on
the other hand (see Impagliazzo [11]). The picture that emerges is somewhat different
than the one arising in semi-honest secure two-party computation. While in the latter
case every functionality is either “complete" (i.e. implies OT) or “trivial" (i.e. can be
securely computed unconditionally), in the former there exist some “intermediate" utility
profiles whose implementation is equivalent to the existence of one-way functions. The
details are given in Sect. 6 and Sect. 7.

1.2 Related Work

Osborne and Rubinstein [15] provide a standard introduction to game theory. The notion
of correlated equilibrium was introduced by Aumann [2]. A non-technical introduction
motivating the notion of cheap talk is given in Farrell and Rabin [8]. Cheap talk im-
plementation of a correlation device in game-theoretical framework was put forward
by Bárány [4]. Aumann and Hart [3] show what equilibria payoffs can be achieved via
cheap talk preceding games with imperfect information.

We already mentioned the works in [7, 9]. Teague [17], and subsequently Atallah et
al. [1] gave a protocol for the general problem of correlated element selection achieving

4 Note that NE, even though contained in the convex hull of NE, are trivial from our perspective,
since there is no need for a mediator to play according to them.



better efficiency than [7], but preserving the original solution concept of computational
NE. Using results from computational complexity to implement correlation devices was
considered by Urbano and Vila [19], aiming for a similar result to Dodis et al. [7]. How-
ever, Teague [18] showed that their approach is flawed. An alternative solution concept
for analyzing game theoretical properties of cryptographic protocols was suggested by
Pass and shelat [16].

2 Preliminaries and Definitions

For m ∈ N, we use [m] to denote the set {1, . . . ,m}. For a finite set A, we use ∆(A) to
denote the set of probability distributions over A.

Definition 1 (Two-player strategic game). A two-player strategic game Γ is a triple
(A1,A2,u), where Ai is a set of actions of player i ∈ {1,2}, and u : A1×A2→ R2 is a
utility function assigning a utility profile to every action profile a ∈ A1×A2. We use ui to
denote the i’th output of u, i.e., u(a) = (u1(a),u2(a)).

In this work we only consider two-player games. Also, we talk about a k×k strategic
game Γ if both players have k strategies in Γ , i.e., |A1|= |A2|= k. A classical example
of strategic game is the game of Chicken as in Fig. 1a.

Definition 2 (Strategy profile). A strategy profile for a strategic game Γ is a probability
distribution γ on A1×A2, i.e., γ ∈ ∆(A1×A2). We denote γ(a) the probability assigned
by γ to a ∈ A1×A2. The corresponding utility profile U(γ) ∈ R2 is given by U(γ) =
(U1(γ),U2(γ)), where Ui(γ) = ∑(a1,a2)∈A1×A2

γ(a1,a2)ui(a1,a2) for i ∈ {1,2}. If U(γ) =
(v1,v2), we say that γ achieves the utility profile (v1,v2).

Definition 3 (Correlated equilibrium). A correlated equilibrium (CE) of a strategic
game (A1,A2,u) is a strategy profile γ ∈ ∆(A1×A2), such that for every player i ∈ {1,2}
and every pair of strategies ai,a′i ∈ Ai it holds that

∑
a−i∈A−i

γ(ai,a−i)ui(a′i,a−i)≤ ∑
a−i∈A−i

γ(ai,a−i)ui(ai,a−i) .

We denote Ui(γ|ai) the expected utility of player i when given advice ai∈Ai and
the other player also plays according to some advice sampled from γ , i.e., Ui(γ|ai) =(
∑a−i∈A−i γ(ai,a−i)

)−1
∑a−i∈A−i γ(ai,a−i)ui(ai,a−i).

Definition 4 ((Convex hull) Nash equilibrium). A Nash equilibrium (NE) of a strate-
gic game Γ = (A1,A2,u) is a correlated equilibrium σ of Γ , such that σ is also a
product distribution, i.e., σ ∈ ∆(A1)×∆(A2). A convex hull Nash equilibrium (CHNE)
of a strategic game Γ is a correlated equilibrium of Γ that can be expressed as a convex
combination of Nash equilibria of Γ .

We denote NE(Γ ),CHNE(Γ ), and CE(Γ ) the set of Nash equilibria of Γ , the set of
convex hull Nash equilibria of Γ , and the set of correlated equilibria of Γ respectively.5

5 As a convention, we will use γ to denote a strategy profile that is a CE and σ to denote a strategy
profile that is a NE.



We are interested in implementing correlated equilibria of two-player strategic games.
Given such strategic game Γ one can visualize the utility profiles achievable by all its
correlated equilibria in R2. Figure 1b depicts the polygon of utility profiles achievable
by CE of the game of Chicken defined by the payoff matrix in Fig. 1a. The dark grey
triangle corresponds to utility profiles achievable by the CHNE of Chicken, and its three
corner points are exactly the payoffs of the three NE of the game of Chicken. One can see
that the payoffs of CE of Chicken extend the region of CHNE payoffs in both directions,
i.e., there are both CE that improve the CHNE payoffs (the white polygon) and those
that are dominated by the CHNE payoffs (the light grey triangle).
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Fig. 1. (a) the game of Chicken (b) the utility profiles achievable by its CE.

There is a natural partial ordering on the utility profiles induced by the relation of
Pareto dominance.

Definition 5 ((strict) Pareto dominance, weak Pareto optimality). Let Γ be a strate-
gic game, and γ,γ ′ ∈ CE(Γ ). If Ui(γ)>Ui(γ

′) for both i ∈ {1,2}, we say that γ strictly
Pareto dominates γ’. We say that γ Pareto dominates γ ′ if for both i ∈ {1,2} it holds
that Ui(γ)≥Ui(γ

′), and there exist i′ ∈ {1,2} such that Ui′(γ)>Ui′(γ
′). We say that a

γ∗ ∈CE(Γ ) is weakly Pareto optimal if there exists no γ ′ ∈CE(Γ ) that Pareto dominates
γ∗.

