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Abstract. We put forward a new algebraic framework to generalize and
analyze Diffie-Hellman like Decisional Assumptions which allows us to ar-
gue about security and applications by considering only algebraic proper-
ties. Our D`,k-MDDH assumption states that it is hard to decide whether
a vector in G` is linearly dependent of the columns of some matrix in
G

`×k sampled according to distribution D`,k. It covers known assump-
tions such as DDH, 2-Lin (linear assumption), and k-Lin (the k-linear as-
sumption). Using our algebraic viewpoint, we can relate the generic hard-
ness of our assumptions in m-linear groups to the irreducibility of certain
polynomials which describe the output of D`,k. We use the hardness re-
sults to find new distributions for which the D`,k-MDDH-Assumption
holds generically in m-linear groups. In particular, our new assumptions
2-SCasc and 2-ILin are generically hard in bilinear groups and, compared
to 2-Lin, have shorter description size, which is a relevant parameter for
efficiency in many applications. These results support using our new as-
sumptions as natural replacements for the 2-Lin Assumption which was
already used in a large number of applications.

To illustrate the conceptual advantages of our algebraic framework, we
construct several fundamental primitives based on any MDDH-Assumption.
In particular, we can give many instantiations of a primitive in a com-
pact way, including public-key encryption, hash-proof systems, pseudo-
random functions, and Groth-Sahai NIZK and NIWI proofs. As an in-
dependent contribution we give more efficient NIZK and NIWI proofs
for membership in a subgroup of G`, for validity of ciphertexts and for
equality of plaintexts. The results imply very significant efficiency im-
provements for a large number of schemes, most notably Naor-Yung type
of constructions.
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1 Introduction

Arguably, one of the most important cryptographic hardness assumptions is
the Decisional Diffie-Hellman (DDH) Assumption. For a fixed additive group G
of prime order q and a generator P of G, we denote by [a] := aP ∈ G the
implicit representation of an element a ∈ Zq. The DDH Assumption states that
([a], [r], [ar]) ≈c ([a], [r], [z]) ∈ G3, where a, r, z are uniform elements in Zq and
≈c denotes computationally indistinguishability of the two distributions. It has
been used in numerous important applications such as secure encryption [8], key-
exchange [16], hash-proof systems [9], pseudo-random functions [26], and many
more.

Bilinear Groups and the Linear Assumption. Bilinear groups (i.e., groups
G,GT of prime order q equipped with a bilinear map e : G×G→ GT ) [20,3] rev-
olutionized cryptography in recent years and and are the basis for a large number
of cryptographic protocols. However, relative to a (symmetric) bilinear map, the
DDH Assumption is no longer true in the group G. (This is since e([a], [r]) =
e([1], [ar]) and hence [ar] is not longer pseudorandom given [a] and [r].) The
need for an “alternative” decisional assumption in G was quickly addressed with
the Linear Assumption (2-Lin) introduced by Boneh, Boyen, and Shacham [2]. It
states that ([a1], [a2], [a1r1], [a2r2], [r1+r2]) ≈c ([a1], [a2], [a1r1], [a2r2], [z]) ∈ G5,
where a1, a2, r1, r2, z ← Zq. 2-Lin holds in generic bilinear groups [2] and it
has virtually become the standard decisional assumption in the group G in
the bilinear setting. It has found applications to encryption [23], signatures [2],
zero-knowledge proofs [17], pseudorandom functions [4] and many more. More
recently, the 2-Lin Assumption was generalized to the (k-Lin)k∈N Assumption
family [19,29] (1-Lin = DDH), a family of increasingly (strictly) weaker Assump-
tions which are generically hard in k-linear maps.

Subgroup membership problems. Since the work of Cramer and Shoup [9]
it has been recognized that it is useful to view the DDH Assumption as a hard
subgroup membership problem in G2. In this formulation, the DDH Assumption
states that it is hard to decide whether a given element ([r], [t]) ∈ G2 is contained
in the subgroup generated by ([1], [a]). Similarly, in this language the 2-Lin As-
sumption says that it is hard to decide whether a given vector ([r], [s], [t]) ∈ G3

is in the subgroup generated by the vectors ([a1], [0], [1]), ([0], [a2], [1]). The same
holds for the (k-Lin)k∈N Assumption family: for each k, the k-Lin assumption
can be naturally written as a hard subgroup membership problem in Gk+1.
This alternative formulation has conceptual advantages for some applications,
for instance, it allowed to provide more instantiations of the original DDH-based
scheme of Cramer and Shoup and it is also the most natural point of view for
translating schemes originally constructed in composite order groups into prime
order groups [14].

Linear Algebra in Bilinear Groups. In its formulation as subgroup de-
cision membership problem, the k-Lin assumption can be seen as the problem
of deciding linear dependence “in the exponent.” Recently, a number of works
have illustrated the usefulness of a more algebraic point of view on decisional



assumptions in bilinear groups, like the Dual Pairing Vector Spaces of Okamoto
and Takashima [28] or the Subspace Assumption of Lewko [24]. Although these
new decisional assumptions reduce to the 2-Lin Assumption, their flexibility and
their algebraic description have proven to be crucial in many works to obtain
complex primitives in strong security models previously unrealized in the liter-
ature, like Attribute-Based Encryption, Unbounded Inner Product Encryption
and many more.

This work. Motivated by the success of this algebraic viewpoint of decisional
assumptions, in this paper we explore new insights resulting from interpreting
the k-Lin decisional assumption as a special case of what we call a Matrix Diffie-
Hellman Assumption. The general problem states that it is hard to distinguish
whether a given vector inG` is contained in the space spanned by the columns of
a certain matrix [A] ∈ G`×k, where A is sampled according to some distribution
D`,k. We remark that even though all our results are stated in symmetric bilinear
groups, they can be naturally extended to the asymmetric setting.

1.1 The Matrix Diffie-Hellman Assumption

A new framework for DDH-like Assumptions. For integers ` > k let D`,k
be an (efficiently samplable) distribution over Z`×kq . We define the D`,k-Matrix
DH (D`,k-MDDH) Assumption as the following subgroup decision assumption:

D`,k-MDDH : [A||Ar] ≈c [A||u] ∈ G`×(k+1), (1)

where A ∈ Z`×kq is chosen from distribution D`,k, r ← Zkq , and u ← G`. The
(k-Lin)k∈N family corresponds to this problem when ` = k + 1, and D`,k is the
specific distribution Lk (formally defined in Example 2).