We sometimes abuse the notation and say that utility profile v ∈ R2 (strictly) Pareto
dominates v′ ∈ R2 if there exist γ,γ ′ ∈ CE(Γ ), such that v = U(γ),v′ = U(γ ′) and γ

(strictly) Pareto dominates γ ′. Consider again the CE payoffs of Chicken in Fig. 1b.
The two line segments between (2,7) and ( 14

3 , 14
3 ), and between ( 14

3 , 14
3 ) and (7,2) on

the boundary of CHNE payoffs are exactly the weakly Pareto optimal boundary of the
CHNE payoffs of Chicken.

3 Not all CE are NE-punishable

In this section, we show that there exists a barrier for using cryptography to implement
any interesting correlated equilibrium without empty threats. Intuitively, for a correlated



equilibrium to be implementable by a cryptographic protocol without empty threats, one
must be able to effectively punish any deviating player by her worst NE.

Definition 6 (NE-punishable CE). Let γ be a CE of a strategic game Γ = (A1,A2,u).
We say that γ is a Nash equilibrium punishable correlated equilibrium if for all i ∈ {1,2}
and every action ai ∈ Ai of player i played with non-zero probability in γ it holds that
Ui(γ|ai)≥Ui(σi), where σi is the worst Nash equilibrium for i in Γ .

It is not at all obvious if there exists any strategic game with a CE that is not NE-
punishable; it could also be the case that for any CE there exists a NE-punishable CE
achieving the same utility profile. However, we show that none of the above is true.
There are in fact many games with correlated equilibria that have some utility profile
extending the polygon of CHNE payoffs, but no NE-punishable CE achieves such utility
profile.

Theorem 1. For any k ∈ N. If k > 3, then there exists a k×k strategic game Γ with a
correlated equilibrium γ ∈CE(Γ )\CHNE(Γ ), s.t. every γ ′ ∈CE(Γ ) with U(γ ′) =U(γ)
is not a NE-punishable CE of Γ .

The proof is constructive. We start with a suitable (k−1)×(k−1) strategic game
Λ and extend it into a k×k game Γ that exemplifies the theorem; the initial game Λ is
characterised by some non-trivial properties (given by the criterion in Def. 7) that are
exploited when we extend it.

Definition 7 (Extensibility Criterion). A strategic game Λ = (A1,A2,u) satisfies the
extensibility criterion if there exists γ , a CE of Λ , with the following two properties:

1. γ strictly Pareto dominates any NE of Λ .
2. There exists a ∈ Ai for some player i ∈ {1,2}, such that for every γ ′ ∈ CE(Γ ) with

U(γ ′) =U(γ) it holds that Ui(γ
′)>Ui(γ

′|a).

We use the fact that any strategic game Λ satisfying the extensibility criterion has a
CE γ preferable for both players to any NE of Λ . The CE γ is preserved as a correlated
equilibrium in the extended game Γ . We are able to carefully devise the payoffs of Γ

such that its unique NE is strictly Pareto dominated by γ , however for at least one of the
players there exists a recommendation in γ that is inferior to the unique NE.

Lemma 1. For any k ∈ N+, if there exists a (k−1)×(k−1) strategic game Λk−1 that
satisfies the extensibility criterion, then there exists a k×k strategic game Γ with a
correlated equilibrium γ ∈CE(Γ )\CHNE(Γ ), s.t. every γ ′ ∈CE(Γ ) with U(γ ′) =U(γ)
is not a NE-punishable CE of Γ .

Proof. We show how to extend Λk−1 = (A,B,u) with one additional action for each
player to define Γ . Let a0 be the new action of player A and b0 be the new action of player
B, thus Γ = (A∪{a0},B∪{b0},u′). The utility function u′ of Γ corresponds to the utility
function of Λk−1 for every action profile in A×B. For some s, t ∈ R, u′ is defined on
the remaining action profiles as: u′(a0,b0) = (t, t), and u′(a0,b) = u′(a,b0) = (s,s) for
every b ∈ B and every a ∈ A.



We show that it is possible to select s and t such that the claim holds. Recall that Λk−1
satisfies the extensibility criterion, so there exists a CE γ satisfying the two conditions
from Def. 7. Let i be the player and a ∈ Ai be the advice from the second condition of the
extensibility criterion. Denote v the expectation of player i in γ given recommendation a,
i.e., v =Ui(γ|a). We can assume without loss of generality that γ is the CE with maximal
v. Let v′ be the maximal utility obtained in Λk−1 by any of the players in some NE,
i.e., v′ = max(UA(σ

∗
A),UB(σ

∗
A)), where σ∗i is the best NE for player i. Set s such that

max(v,v′)< s <Ui(γ), and let t = (s+Ui(γ))/2.
If s and t are selected as above, then no Nash equilibrium of Λk−1 is a Nash equi-

librium of Γ . Moreover, the action profile (a0,b0) is a unique NE of Γ achieving the
utility profile (t, t). However, γ is still a correlated equilibrium in Γ , and the expectation
of player i when given a as a recommendation is strictly smaller than the utility obtained
by player i in the unique NE (a0,b0) of Γ . Thus γ is not a NE-punishable CE.

Consider any other CE γ ′ of Γ that achieves the same utility profile as γ . Both t and
s are smaller than Ui(γ), thus any new correlated equilibrium achieving U(γ) satisfies
the second condition from the extensibility criterion. Since Ui(γ|a)≥Ui(γ

′|a), any such
γ ′ is also not NE-punishable. ut

It remains to show that games satisfying the extensibility criterion exist for any k > 2.

Lemma 2. For every k ∈N with k > 2, there exists a k×k strategic game Λk that satisfies
the extensibility criterion.