Generic hardness. Due to its linearity properties, the D`,k-MDDH Assump-
tion does not hold in k + 1-linear groups. In Section 3.2 we give two different
theorems which state sufficient conditions for the D`,k-MDDH Assumption to
hold generically in m-linear groups. Theorem 1 is very similar to the Uber-
Assumption [1,6] that characterizes hardness in bilinear groups (i.e., m = 2) in
terms of linear independence of polynomials in the inputs. We generalize this to
arbitrary m using a more algebraic language. This algebraic formulation has the
advantage that one can use additional tools (e.g. Gröbner bases or resultants)
to show that a distribution D`,k meets the conditions of Theorem 1, which is
specially important for large m. It also allows to prove a completely new result,
namely Theorem 2, which states that a matrix assumption with ` = k + 1 is
generically hard if a certain determinant polynomial is irreducible.

New Assumptions for bilinear groups. We propose other families of gener-
ically hard decisional assumptions that did not previously appear in the litera-
ture, e.g., those associated to Ck,SCk, ILk defined below. For the most impor-
tant parameters k = 2 and ` = k+ 1 = 3, we consider the following examples of
distributions:

C2 : A =

(
a1 0
1 a2

0 1

)
SC2 : A =

(
a 0
1 a
0 1

)
L2 : A =

(
a1 0
0 a2

1 1

)
IL2 : A =

(
a 0
0 a + 1
1 1

)
,



for uniform a, a1, a2 ∈ Zq as well as U3,2, the uniform distribution in Z3×2
q (al-

ready considered in several previous works like [15]). All assumptions are hard
in generic bilinear groups. It is easy to verify that L2-MDDH = 2-Lin. We define
2-Casc := C2-MDDH (Cascade Assumption), 2-SCasc := SC2-MDDH (Symmetric
Cascade Assumption), and 2-ILin := IL2-MDDH (Incremental Linear Assump-
tion). In the full version [12], we show that 2-SCasc⇒ 2-Casc, 2-ILin⇒ 2-Lin and
that U3,2-MDDH is the weakest of these assumptions (which extends the results
of [15,30,14] for 2-Lin), while 2-SCasc and 2-Casc seem incomparable to 2-Lin.

Efficiency improvements. As a measure of efficiency, we define the repre-
sentation size REG(D`,k) of an D`,k-MDDH assumption as the minimal number
of group elements needed to represent [A] for any A ← D`,k. This parameter
is important since it affects the performance (typically the size of public/secret
parameters) of schemes based on a Matrix Diffie-Hellman Assumption. 2-Lin and
2-Casc have representation size 2 (elements ([a1], [a2])), while 2-ILin and 2-SCasc
only 1 (element [a]). Hence our new assumptions directly translate into shorter
parameters for a large number of applications (see the Applications in Section
4). Further, our result points out a tradeoff between efficiency and hardness
which questions the role of 2-Lin as the “standard decisional assumption” over
a bilinear group G.

New Families of Weaker Assumptions. By defining appropriate distribu-

tions Ck, SCk, ILk over Z
(k+1)×k
q , one can generalize all three new assumptions

naturally to (k-Casc)k∈N, (k-SCasc)k∈N, and (k-ILin)k∈N with representation size
k, 1, and 1, respectively. Using our results on generic hardness, it is easy to ver-
ify that all three assumptions are generically hard in k-linear groups. Since they
are false in k + 1-linear groups this gives us three new families of increasingly
strictly weaker assumptions. In particular, the (k-SCasc) and (k-ILin) assump-
tion families are of great interest due to their compact representation size of only
1 element.

Relations to Other Standard Assumptions. Surprisingly, the new as-
sumption families can also be related to standard assumptions. The k-Casc
Assumption is implied by the (k + 1)-Party Diffie-Hellman Assumption ((k +
1)-PDDH) [5] which states that ([a1], . . . , [ak+1], [a1·. . .·ak+1]) ≈c ([a1], . . . , [ak+1],
[z]) ∈ Gk+2. Similarly, k-SCasc is implied by the k+ 1-Exponent Diffie-Hellman
Assumption ((k+1)-EDDH) [22] which states that ([a], [ak+1]) ≈c ([a], [z]) ∈ G2.

1.2 Basic Applications

We believe that all schemes based on 2-Lin can be shown to work for any Matrix
Assumption. Consequently, a large class of known schemes can be instantiated
more efficiently with the new more compact decisional assumptions, while of-
fering the same generic security guarantees. To support this belief, in Section
4 we show how to construct some fundamental primitives based on any Matrix
Assumption. All constructions are purely algebraic and therefore very easy to
understand and prove.



• Public-key Encryption. We build a key-encapsulation mechanism with
security against passive adversaries from any D`,k-MDDH Assumption. The
public-key is [A], the ciphertext consists of the first k elements of [z] =
[Ar], the symmetric key of the last ` − k elements of [z]. Passive security
immediately follows from D`,k-MDDH.

• Hash Proof Systems. We build a smooth projective hash proof system
(HPS) from any D`,k-MDDH Assumption. It is well-known that HPS im-
ply chosen-ciphertext secure encryption [9], password-authenticated key-ex-
change, zero-knowledge proofs, and many other things.

• Pseudo-Random Functions. Generalizing the Naor-Reingold PRF [26,4],
we build a pseudo-random function PRF from any D`,k-MDDH Assumption.
The secret-key consists of transformation matrices T1, . . . ,Tn (derived from
independent instances Ai,j ← D`,k) plus a vector h of group elements. For
x ∈ {0, 1}n we define PRFK(x) =

[∏
i:xi=1 Ti · h

]
. Using the random self-

reducibility of the D`,k-MDDH Assumption, we give a tight security proof.
• Groth-Sahai Non-Interactive Zero-Knowledge Proofs. We show how

to instantiatiate the Groth-Sahai proof system [17] based on any D`,k-MDDH
Assumption. While the size of the proofs depends only on ` and k, the CRS
and verification depends on the representation size of the Matrix Assump-
tions. Therefore our new instantiations offer improved efficiency over the
2-Lin-based construction from [17]. This application in particular highlights
the usefulness of the Matrix Assumption to describe in a compact way many
instantiations of a scheme: instead of having to specify the constructions for
the DDH and the 2-Lin assumptions separately [17], we can recover them as
a special case of a general construction.

More efficient proofs for CRS dependent languages. In Section 5
we provide more efficient NIZK and NIWI proofs for concrete natural languages
which are dependent on the common reference string. More specifically, the com-
mon reference string of the D`,k-MDDH instantiation of Groth-Sahai proofs of
Section 4.4 includes as part of the commitment keys the matrix [A], where
A ∈ Z`×kq ← D`,k. We give more efficient proofs for several languages related to
A. Although at first glance the languages considered may seem quite restricted,
they naturally appear in many applications, where typically A is the public key
of some encryption scheme and one wants to prove statements about cipher-
texts. More specifically, we obtain improvements for several kinds of statements,
namely:

• Subgroup membership proofs. We give more efficient proofs in the lan-
guage LA,G,P := {[Ar], r ∈ Zkq} ⊂ G`. To quantify some concrete im-
provement, in the 2-Lin case, our proofs of membership are half of the size
of a standard Groth-Sahai proof and they require only 6 groups elements.
We stress that this improvement is obtained without introducing any new
computational assumption. To see which kind of statements can be proved
using our result, note that a ciphertext is a rerandomization of another one
only if their difference is in LA,G,P . The same holds for proving that two



commitments with the same key hide the same value or for showing in a pub-
licly verifiable manner that the ciphertext of our encryption scheme opens
to some known message [m]. This improvement has a significant impact on
recent results, like [25,13], and we think many more examples can be found.

• Ciphertext validity. The result is extended to prove membership in the
language LA,z,G,P = {[c] : c = Ar + mz} ⊂ G`, where z ∈ Z`q is some
public vector such that z /∈ Im(A), and the witness of the statement is
(r, [m]) ∈ Zkq × G. The natural application of this result is to prove that
a ciphertext is well-formed and the prover knows the message [m], like for
instance in [11].

• Plaintext equality. We consider Groth-Sahai proofs in a setting in which
the variables of the proofs are committed with different commitment keys,
defined by two matrices A ← D`1,k1 ,B ← D′`2,k2 . We give more efficient
proofs of membership in the language LA,B,G,P := {([cA], [cB ]) : [cA] =
[Ar + (0, . . . , 0,m)T ], [cB ] = [Bs + (0, . . . , 0,m)T ], r ∈ Zk1q , s ∈ Zk2q } ⊂
G`1 × G`2 . To quantify our concrete improvements, the size of the proof
is reduced by 4 group elements with respect to [21]. As in the previous
case, this language appears most naturally when one wants to prove equality
of two committed values or plaintexts encrypted under different keys, e.g.,
when using Naor-Yung techniques to obtain chosen-ciphertext security [27].
Concretely, our results apply also to the encryption schemes in [18,7,10].

2 Notation

For n ∈ N, we write 1n for the string of n ones. Moreover, |x| denotes the length
of a bitstring x, while |S| denotes the size of a set S. Further, s← S denotes the
process of sampling an element s from S uniformly at random. For an algorithm
A, we write z ← A(x, y, . . .) to indicate that A is a (probabilistic) algorithm that
outputs z on input (x, y, . . .). If A is a matrix we denote by aij the entries and
ai the column vectors.

Let Gen be a probabilistic polynomial time (ppt) algorithm that on input 1λ

returns a description G = (G, q,P) of a cyclic groupG of order q for a λ-bit prime
q and a generator P of G. More generally, for any fixed k ≥ 1, let MGenk be a
ppt algorithm that on input 1λ returns a descriptionMGk = (G,GTk

, q, ek,P),
where G and GTk

are cyclic additive groups of prime-order q, P a generator of
G, and ek : Gk → GTk

is a (non-degenerated, efficiently computable) k-linear
map. For k = 2 we define PGen := MGen2 to be a generator of a bilinear group
PG = (G,GT , q, e,P).

For an element a ∈ Zq we define [a] = aP as the implicit representation
of a in G. Similarly, [a]Tk

= aPTk
is its implicit representation in GTk

, where
PTk

= ek(P, . . . ,P) ∈ GTk
. More generally, for a matrix A = (aij) ∈ Zn×mq we

define [A] and [A]Tk
as the implicit representations of A computed elementwise.

When talking about elements in G and GTk
we will always use this implicit

notation, i.e., we let [a] ∈ G be an element in G or [b]Tk
be an element in GTk

.
Note that from [a] ∈ G it is generally hard to compute the value a (discrete



logarithm problem in G). Further, from [b]Tk
∈ GTk

it is hard to compute the
value b ∈ Zq (discrete logarithm problem in GTk

) or the value [b] ∈ G (pairing
inversion problem). Obviously, given [a] ∈ G, [b]Tk

∈ GTk
, and a scalar x ∈ Zq,

one can efficiently compute [ax] ∈ G and [bx]Tk
∈ GTk

.
Also, all functions and operations acting onG andGTk

will be defined implic-
itly. For example, when evaluating a bilinear pairing e : G×G→ GT in [a], [b] ∈
G we will use again our implicit representation and write [z]T := e([a], [b]). Note
that e([a], [b]) = [ab]T , for all a, b ∈ Zq.

3 Matrix DH Assumptions

3.1 Definition and Basic Properties

Definition 1. Let `, k ∈ N with ` > k. We call D`,k a matrix distribution if
it outputs (in poly time, with overwhelming probability) matrices in Z`×kq of full
rank k. We define Dk := Dk+1,k.

For simplicity we will also assume that, wlog, the first k rows of A← D`,k form
an invertible matrix.

We define the D`,k-matrix problem as to distinguish the two distributions
([A], [Aw]) and ([A], [u]), where A← D`,k, w ← Zkq , and u← Z`q.