Proof. Let c,d,e, f ,g ∈ R be real numbers such that c < d < e < f < g, where g−
f < e− c, and 3 f < (e− c).6 Consider the k×k game Λk = (A = {a1, . . . ,ak},B =
{b1, . . . ,bk},u) with the utility function u : A×B→ R2 defined as follows:

– u(a j,b j) = ( f ,g) for every j ∈ [k−1],
– u(ak,bk) = (d,e),
– u(a j,b j+1) = (g, f ) for every j ∈ [k−2],
– u(ak−1,bk) = (e, f ),
– u(ak,b1) = (g,d), and
– u(a,b) = (c,c) otherwise.

To illustrate the corresponding payoff matrix, we give the payoff matrix of Λ4 in Fig. 2.

b1 b2 b3 b4

a1 f ,g g, f c,c c,c
a2 c,c f ,g g, f c,c
a3 c,c c,c f ,g e, f
a4 g,d c,c c,c d,e

Fig. 2. The payoff matrix of Λ4.

Due to the restrictions on the entries in the payoff matrix, there is no pure Nash
equilibrium in Λk. Indeed, for every action profile (a,b) ∈ A×B there exists either an

6 The two conditions g− f < e− c and 3 f < (e− c) are required for ease of exposition when
describing the candidate CE. In fact, Λk defined without this conditions would also satisfy the
claim of Lemma 2.



action a′ of player A or an action b′ of player B, such that A prefers (a′,b) to (a,b) or
B prefers (a,b′) to (a,b). Following the same reasoning, Λk can only have fully mixed
Nash equilibria. Notice that any of such NE assigns non-zero probability to the action
profiles with utility profile (c,c).

We describe a candidate CE for the claim of Lemma 2. Let γk be any probability
distribution on A×B satisfying these conditions.

1. γk(ak,b1) = γk(ak−1,bk) = γk(ak,bk) =
g− f

3(g− f )+(2k−3)(e−c) ,
2. γk(a,b) = e−c

3(g− f )+(2k−3)(e−c) for every (a,b) /∈ {(ak,b1),(ak−1,bk),(ak,bk)} such
that u(a,b) 6= (c,c), and

3. γk(a,b) = 0 otherwise.

A proof of the following claim is given in the full version.

Claim. Any such probability distribution γk ∈ ∆(A×B) is a correlated equilibrium of
Λk.

Moreover, γk has in its support only the action profiles that do not yield the utility
profile (c,c). Therefore, any such CE strictly Pareto dominates any completely mixed
NE of Λk.

The expectation UA(γk) of player A is

((k−1) f +(k−2)g)
e− c

3(g− f )+(2k−3)(e− c)
+

(d + e+g)(g− c f )
3(g− f )+(2k−3)(e− c)

,

and this is strictly larger than f when 3 f < (e− c). On the other hand, any correlated
equilibrium γ ′k of Λk that achieves the same utility profile as γk must assign non-zero
probability to every action profile with utility profile different from (c,c). Since the
highest utility of player A obtained from any action profile in which A plays action ak−1 is
f , the expectation of A in any such correlated equilibrium γ ′k when given recommendation
ak−1 is at most f. Therefore, Λk satisfies the extensibility criterion. ut

4 Computational Cheap Talk Simultaneous Move Games

In this section we present an overview of our game theoretical model and solution
concepts. Full details are given in the full version.

Our core object of study is so-called computational cheap talk, simultaneous move
(CTSM) games. A CTSM game without types is fully specified by a strategic game
(A1,A2,u). The game itself is an extensive game with imperfect information modeling
an interactive protocol, where the agents take turn in exchanging messages, with agent
1 arbitrarily being chosen to send the first message. At some point each agent must
additionally pick an action ai ∈ Ai for (A1,A2,u). The utility of a play is u(a1,a2), i.e.,
the utility does not depend on the communication, only the actions. We assume that the
agents do not get any information on what the action of the other party is, and hence
consider the choice of actions for (A1,A2,u) as simultaneous moves. The strategy σi
of agent i specifies which messages to send in response to the messages sent by the



other agent, and which action to pick for (A1,A2,u) at the end of the cheap talk. We
require that σi is poly-time, to allow using cryptography. Any mixed strategy should also
by poly-time computable. To conveniently model this, we technically only allow pure
strategies, and then we give each such strategy an extra input ri, which is a uniformly
random bit-string not observed by the other agent. Any mixing must be implemented by
σi(ri) in poly-time.

As described above, for each strategic game (A1,A2,u), we have a CTSM game.
Correspondingly, for each CTSM game, we have a strategic game, which is just the
game (A1,A2,u) used to specify it. We say that a CE for a strategic game can be cheap
talk implemented if there exists a strategy σ = (σ1,σ2) for the corresponding CTSM
game which obtains the same utility profile as the CE and which is a computational NE,
which is just an ε-NE for a negligible ε . We say that a CE for a strategic game can be
ETF cheap talk implemented if it can be cheap talk implemented by some σ which is
additionally empty-threat free. We define empty-threat freeness along the lines of [9],
specialize their general definition to the setting of CTSM games and generalizing to
handle imperfect information. The details are in the full version. Here we sketch and
motivate the definition.

An empty threat posed by me in a CTSM game is a part of my future strategy which
I do not currently play and which I would not play should you call my bluff by deviating
in a way making the threatening strategy active. You would demonstrate the existence of
such a future empty threat posed by me by specifying a deviation by you which would
make me deviate from playing the supposedly empty threat. We adopt this constructive
definition, an advantage being that we can insist that the demonstration be poly-time.
Note, however, that using an empty threat to force me to deviate from a threat does
not convincingly demonstrate that my threat was empty. We therefore require that your
demonstrator itself is empty threat free in future play. Formally we require that the
deviation meant to demonstrate the existence of a future empty threat occurs in response
to some event D, for deviate, and require that the demonstration be empty-threat free in
the sub-game defined by D occurring.

Another qualification is that a deviation which makes me abstain from my threat, but
which does not at the same time result in you receiving a larger expected utility does not
demonstrate that I posed an empty threat. Yes, your deviation made me not execute the
threat, but the threat did not serve to prevent you from this particular deviation, as you
have no incentive for your deviation in the first place. All in all, a credible demonstration
that I am posing an empty threat on you would therefore be an event D observable by
you, and a deviation, which you only make when D occurs, which has the property that
it leads to an empty-threat free future play, in the sub-game defined by D occurring, in
which you have higher utility.

Formalizing the above definition and making it work well with the computational
issue, is highly non-trivial, but none of the details really matter for the intuition of the
results we describe later. For details, see the full version. Here we only mention and
motivate the two main technical choices.

Since our definition of ETF is recursive, we need a last round to start from. Yet, our
strategies are allowed any polynomial number of rounds, and the nature of most settings
naturally modeled by CTSM games does not make it seem reasonable to postulate some



exogenous fixed last round of communication, so we do not want to build a fixed last
round into our model. Also, it is by far always given that a party can commit to an
external action, like a bid in a real-life auction, until long after the cheap talk protocol
was run, so we cannot guarantee that no more communication can take place after
the protocol was run. I.e., the natural strategy space contains the possibility of more
communication than needed exactly by the protocol in question, so our model should
capture this. We essentially handle this by considering CTSM games families of games,
Γ = {ΓR}R∈N, where all ΓR have the same corresponding strategic game, and where ΓR
has a fixed last round in round R. This allows to easily define ETF for each ΓR, and we
then say that σ is ETF if there exists R0 such that it is ETF for all ΓR for R ≥ R0. I.e.,
the stability of a protocol is in particular not jeopardized by leaving some empty rounds
after the execution of the strategy, i.e., rounds in which communication could have taken
place. Robustness to the presence of such possible communication seems crucial for
stability in real world networks.

We have chosen to use a similar mechanism to model poly-time. For a fixed strategic
game (A1,A2,u) and T ∈ N, let Γ T be the CTSM game corresponding to (A1,A2,u),
where the messages and the action must be computable in time exactly T . For a
polynomial p we consider a family of games Γp = {Γ (κ) = Γ p(κ)}κ∈N. A strategy
σ = {σ (κ)}κ∈N for Γp is one where σ (κ) is a strategy for Γ (κ). A strategy σ for Γ is
clearly poly-time. We say that σ is a computational NE for Γp if there exists negligible ε

such that σ (κ) is an ε(κ)-NE for Γ (κ). We call it a computational CTSM for (A1,A2,u) if
there exists a polynomial p0 such that it is a computational NE for Γp for all p≥ p0. Us-
ing the same flavor of definition to handle the computational issue and the no-last-round
issue, allows to give one natural definition handling both issues.

Note that the above two design choices force proposed protocols to run in some fixed
polynomial number of rounds and some fixed poly-time, whereas deviations are allowed
to deviate to larger polynomials. This seems natural and strong.

To play a NE of any strategic game it is sufficient for the players to randomize
independently, and there is no need for any cheap talk. The players need some publicly
observable lottery to play according to a CHNE, that can be implemented using the
protocol of Gradwohl et al. [9]. However, a CE outside the convex hull of NE needs some
non-trivially correlated randomness. Motivated by our results from Sect. 6 and Sect. 7,
we categorize correlated equilibria payoffs using the terminology of Impagliazzo [11].

Definition 8 (Trivial, Minicrypt, and Cryptomania utility profiles). Let Γ be a
strategic game, and v ∈ R2 be a utility profile achieved by some γ ∈ CE(Γ ).

– We call v a trivial utility profile if there exists σ ∈ NE(Γ ) achieving v.
– We call v a Minicrypt utility profile if γ is a CHNE and there is no NE achieving v.
– We call v a Cryptomania utility profile if γ is not a CHNE.

5 NE-punishable CE versus Empty-threat free NE

We can now formally relate NE-punishable CE and empty-threat free computational NE.



Theorem 2. Let Γ = (A1,A2,u) be a strategic game and let Γ̃ be the corresponding
CTSM game. If there exists a strategy profile σ , a computational ETFE of Γ̃ with utility
profile (v1,v2), then there exists a NE-punishable CE γ for Γ achieving the same utility
profile (v1,v2).

The theorem is proven in the full version. Here we provide a sketch of the proof.
Consider any computational ETFE σ of Γ̃ . Remember that σ is a family of strategies,
and the utility profile of the members of the family need not converge to a fixed utility
profile. However, we assume in the premise of the theorem that it does converge, to
some (v1,v2). In the same vain, the action profiles of the members need not converge.
However, the distribution of the action profile of all the strategies, i.e., the probability
distribution over which actions (a1,a2) ∈ A1×A2 they make the players play, belong to
a fixed compact space as we consider finite games Γ . Hence we can pick an infinite sub-
sequence which converges to some probability distribution γ on A1×A2. It is possible to
show that γ is a CE. Namely, in the games of the convergent sub-sequence, the incentive
to deviate given any particular action is converging to 0, as σ in particular is an ε-NE
for a negligible ε . This means that the incentive to deviate in the limit point γ is 0, by
compactness. For the same reason γ has utility profile (v1,v2). We now assume that γ is
not NE-punishable, and use this to show that σ is not empty threat free, which proves
the theorem by contradiction.

If γ is not NE-punishable, then there exist i ∈ {1,2} and an action ai ∈ Ai such that
ai occurs with non-zero probability and such that Ui(γ|ai) < Ui(σ

∗
i ), where σ∗i is the

worst NE for player i and Ui(γ|ai) is the expected utility of player i when playing γ given
that the recommendation is ai.