Definition 2 (D`,k-Matrix Diffie-Hellman Assumption D`,k-MDDH). Let
D`,k be a matrix distribution. We say that the D`,k-Matrix Diffie-Hellman (D`,k-
MDDH) Assumption holds relative to Gen if for all ppt adversaries D,

AdvD`,k,Gen(D) = Pr[D(G, [A], [Aw]) = 1]− Pr[D(G, [A], [u]) = 1] = negl(λ),

where the probability is taken over G = (G, q,P) ← Gen(1λ), A ← D`,k,w ←
Zkq ,u← Z`q and the coin tosses of adversary D.

Definition 3. Let D`,k be a matrix distribution. Let A0 be the first k rows of

A and A1 be the last ` − k rows of A. The matrix T ∈ Z(`−k)×k
q defined as

T = A1A
−1
0 is called the transformation matrix of A.

We note that using the transformation matrix, one can alternatively define the
advantage from Definition 2 as

AdvD`,k,Gen(D) = Pr[D(G,
[

A0

TA0

]
,

[
h

Th

]
) = 1]− Pr[D(G,

[
A0

TA0

]
, [u]) = 1],

where the probability is taken over G = (G, q,P) ← Gen(1λ), A ← D`,k,h ←
Zkq ,u← Z`−kq and the coin tosses of adversary D.

We can generalize Definition 2 to the m-fold D`,k-MDDH Assumption as
follows. Given W ← Zk×mq for some m ≥ 1, we consider the problem of dis-

tinguishing the distributions ([A], [AW]) and ([A], [U]) where U ← Z`×mq is
equivalent to m independent instances of the problem (with the same A but
different wi). This can be proved through a hybrid argument with a loss of
m in the reduction, or, with a tight reduction (independent of m) via random
self-reducibility.



Lemma 1 (Random self reducibility). For any matrix distribution D`,k,
D`,k-MDDH is random self-reducible. Concretely, for any m,

AdvmD`,k,Gen(D
′) ≤

m ·AdvD`,k,Gen(D) 1 ≤ m ≤ `− k

(`− k) ·AdvD`,k,Gen(D) +
1

q − 1
m > `− k

,

where

AdvmD`,k,Gen(D
′) = Pr[D′(G, [A], [AW]) = 1]− Pr[D′(G, [A], [U]) = 1],

and the probability is taken over G = (G, q,P) ← Gen(1λ), A ← D`,k,W ←
Zk×mq ,U← Z`×mq and the coin tosses of adversary D′.

The proof is given in the full version [12].

We remark that, given [A], [z] the above lemma can only be used to re-
randomize the value [z]. In order to re-randomize the matrix [A] we need that
one can sample matrices L and R such that A′ = LAR looks like an independent
instance A′ ← D`,k. In all of our example distributions we are able to do this.

Due to its linearity properties, the D`,k-MDDH assumption does not hold in
(k + 1)-linear groups.

Lemma 2. Let D`,k be any matrix distribution. Then the D`,k-Matrix Diffie-
Hellman Assumption is false in (k + 1)-linear groups.

This is proven in the full version [12] by computing determinants in the target
group.

3.2 Generic Hardness of Matrix DH

Let D`,k be a matrix distribution as in Definition 1, which outputs matrices A ∈
Z`×kq . We call D`,k polynomial-induced if the distribution is defined by picking

t ∈ Zdq uniformly at random and setting ai,j := pi,j(t) for some polynomials
pi,j ∈ Zq[T ] whose degree does not depend on λ. E.g. for 2-Lin from Section 1.1,
we have a1,1 = t1, a2,2 = t2, a2,1 = a3,2 = 1 and a1,2 = a3,1 = 0 with t1, t2 (called
a1, a2 in Section 1.1) uniform.

We set fi,j = Ai,j−pi,j and gi = Zi−
∑
j pi,jWj in the ring R = Zq[A1,1, . . . ,

A`,k,Z,T ,W ]. Consider the ideal I0 generated by all fi,j ’s and gi’s and the ideal
I1 generated only by the fi,j ’s in R. Let Jb := Ib ∩ Zq[A1,1, . . . , A`,k,Z]. Note
that the equations fi,j = 0 just encode the definition of the matrix entry ai,j by
pi,j(t) and the equation gi = 0 encodes the definition of zi in the case z = Aω.
So, informally, I0 encodes the relations between the ai,j ’s, zi’s, ti’s and wi’s in
([A], [z] = [Aω]) and I1 encodes the relations in ([A], [z] = [u]). For b = 0
(z = Aω) and b = 1 (z uniform), Jb encodes the relations visible by considering
only the given data (i.e. the Ai,j ’s and Zj ’s).



Theorem 1. Let D`,k be a polynomial-induced matrix distribution with notation
as above. Then the D`,k-MDDH assumption holds in generic m-linear groups if
and only if (J0)≤m = (J1)≤m, where the ≤m means restriction to total degree at
most m.

Proof. Note that J≤m captures precisely what any adversary can generically
compute with polynomially many group and m-linear pairing operations. For-
mally, this is proven by restating the Uber-Assumption Theorem of [1,6] and its
proof more algebraically.

For a given matrix distribution, the condition (J0)≤m = (J1)≤m can be verified
by direct linear algebra or by elimination theory (using e.g. Gröbner bases). For
the special case ` = k+1, we can actually give a criterion that is simple to verify
using determinants:

Theorem 2. Let Dk be a polynomial-induced matrix distribution, which out-
puts matrices ai,j = pi,j(t) for uniform t ∈ Zdq . Let d be the determinant of
(pi,j(T )‖Z) as a polynomial in Z,T .

1. If the matrices output by Dk always have full rank (not just with overwhelm-
ing probability), even for ti from the algebraic closure Zq, then d is irreducible
over Zq.

2. If all pi,j have degree at most one and d is irreducible over Zq and the total
degree of d is k+1, then the Dk-MDDH assumption holds in generic k-linear
groups.

This theorem and generalizations for non-linear pi,j and non-irreducible d are
proven in the full version [12] using tools from algebraic geometry.

3.3 Examples of D`,k-MDDH

Let D`,k be a matrix distribution and A ← D`,k. Looking ahead to our appli-
cations, [A] will correspond to the public-key (or common reference string) and
[Aw] ∈ G` will correspond to a ciphertext. We define the representation size
REG(D`,k) of a given polynomial-induced matrix distribution D`,k with linear
pi,j ’s as the minimal number of group elements it takes to represent [A] for any
A ∈ D`,k. We will be interested in families of distributions D`,k such that that
Matrix Diffie-Hellman Assumption is hard in k-linear groups. By Lemma 2 we
obtain a family of strictly weaker assumptions. Our goal is to obtain such a
family of assumptions with small (possibly minimal) representation.