To prove that σ is not a computational ETFE we must pick a strategy space with
enough rounds to run σ , or more rounds, and show that σ is not an ε-ETFE in this
strategy space for any negligible ε . This in turn means that we must give an event D
observable by P2 (assume w.l.o.g. that i = 2) and a deviation for P2 in the face of D for
which he gets noticeably better expected utility in all ETF plays in the sub-game defined
by D occurring.

As for the strategy space, pick the one which after the run of σ leaves at least one
extra round of communication and where it is player 2 who sends a message in the last
round of the strategy space. As the event D, pick the event that the output of running σ2
is the bad action ai for which Ui(γ|ai)<Ui(σ

∗
i ) and that κ is among the values in the

infinite sub-sequence which converges to γ . As for the deviation, let player 2 play exactly
as in σ2, except that if D occurs, then player 2 does not play ai. Instead, it waits until
the last communication round where it sends its entire view of the protocol to player
1. Then player 2 picks an action a∗2 according to σ∗2 , and plays a∗2. To show that σ is
not a computational ETFE, it is now sufficient to show that in all ETF continuations
after the last communication round, in the sub-game defined by D occurring, player 2
gets noticeably better expected utility than by playing σ . If this is not the case, then
there exists an ETF continuation σ̃ after the last communication round, in the sub-game
defined by D occurring, such that player 2 gets utility close to what he gets by playing
σ when D occurs, which in turn is lower than what he gets by playing the worst NE. It
follows that the utility profile of σ̃ is not the utility profile of a CHNE. Namely, a CHNE



has a utility profile which is a convex combination of utility profiles for NE, so no player
can get less than in his worst NE.

To conclude the proof by contradiction it is now sufficient to prove that σ̃ is a CHNE.
Recall that σ̃ is played in the sub-game with a common prior C corresponding to the
view of the parties after D occurred. Since player 2 sends his entire view to player 1
when D occurs, in the common prior C, player 1 can efficiently compute the signal of
player 2. Denote the signal of player i by si. We use that s2 = s(s1) for a fixed poly-time
function s. If we give unbounded computing time to player 1 and only give it the signal
s2, then it can re-sample a random (s′1,s

′
2)←C with s(s′1) = s2 and play according to

σ1(s′1). This will lead to exactly the same strategy, and the unbounded computing power
of player 1 does not allow it better deviations: since player 1 can efficiently compute
s2 = s(s1) from s1 and since it knows the code σ2 of player 2, it can use random runs
of σ2(s2) to sample the strategy profile of player 2 up to exponentially good precision
in poly-time and and then in poly-time compute an optimal response to this fixed and
now known strategy. Hence the unbounded computing power can at most give inverse
exponentially more utility, which does not disturb the ε-NE. But then we have an ε-NE
where the players have a common signal s2. It is possible to use compactness of the
strategy space to show that a sub-sequence of an ε-NE converges to a CHNE. The details
are in the full version.

It is instructive to see how the above reveal your view deviation defeats some of the
obvious attempts at circumventing the impossibility result.

Consider first a relaxed version of NE-punishable, which we could call one-sided
punishable, where we only require that there exists i ∈ {1,2} such that for every action
ai ∈ Ai of player i played with non-zero probability in γ it holds that Ui(γ|ai)≥Ui(σi),
where σi is the worst Nash equilibrium for i in Γ . Say i = 1 without loss of generality.
Consider the protocol which runs an unfair, active secure two-party computation where
first player 1 learns a1 and then in the following round player 2 learns a2 or learns that
player 1 aborted. If player 1 aborts, then player 2 punishes by playing the worst NE
for player 1. It seems this should work as player 1 now has no incentive to deviate and
player 2 cannot deviate as he learns his recommendation a2 last. However, this does not
work! What player 2 will do if he receives a bad recommendation a2, i.e., one where
U2(γ|a2) < U2(σ2), where σ2 is the worst Nash equilibrium for i in Γ , is to send his
entire view, including a2 to player 1, just before actions are to be played. Now that player
1 has no uncertainty on the view of player 1, all stable ways for the two players to pick
their actions in the face of this deviation will give player 2 a payoff which is at least as
good as in σ2.

Consider then the attempt to use gradual release to give a1 and a2 to the players, the
hope being that we can release a1 and a2 in a way such that when learning ai it is too
late to prevent the other party from learning a−i. Again, this is in vain, as the reveal your
view deviation is played after both a1 and a2 are fully revealed. For the same reason
techniques for fair computation between rational players will fail too, like the protocol
in Groce and Katz [10].

We consider it very interesting future work to consider variations of empty-threat
freeness which prevent the reveal your view deviation, more specifically, can we give
realistic models of empty-threat freeness allowing to implement larger classes of CE?



6 All Minicrypt Payoffs iff One-Way Functions Exist

Recall that we denote Minicrypt utility profiles to be the utility profiles achieved by
some non-trivial CHNE. In this section we justify the name by showing that there exists
a Minicrypt utility profile which requires one-way functions to be computational cheap
talk implemented. This complements the result by Gradwohl et al. [9] that one-way
functions are sufficient to implement any Minicrypt utility profile.

6.1 Implementing All Minicrypt Payoffs Implies One-Way Functions

In this section we show how to use a computational cheap talk implementation of some
CHNE achieving a Minicrypt payoff to construct a protocol for weak coin-flip.

Given a two-party protocol π = (π1,π2) with no inputs, and outputs which are in
{0,1}. Let yi(π) ∈ {0,1} denote the output of πi after running π . Note that yi(π) is a
random variable, with the universe being the randomness used by P1 and P2 in the run
of the protocol. A weak coin-flip protocol is such a protocol, where the following holds:

1. If both players are honest, then they output the same value, i.e., y1(π1,π2) =
y2(π1,π2). Moreover, Pr[y1(π1,π2) = 0] = Pr[y1(π1,π2) = 1] = 1

2 .
2. For any efficient strategy π∗1 of P1 it holds that Pr[y2(π

∗
1 ,π2) = 0] ≤ 1

2 + ε for a
negligible ε .