Example 1. Let U`,k be the uniform distribution over Z`×kq .

The next lemma says that U`,k-MDDH is the weakest possible assumption
among all D`,k-Matrix Diffie-Hellman Assumptions. However, U`,k has poor rep-
resentation, i.e., REG(U`,k) = `k.

Lemma 3. Let D`,k be any matrix distribution. Then D`,k-MDDH⇒ U`,k-MDDH.



Proof. Given an instance ([A], [Aw]) of D`,k, if L ∈ Z`×`q and R ∈ Zk×kq are two
random invertible matrices, it is possible to get a properly distributed instance of
the U`,k-matrix DH problem as ([LAR], [LAw]). Indeed, LAR has a distribution
statistically close to the uniform distributionin Zk×`q , while LAw = LARv for

v = R−1w. Clearly, v has the uniform distribution in Zkq .

Example 2 (k-Linear Assumption/k-Lin). We define the distribution Lk as fol-
lows

A =



a1 0 . . . 0 0
0 a2 . . . 0 0

0 0
. . . 0

...
. . .

...
0 0 . . . 0 ak
1 1 . . . 1 1


∈ Z(k+1)×k

q ,

where ai ← Z∗q . The transformation matrix T ∈ Z1×k
q is given as T = ( 1

a1
, . . . , 1

ak
).

Note that the distribution (A,Aw) can be compactly written as (a1, . . . , ak,
a1w1, . . . , akwk, w1 + . . . + wk) = (a1, . . . , ak, b1, . . . , bk,

b1
a1

+ . . . + bk
ak

) with
ai ← Z∗q , bi, wi ← Zq. Hence the Lk-Matrix Diffie-Hellman Assumption is an
equivalent description of the k-linear Assumption [2,19,29] with REG(Lk) = k.

It was shown in [29] that k-Lin holds in the generic k-linear group model and
hence k-Lin forms a family of increasingly strictly weaker assumptions. Further-
more, in [5] it was shown that 2-Lin⇒ BDDH.

Example 3 (k-Cascade Assumption/k-Casc). We define the distribution Ck as
follows

A =



a1 0 . . . 0 0
1 a2 . . . 0 0

0 1
. . . 0

...
. . .

...
0 0 . . . 1 ak
0 0 . . . 0 1


,

where ai ← Z∗q . The transformation matrix T ∈ Z1×k
q is given as T = (± 1

a1·...·ak ,

∓ 1
a2·...·ak . . . ,

1
ak

). Note that (A,Aw) can be compactly written as (a1, . . . , ak,

a1w1, w1 + a2w2 . . . , wk−1 + akwk, wk) = (a1, . . . , ak, b1, . . . , bk,
bk
ak
− bk−1

ak−1ak
+

bk−2

ak−2ak−1ak
− . . .± b1

a1·...·ak ). We have REG(Ck) = k.

Matrix A bears resemblance to a cascade which explains the assumption’s name.
Indeed, in order to compute the right lower entry wk of matrix (A,Aw) from
the remaining entries, one has to “descent” the cascade to compute all the other
entries wi (1 ≤ i ≤ k − 1) one after the other.

A more compact version of Ck is obtained by setting all ai := a.



Example 4. (Symmetric k-Cascade Assumption) We define the distribution SCk
as Ck but now ai = a, where a← Z∗q . Then (A,Aw) can be compactly written as

(a, aw1, w1+aw2, . . . , wk−1+awk, wk) = (a, b1, . . . , bk,
bk
a −

bk−1

a2 + bk−2

a3 −. . .±
b1
ak

).
We have REG(Ck) = 1.

Observe that the same trick cannot be applied to the k-Linear assumption
k-Lin, as the resulting Symmetric k-Linear assumption does not hold in k-linear
groups. However, if we set ai := a+ i− 1, we obtain another matrix distribution
with compact representation.

Example 5. (Incremental k-Linear Assumption) We define the distribution ILk
as Lk with ai = a+ i− 1, for a ← Zq. The transformation matrix T ∈ Z1×k

q is

given as T = ( 1
a , . . . ,

1
a+k−1 ). (A,Aw) can be compactly written as (a, aw1, (a+

1)w2, . . . , (a+ k− 1)wk, w1 + . . .+wk) = (a, b1, . . . , bk,
b1
a + b2

a+1 + . . .+ bk
a+k−1 ).

We also have REG(ILk) = 1.

The last three examples need some work to prove its generic hardness.

Theorem 3. k-Casc, k-SCasc and k-ILin are hard in generic k-linear groups.

Proof. We need to consider the (statistically close) variants with ai ∈ Zq rather
that Z∗q . The determinant polynomial for Ck is d(a1, . . . , ak, z1, . . . , zk+1) =

a1 · · · akzk+1 − a1 · · · ak−1zk + . . . + (−1)kz1, which has total degree k + 1. As
all matrices in Ck have rank k, because the determinant of the last k rows
in A is always 1, by Theorem 2 we conclude that k-Casc is hard in k-linear
groups. As SCk is a particular case of Ck, the determinant polynomial for SCk is
d(a, z1, . . . , zk+1) = akzk+1 − ak−1zk + . . .+ (−1)kz1. As before, by Theorem 2,
k-SCasc is hard in k-linear groups. Finally, in the case of IL, d(a, z1, . . . , zk+1) =
a(a+ 1) · · · (a+ k − 1)

(
zk−1 − z1

a −
z2
a+1 − . . .−

zk
a+k−1

)
, which has total degree

k + 1. It can be shown that all matrices in ILk have rank k. Indeed, matrices
in Lk can have lower rank only if at least two parameters ai are zero, and this
cannot happen to ILk matrices. Therefore, as in the previous cases, k-ILin is
hard in k-linear groups.

For relations among this new security assumptions we refer the reader to the
full version [12].

4 Basic Applications

Basic cryptographic definitions (key-encapsulation, hash proof systems, and pseudo-
random functions) are given in the full version [12].

4.1 Public-Key Encryption

Let Gen be a group generating algorithm and D`,k be a matrix distribution
that outputs a matrix over Z`×kq such that the first k-rows form an invertible
matrix with overwhelming probability. We define the following key-encapsulation
mechanism KEMGen,D`,k

= (Gen,Enc,Dec) with key-space K = G`−k.



– Gen(1λ) runs G ← Gen(1λ) and A ← D`,k. Let A0 be the first k rows of A

and A1 be the last `−k rows of A. Define T ∈ Z(`−k)×k
q as the transformation

matrix T = A1A
−1
0 . The public/secret-key is

pk = (G, [A] ∈ G`×k), sk = (pk ,T ∈ Z(`−k)×k
q )

– Encpk picks w ← Zkq . The ciphertext/key pair is

[c] = [A0w] ∈ Gk, [K] = [A1w] ∈ G`−k

– Decsk ([c] ∈ Gk) recomputes the key as [K] = [Tc] ∈ G`−k.

Correctness follows by the equation T · c = T · A0w = A1w. The public key
contains REG(D`,k) and the ciphertext k group elements.

Theorem 4. Under the D`,k-MDDH Assumption KEMGen,D`,k
is IND-CPA se-

cure.

Proof. By theD`,k Matrix Diffie-Hellman Assumption, the distribution of (pk , [c]
, [K]) = ((G, [A]), [Aw]) is computationally indistinguishable from ((G, [A]), [u]),
where u← Z`q.

4.2 Hash Proof System

Let D`,k be a matrix distribution. We build a universal1 hash proof system
HPS = (Param,Pub,Priv), whose hard subset membership problem is based on
the D`,k Matrix Diffie-Hellman Assumption.

– Param(1λ) runs G ← Gen(1λ) and picks A← D`,k. Define

C = G`, V = {[c] = [Aw] ∈ G` : w ∈ Zkq}.

The value w ∈ Zkq is a witness of [c] ∈ V. Let SK = Z`q, PK = Gk, and

K = G. For sk = x ∈ Z`q, define the projection µ(sk) = [x>A] ∈ Gk. For
[c] ∈ C and sk ∈ SK we define

Λsk ([c]) := [x> · c] . (2)

The output of Param is params =
(
S = (G, [A]),K, C,V,PK,SK, Λ(·)(·), µ(·)

)
.

– Priv(sk , [c]) computes [K] = Λsk ([c]).
– Pub(pk , [c],w). Given pk = µ(sk) = [x>A], [c] ∈ V and a witness w ∈
Zkq such that [c] = [A · w] the public evaluation algorithm Pub(pk , [c],w)

computes [K] = Λsk ([c]) as [K] = [(x> ·A) ·w] .

Correctness follows by (2) and the definition of µ. Clearly, under the D`,k-Matrix
Diffie-Hellman Assumption, the subset membership problem is hard in HPS.

We now show that Λ is a universal1 projective hash function. Let [c] ∈ C \V.

Then the matrix (A||c) ∈ Z`×(k+1)
q is of full rank and consequently (x> ·A||x> ·

c) ≡ (x>A||u) for x← Zkq and u← Zq. Hence, (pk , Λsk ([c]) = ([x>A], [x>c]) ≡
([x>A], [u]) = ([x>A], [K]).



4.3 Pseudo-Random Functions

Let Gen be a group generating algorithm and D`,k be a matrix distribution that
outputs a matrix over Z`×kq such that the first k-rows form an invertible matrix
with overwhelming probability. We define the following pseudo-random function
PRFGen,D`,k

= (Gen,F) with message space {0, 1}n. For simplicity we assume
that `− k divides k.

– Gen(1λ) runs G ← Gen(1λ), h ∈ Zkq , and Ai,j ← D`,k for i = 1, . . . , n
and j = 1, . . . , t := k/(` − k) and computes the transformation matrices

Ti,j ∈ Z(`−k)×k
q of Ai,j ∈ Z`×kq (cf. Definition 3). For i = 1, . . . , n define the

aggregated transformation matrices

Ti =

Ti,1

...
Ti,t

 ∈ Zk×kq

The key is defined as K = (G,h,T1, . . . ,Tn).
– FK(x) computes

FK(x) =

[ ∏
i:xi=1

Ti · h

]
∈ Gk.

We prove the following theorem in the full version [12].

Theorem 5. Under the D`,k-MDDH Assumption PRFGen,D`,k
is a secure pseudo-

random function.

4.4 Groth-Sahai Non-interactive Zero-Knowledge Proofs

Groth and Sahai gave a method to construct non-interactive witness-indistin-
guishable (NIWI) and zero-knowledge (NIZK) proofs for satisfiability of a set
of equations in a bilinear group PG. (For formal definitions of NIWI and NIZK
proofs we refer to [17].) The equations in the set can be of different types, but
they can be written in a unified way as

n∑
j=1

f(aj , yj) +

m∑
i=1

f(xi, bi) +

m∑
i=1

n∑
j=1

f(xi, γijyj) = t, (3)

where A1, A2, AT are Zq-modules, x ∈ Am1 , y ∈ An2 are the variables, a ∈ An1 ,
b ∈ Am2 , Γ = (γij) ∈ Zm×nq , t ∈ AT are the constants and f : A1×A2 → AT is a
bilinear map. More specifically, equations are of either one these types i) Pairing
product equations, with A1 = A2 = G, AT = GT , f([x], [y]) = [xy]T ∈ GT ,
ii) Multi-scalar multiplication equations, with A1 = Zq, A2 = G, AT = G,
f(x, [y]) = [xy] ∈ G or iii) Quadratic equations in Zq, with A1 = A2 = AT = Zq,
f(x, y) = xy ∈ Zq.
Overview. In the GS proof system the prover gives to the verifier a commit-
ment to each element of the witness (i.e., values of the variables that satisfy



the equations) and some additional information, the proof. Commitments and
proof satisfy some related set of equations computable by the verifier because of
their algebraic properties. To give new instantiations we need to specify the dis-
tribution of the common reference string, which includes the commitment keys
and some maps whose purpose is roughly to give some algebraic structure to
the commitment space. All details are postponed to the full version [12], here
we only specify how to commit to scalars x ∈ Zq to give some intuition of the
results in Sections 5.1, 5.2 and 5.3.