3. For any efficient strategy π∗2 of P2 it holds that Pr[y1(π1,π
∗
2 ) = 1] ≤ 1

2 + ε for a
negligible ε .

It follows from the seminal work of Impagliazzo and Luby [12] that weak coin-flip
implies one-way functions.7

Consider the CTSM game specified by Γ = (A1,A2), where A1 = {c,d}, A2 = {C,D},
and the utility function u is given by the payoff matrix:

C D

c 1,1 0,4
d 4,0 0,0

The probability distribution selecting (c,D) and (d,C) with equal probability is a convex
hull NE achieving the utility profile (2,2). We show that if it is possible to implement
such CHNE using cryptographic cheap talk, then one-way functions exist.

Theorem 3. If there exists in the CTSM game corresponding to Γ a computational NE
σ achieving utility profile (2,2), then one-way functions exist.

Proof. Consider the two-party protocol π given in Fig. 3.
The following statements are logically equivalent.

7 The notion is defined slightly different in [12], but by letting a party Pi who outputs “REJECT”
output i instead, the notions become equivalent. Note also that opposed to what is common in
contemporary definitions, see e.g. [13], we do not require that the winner can be determined
from the communication of the protocol. This is in line with the original definition in [12], so
we can still use the implication of one-way functions.



1. For i ∈ {1,2}, party Pi runs the cheap talk phase of strategy σi of Pi in the strategy profile
σ , using uniformly random randomizers. All the messages are forwarded to party P−i,
and the round function is computed on the messages forwarded from P−i.

2. If in round m the strategy σi plays d or C, then Pi outputs yi = 0. If σi plays c or D, then
Pi outputs yi = 1.

Fig. 3. Protocol for weak coin-flip given a cheap talk implementation of a specific CHNE.

1. There exists an efficient π∗1 such that P2 outputs 0 in (π∗1 ,π2) with probability
p0 >

1
2 .

2. There exists an efficient σ∗1 such that P2 plays C in (σ∗1 ,σ2) with probability p0 >
1
2 .

3. There exists an efficient σ∗1 such that P1 has utility u0 > 2 in (σ∗1 ,σ2).
4. There exists an efficient σ∗1 such that P1 has utility u0 > 2 in (σ∗1 ,σ2) and such that

P1 never plays c.

By construction statement 1 implies statement 2. If statement 2 is true, then the
strategy σ

†
1 which plays like σ∗1 and then plays d has expected utility 4p0 > 2. Statement

3 implies statement 4 because d is weakly dominating for P1, i.e, P1 never gets less
utility by playing d instead of c. If statement 4 is true, then 4α +0(1−α)> 2, where α

is the probability that P2 plays c in (σ∗1 ,σ2). This implies that α > 1
2 . By letting π∗1 be

the strategy playing like σ∗1 , this implies statement 1.
If both parties follow the protocol in Fig. 3 then they both output the same bit b, and

it is 0 or 1 with equal probability. Since σ is a computational equilibrium of (Γ ,C/0), any
player can increase her utility by at most negligible amount. Thus, any player can bias
the output of the protocol by at most negligible amount towards her preferred outcome,
and the protocol is a weak coin-flip protocol. ut

7 All Cryptomania Payoffs iff OT Exists

In this section we show that there exist Cryptomania profiles which imply OT. Imple-
menting any Cryptomania profile given OT follows from [7]. We will also conjecture
that implementing any Cryptomania profile implies OT and give supporting evidence.

We recall the notion of random Rabin OT. It is a secure two-party computation
specified by a randomized function f (x1,x2) = (y1,y2). The outputs do not depend on
the inputs (x1,x2). The output y1 is a bit y1 ∈ {0,1}. The output y2 is a trit y2 ∈ {0,1,⊥}.
The bit y1 is uniformly random. The probability that y2 = ⊥ is 1

2 , independent of y1.
And, if y2 6=⊥, then y2 = y1. Note that this implies that party 1 gets no information on
whether y2 = y1 or y2 = ⊥ and that if y2 = ⊥, then party 2 has no information on y1.
We call a protocol a semi-honest random Rabin OT if it implements random Rabin OT
against parties guaranteed to follow the protocol in the model [5]. Semi-honest random
Rabin OT is interesting as it is known to be complete for two-party computation, even
for active secure two-party computation which can tolerate that the parties deviate from
the protocol.

Given semi-honest random Rabin OT one can empty-threat free implement any
NE-punishable CE. One uses an active-secure two-party computation to sample the CE
and punishes a deviating party by playing the worst NE for that party. The proof that this



is empty-threat free follows the proof of Gradwohl et al. [9]. We now show that OT is
needed for having an implementation of all Cryptomania profiles.

7.1 Playing Chicken well implies OT

In this section we show that there exists a version of Chicken which has a CE with a
weakly Pareto optimal utility profile which cannot be obtained using a computational
NE in the corresponding cheap talk game, unless OT exists. The game has two actions
per player, which shows that even in the simplest non-trivial game setting, one can only
harvest the maximal utility if OT exists.

Consider the CTSM game specified by Γchicken = (A1,A2,u), where A1 = {c,d},
A2 = {C,D} and the utility function u is given by the payoff matrix:

C D

c 15,15 6,21
d 21,6 0,0

Theorem 4. If there exists a computational NE σ for the CTSM game corresponding to
Γchicken achieving utility profile (14,14), then there exists a protocol for semi-honest
random Rabin OT.

Proof. Let σ be as in the premise. We assume that u(σ) = (14,14)—extending the
proof to handling the case where the payoff of each player i is 14− εi for a negligible
εi is standard. In the following we use viewi(σ) = viewi(Γ ,σ ,C) to denote the view of
player i when the parties play according to σ .

Consider the following two-party protocol π:

1. Party Pi runs the cheap talk phase of strategy σi of Pi in the strategy profile σ , using
uniformly random randomizers.

2. If in the last round the strategy σi plays c or C, then Pi outputs bi = 1. If σi plays d
or D, then Pi outputs bi = 0.

Let viewi denote the view of party Pi in a run of this protocol. We are going to analyze
the distribution of the output of the parties and the distribution of their views, and then
conclude that they imply OT.

Since the expected utility (14,14) is symmetric, we know that σ plays (d,C) as
much as it plays (c,D); call the probability of playing each of these α . Let β denote the
probability that σ plays (c,C). We clearly have that 2α ≤ 1−β . The expected utility
is therefore α(21,6)+α(6,21)+β (15,15)≤ 2α(13.5,13.5)+(1−2α)(15,15). From
14≤ 2α13.5+(1−2α)15, it follows that α ≤ 1

3 . This means that the expected utility is
at most 1

3 21+ 1
3 6+β15. From 1

3 21+ 1
3 6+β15≥ 14, we get that β ≥ 1

3 . The expected
utility of P2 when σ2 plays C is β

α+β
15+ α

α+β
6. If P2 would switch to D when σ1 says to

play C, then the expected utility of P2 would become β

α+β
21+ α

α+β
0. It follows from the

fact that σ is a computational NE that β21≤ β15+α6− ε for some negligible ε . We
will assume that ε = 0—handling the negligible ε is standard. From β21≤ β15+α6 we
get that β ≤ α . From α ≤ 1

3 , β ≥ 1
3 and β ≤ α we get that α = β = 1

3 . This means that
the joint output of (P1,P2) in π is uniform on {(0,1),(1,0),(1,1)}. One can show that



an expected constant number of samples from this distribution is sufficient to implement
random Rabin OT, see the full version for the details. This, however, is not sufficient to
conclude the proof, as the transcript of π might leak information. To finish the proof we
therefore have to show that the parties have no extra information to their outputs, i.e.,
show that

[view1 |b1 = 1∧b2 = 1]≈ [view1 |b1 = 1∧b2 = 0]
[view2 |b1 = 1∧b2 = 1]≈ [view2 |b1 = 0∧b2 = 1] ,

where ≈ denotes computational indistinguishability. We show the first relation. The
second follows using a symmetric argument.

Assume that there exists an efficient distinguisher D which can distinguish
[view1 |b1 = 1∧ b2 = 1] and [view1 |b1 = 1∧ b2 = 0] with non-negligible probability,
i.e., |Pr[D([view1 |b1 = 1∧b2 = 1]) = 1]−Pr[D([view1 |b1 = 1∧b2 = 0]) = 1]| is non-
negligible. Since we work with non-uniform complexity, we can assume that it is always
the case that Pr[D([view1 |b1 = 1∧b2 = 1] = 1)]≥ Pr[D([view1 |b1 = 1∧b2 = 0] = 1)].
Now consider the following strategy σ∗1 . It plays like σ1, except that if σ1 recom-
mends to play c, then σ∗1 switches to d when D(view1) = 1, where view1 is the view
of P1. Note that σ1 recommending to play c is logically equivalent to b1 = 1. I.e.,
view1 ∈ {[view1 |b1 = 1∧b2 = 1], [view1 |b1 = 1∧b2 = 0]}. Furthermore, since α = β ,
we have that b2 is uniformly random. We use this to compute the utility of switch-
ing. We look at the cases that the joint play of σ is (c,C) and (c,D) separately. If the
joint play is (c,C), then we switch with probability Pr[D([view1 |b1 = 1∧b2 = 1]) = 1],
for a gain of Pr[D([view1 |b1 = 1∧ b2 = 1]) = 1](21− 15). If the joint play is (c,D),
then we switch with probability Pr[D([view1 |b1 = 1∧ b2 = 0]) = 1], for a gain of
Pr[D([view1 |b1 = 1∧b2 = 0]) = 1](0−6). This gives a total gain of 6(Pr[D([view1 |b1 =
1∧b2 = 1]) = 1]−Pr[D([view1 |b1 = 1∧b2 = 0]) = 1]). This means that the gain is six
times the advantage of D, which is non-negligible. This is a contradiction to σ being a
computational NE. ut

7.2 Perfectly Implementing any CE outside CHNE Implies Unconditional OT

We now justify the conjecture that cheap talk implementing any Cryptomania profile
implies OT. In particular, we show that if the implementation had been perfect, in the
sense that it only leaks the recommendations, then one can always implement OT. We
leave it as an open problem to investigate whether the additional protocol transcript of a
cheap talk implementation of the correlation device in general leaks sufficiently little
information that the result also holds for computational cheap talk implementations.

Theorem 5. Let γ be a Cryptomania correlation device for a game Γ , i.e., it outputs
recommendations which are not in the CHNE of Γ . Then given a polynomial number of
samples of γ , two parties can implement unconditionally secure OT against semi-honest
adversaries in the model [5].

We use the result of Crépeau, Morozov and Wolf [6] that any non-trivial Discrete
Memoryless Channel implies OT. Thus, it suffices to show that there are some correlation
devices that can be used to simulate a non-trivial DMC; the existence of any such
correlation device would consequently imply the existence of OT.



Definition 9 (Discrete Memoryless Channel). A discrete memoryless channel is char-
acterized by an input alphabet AX , an output alphabet AY , and a set of conditional
probability distributions Py|x for each x ∈ AX .

Note that the binary symmetric channel with probability of error p∈ [0,1] is a special
case of DMC with AX =AY = {0,1}, and the conditional probabilities P1|0 = P0|1 = p,
and P0|0 = P1|1 = 1− p.