Commitments. The commitment key [U] = ([u1], . . . , [uk+1]) ∈ G`×(k+1) is
either [U] = [A||Aw] in the soundness setting (binding key) or [A||Aw − z]
in the WI setting (hiding key), where A ← D`,k, w ← Zkq , and z ∈ Z`q, z /∈
Span(u1, . . . ,uk) is a fixed, public vector. Clearly, the two types of commitment
keys are computationally indistinguishable under the D`,k-MDDH Assumption.
To commit to a scalar x ∈ Zq using randomness s ← Zkq we define the maps

ι′ : Zq → Z`q and p′ : G` → Zq as

ι′(x) = x·(uk+1+z), p′([c]) = ξ>c, defining com′[U],z(x; s) := [ι′(x)+As] ∈ G`,

where ξ ∈ Z`q is an arbitrary vector such that ξ>A = 0 and ξ> · z = 1. On
a binding key (soundness setting) we have that p′ ◦ [ι′] is the identity map on
Zq and p′([ui]) = 0 for all i = 1 . . . k so the commitment is perfectly binding.
On a hiding key (WI setting), ι′(x) ∈ Span(u1, . . . ,uk) for all x ∈ Zq, which
implies that the commitment is perfectly hiding. Note that, given [U] and x,
ι′(x) might not be efficiently computable but [ι′(x)] is, which is enough to be
able to compute com′(x; s).

Efficiency. We emphasize that for D`,k = L2 and z = (0, 0, 1)> and for D`,k =
DDH and z = (0, 1)> (in the natural extension to asymmetric bilinear groups),
we recover the 2-Lin and the SXDH instantiations of [17]. While the size of
the proofs depends only on ` and k, both the size of the CRS and the cost of
verification increase with REG(D`,k). In particular, in terms of efficiency, the
SC2 Assumption is preferable to the 2-Lin Assumption.

5 More Efficient Proofs for Some CRS Dependent
Languages

5.1 More Efficient Subgroup Membership Proofs

Let [U] be the commitment key defined in last section as part of a D`,k-MDDH
instantiation, for some A ← D`,k. In this section we show a new technique to
obtain proofs of membership in the language LA,PG := {[Ar], r ∈ Zkq} ⊂ G`.

Intuition. Our idea is to exploit the special algebraic structure of commitments
in GS proofs, namely the observation that if [Φ] = [Ar] ∈ LA,PG then [Φ] =
com[U](0; r). Therefore, to prove that [Φ] ∈ LA,PG , we proceed as if we were
giving a GS proof of satisfability of the equation x = 0 where the randomness
used for the commitment to x is r. In particular, no commitments have to be



given in the proof, which results in shorter proofs. To prove zero-knowledge we
rewrite the equation x = 0 as x · δ = 0. The real proof is just a standard GS
proof with the commitment to δ = 1 being ι′(1) = com[U](1; 0), while in the
simulated proof the trapdoor allows to open ι′(1) as a commitment of 0, so we
can proceed as if the equation was the trivial one x · 0 = 0, for which it is easy
to give a proof of satisfiability. For the 2-Lin Assumption, our proof consists of
only 6 group elements, whereas without using our technique the proof consists
of 12 elements. In the full version [12] we prove the following theorem.

Theorem 6. Let A ← D`,k, where D`,k is a matrix distribution. There exists
a Non-Interactive Zero-Knowledge Proof for the language LA,PG, with perfect
completeness, perfect soundness and composable zero-knowledge of k` group ele-
ments based on the D`,k-MDDH Assumption.

Applications. Think of [A] as part of the public parameters of the hash proof
system of Section 4.2. Proving that a ciphertext is well-formed is proving mem-
bership in LA,PG . For instance, in [25] Libert and Yung combine a proof of
membership in 2-Lin with a one-time signature scheme to obtain publicly veri-
fiable ciphertexts. With our result, we reduce the size of their ciphertexts from
15 to 9 group elements. We stress that in our construction the setup of the CRS
can be built on top of the encryption key so that proofs can be simulated with-
out the decryption key, which is essential in their case. Another application is
to show that two ciphertexts encrypt the same message under the same public
key, a common problem in electronic voting or anonymous credentials. There
are many other settings in which subgroup membership problems appear, for
instance when proving that a certain ciphertext is an encryption of [m].

5.2 More Efficient Proofs of Validity of Ciphertexts

The techniques of the previous section can be extended to prove the validity
of a ciphertext. More specifically, given A ← D`,k, and some vector z ∈ Z`q,
z /∈ Im(A), we show how to give a more efficient proof of membership in:

LA,z,PG = {[c] : c = Ar +mz} ⊂ G`,

where (r, [m]) ∈ Zkq ×G is the witness.

This is also a proof of membership in the subspace of G` spanned by the
columns of [A] and the vector [z], but the techniques given in Section 5.1 do not
apply. The reason is that part of the witness, [m], is in the groupG and not in Zq,
while to compute the subgroup membership proofs as described in Section 5.1
all of the witness has to be in Zq. In particular, since GS are non-interactive
zero-knowledge proofs of knowledge when the witnesses are group elements, the
proof guarantees both that the c is well-formed and that the prover knows [m].

In a typical application, [c] will be the ciphertext of some encryption scheme,
in which case r will be the ciphertext randomness and [m] the message. Deciding
membership in this space is trivial when Im(A) and z span all of Z`q, so in
particular our result is meaningful when ` > k + 1. In the full version [12] we
prove the following theorem:



Theorem 7. Let D`,k be a matrix distribution and let A ← D`,k. There exists
a Non-Interactive Zero-Knowledge Proof for the language LA,z,PG of (k + 2)`
group elements with perfect completeness, perfect soundness and composable
zero-knowledge based on the D`,k-MDDH Assumption.