Wolf and Wullschleger [20] considered the problem of two parties with access to
correlated random variables X , and Y trying to simulate a DMC characterized by the
conditional probabilities PY |X . A correlated equilibrium γ of a strategic two player game
corresponds to an identical situation. The two players have access to two correlated
random variables that are defined by the randomized advice about what action each one
of them should take in the game. Given access to the correlation device, the players can
simulate a discrete memoryless channel as described in Fig. 4.

To send bit d ∈ {0,1} from party A to party B:

1. Both players get advice according to γ , and use rejection sampling to make sure that the
pair of advice they get is an element (a,b) ∈ {a0,a1}×{b0,b1} for some actions a0,a1
of player A and b0,b1 of player B. They use the correlation device for γ multiple times,
until both a0 and a1 appear in the list of advice received by player A.

2. Party A erases some advice from her list to make a0 and a1 equiprobable, and sends to B
the index i of the first occurrence of ad in her list.

3. Party B outputs d′, such that bd′ is the i-th advice in the list of player B.

Fig. 4. Simulating a DMC when given access to some correlation device for a CE γ .

This procedure simulates a DMC defined by the conditional probabilities Py|x cor-
responding to the CE restricted by the rejection sampling to {a0,a1}×{b0,b1}; for
example the probability of receiving 0 after sending 1 is P0|1 = γ(a1,b0)/(γ(a1,b0)+
γ(a1,b1)). Note that this procedure in general does not simulate the binary symmetric
channel.8 However, we show that for non-trivial CE the properties of the associated
DMC are good enough to imply OT.

We are interested in DMCs that are non-trivial in the following sense.

Definition 10 (Crépeau et al.[6]). We call a channel PY |X trivial if there exist, after
removal of all redundant input symbols, partitions of the (remaining) ranges X of X and
Y of Y , X = X1∪ . . .∪Xn,Y = Y1∪ . . .∪Yn, and channels PYi|Xi , where the ranges of
Xi and Yi are Xi and Yi, respectively, such that

PY |X=x(y) =


PYi|Xi=x(y) if x ∈ Xi,y ∈ Yi,

0 if x ∈ Xi,y ∈ Y j, i 6= j

holds and such that the capacity of the channel PYi|Xi is 0 for all i.

8 Some non-trivial CE indeed give rise to well-known channels. For example the CE from
previous section corresponds to the Z-channel.



The following lemma justifies the use of correlated equilibria outside the convex-hull
of NE to simulate non-trivial DMCs.

Lemma 3. Let Γ be a strategic game, and γ some correlated equilibrium of Γ . If γ

is a CE of Γ outside the convex hull of NE, then there exist a pair of actions ai 6= a j
of player A and a pair of actions bk 6= bl of player B, such that the restriction of γ to
{ai,a j}×{bk,bl} allows to simulate a non-trivial DMC.

Proof. Recall that Pb|a = γ(a,b)/(γ(a,bk)+γ(a,bl)) for any (a,b) ∈ {ai,a j}×{bk,bl}.
Since γ is not a CHNE of Γ , there must exist actions ai 6= a j of player A and bk 6= bl of
player B, such that

Pbk|ai 6= Pbk|a j , or Pbl |ai 6= Pbl |a j (7.1)

(or else γ is a completely mixed NE of Γ ). We want to show that the conditional
probabilities Pb|a characterize a channel with non-zero capacity. Condition (7.1) ensures
that it is never the case that Pbk|ai = Pbl |ai = Pbk|a j = Pbl |a j = 1/2. Thus, the resulting
DMC does not have entropy 1 (i.e. it has non-zero capacity). On the other hand, we
need to show that the resulting DMC has enough entropy to be non-trivial, i.e., that it
is not a perfect channel or a channel outputting always the same symbol. It suffices to
show that among the tuples of actions consistent with the condition (7.1) we can in fact
select the actions ai,a j and bk,bl so that at most one of the conditional probabilities Pb|a
is zero. Equivalently, we instead show that it is possible to select the actions where at
most one of γ(a,b) is equal to zero. We call a candidate bad if it has more than one
0. Note that no bad candidate has γ(ai,bk) = γ(a j,bk) = 0 or γ(ai,bl) = γ(a j,bl) = 0,
since then Pbk|ai = Pbk|a j = 0 and Pbl |ai = Pbl |a j = 1, respectively Pbl |ai = Pbl |a j = 0 and
Pbk|ai = Pbk|a j = 1. So, bad candidates are either of the row type, γ(ai,bk) = γ(ai,bl) = 0
or γ(a j,bk) = γ(a j,bl) = 0, or the diagonal type, γ(ai,bk) = γ(a j,bl) = 0 or γ(ai,bl) =
γ(a j,bk) = 0. One can use this to show that it holds for any two actions ai and a j
that the residual distribution given ai and a j is either identical or disjoint. I.e., either
γ(ai,bk)/γ(ai) = γ(a j,bk)/γ(a j) for all bk or γ(ai,bk) = 0∨γ(a j,bk) = 0 for all bk. This
shows that the distribution is a sum of product distributions, each a NE, i.e., a CHNE.
There are more details in the full version. ut

The following theorem characterizes DMCs with respect to the possibility of their
use to create unconditional OT:

Theorem 6 (Crépeau et al.[6]). Let two players A and B be connected by a non-trivial
channel PY |X . Then, for any α > 0, there exists a protocol for unconditionally secure OT
from A to B with failure probability at most α , where the number of uses of the channel
is of order O(log(1/α)2+ε) for any ε > 0. Trivial channels, on the other hand, do not
allow for realizing OT in an unconditional way.

Lemma 3 together with the above result of Crépeau et al. [6] give the sought proof
of Theorem 5.
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