5.3 More Efficient Proofs of Plaintext Equality

The encryption scheme derived from the KEM given in Section 4.1 corresponds
to a commitment in GS proofs. That is, if pkA = (G, [A] ∈ G`×k), for some
A← D`,k, given r ∈ Zkq ,

EncpkA
([m]; r) = [c] = [Ar+(0, . . . , 0,m)>] = [Ar+m ·z] = com[A||Aw]([m]; s),

where s> := (r>, 0) and z := (0, . . . , 0, 1)>. Therefore, given two (potentially
distinct) matrix distributions D`1,k1 , D′`2,k2 and A ← D`1,k1 ,B ← D′`2,k2 , prov-
ing equality of plaintexts of two ciphertexts encrypted under pkA, pkB , corre-
sponds to proving that two commitments under different keys open to the same
value. Our proof will be more efficient because we do not give any commit-
ments as part of the proof, since the ciphertexts themselves play this role. More
specifically, given [cA] = EncpkA

([m]) and [cB ] = EncpkB
([m]) we will treat

[cA] as a commitment to the variable [x] ∈ A1 = G and [cB ] as a commit-
ment to the variable [y] ∈ A2 = G and prove that the quadratic equation
e([x], [1]) · e([−1], [y]) = [0]T is satisfied. The zero-knowledge simulator will open
ι1([1]), ι2([−1]) as commitments to the [0] variable and simulate a proof for the
equation e([x], [0]) · e([0], [y]) = [0]T , which is trivially satisfiable and can be sim-
ulated. More formally, let r ∈ Zk1q , s ∈ Zk2q ,m ∈ Zq, z1 ∈ Z`1q , and z1 /∈ Im(A)

and z2 ∈ Z`2q , z2 /∈ Im(B). Define:

LA,B,z1,z2,PG := {([cA], [cB ]) : cA = Ar +mz1, cB = Bs+ z2} ⊂ G`1 ×G`2 .

In the full version [12] we prove:

Theorem 8. Let D`1,k1 and D′`2,k2 be two matrix distributions and let A ←
D`1,k1 ,B ← D′`2,k2 . There exists a Non-Interactive Zero-Knowledge Proof for
the language LA,B,z1,z2,PG of `1(k2 + 1) + `2(k1 + 1) group elements with per-
fect completeness, perfect soundness and composable zero-knowledge based on the
D`1,k1-MDDH and the D`2,k2-MDDH Assumption.

Applications. In [21], we reduce the size of the proof by 4 group elements
from 18 to 22, while in [18] we save 9 elements although their proof is quite
inefficient altogether. We note that even if both papers give a proof that two
ciphertexts under two different 2-Lin public keys correspond to the same value,
the proof in [18] is more inefficient because it must use GS proofs for pair-
ing product equations instead of multi-scalar multiplication equations. Other
examples include [7,10]. We note that our approach is easily generalizable to
prove more general statements about plaintexts, for instance to prove mem-
bership in L′A,B,z1,z2,PG := {([cA], [cB ]) : cA = Ar + (0, . . . , 0,m)>, cB =



Bs + (0, . . . , 0, 2m)>, r ∈ Zk1q , s ∈ Zk2q } ⊂ G`1 × G`2 or in general to show
that some linear relation between a set of plaintexts encrypted under two differ-
ent public-keys holds.
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12. A. Escala, G. Herold, E. Kiltz, C. Ràfols, and J. Villar. An algebraic framework
for diffie-hellman assumptions. Cryptology ePrint Archive, 2013. http://eprint.
iacr.org/. 4, 8, 9, 11, 13, 14, 15, 16

13. M. Fischlin, B. Libert, and M. Manulis. Non-interactive and re-usable universally
composable string commitments with adaptive security. In D. H. Lee and X. Wang,
editors, ASIACRYPT 2011, volume 7073 of LNCS, pages 468–485. Springer, Dec.
2011. 6

http://eprint.iacr.org/
http://eprint.iacr.org/


14. D. M. Freeman. Converting pairing-based cryptosystems from composite-order
groups to prime-order groups. In H. Gilbert, editor, EUROCRYPT 2010, volume
6110 of LNCS, pages 44–61. Springer, May 2010. 2, 4

15. D. Galindo, J. Herranz, and J. L. Villar. Identity-based encryption with master
key-dependent message security and leakage-resilience. In S. Foresti, M. Yung,
and F. Martinelli, editors, ESORICS 2012, volume 7459 of LNCS, pages 627–642.
Springer, Sept. 2012. 4

16. R. Gennaro and Y. Lindell. A framework for password-based authenticated key
exchange. In E. Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS, pages
524–543. Springer, May 2003. http://eprint.iacr.org/2003/032.ps.gz. 2

17. J. Groth and A. Sahai. Efficient non-interactive proof systems for bilinear groups.
In N. P. Smart, editor, EUROCRYPT 2008, volume 4965 of LNCS, pages 415–432.
Springer, Apr. 2008. 2, 5, 13, 14

18. D. Hofheinz and T. Jager. Tightly secure signatures and public-key encryption.
In R. Safavi-Naini and R. Canetti, editors, CRYPTO 2012, volume 7417 of LNCS,
pages 590–607. Springer, Aug. 2012. 6, 16

19. D. Hofheinz and E. Kiltz. Secure hybrid encryption from weakened key encapsula-
tion. In A. Menezes, editor, CRYPTO 2007, volume 4622 of LNCS, pages 553–571.
Springer, Aug. 2007. 2, 10

20. A. Joux. A one round protocol for tripartite Diffie-Hellman. Journal of Cryptology,
17(4):263–276, Sept. 2004. 2

21. J. Katz and V. Vaikuntanathan. Round-optimal password-based authenticated key
exchange. In Y. Ishai, editor, TCC 2011, volume 6597 of LNCS, pages 293–310.
Springer, Mar. 2011. 6, 16

22. E. Kiltz. A tool box of cryptographic functions related to the Diffie-Hellman
function. In C. P. Rangan and C. Ding, editors, INDOCRYPT 2001, volume 2247
of LNCS, pages 339–350. Springer, Dec. 2001. 4

23. E. Kiltz. Chosen-ciphertext security from tag-based encryption. In S. Halevi and
T. Rabin, editors, TCC 2006, volume 3876 of LNCS, pages 581–600. Springer, Mar.
2006. 2

24. A. B. Lewko. Tools for simulating features of composite order bilinear groups
in the prime order setting. In D. Pointcheval and T. Johansson, editors, EURO-
CRYPT 2012, volume 7237 of LNCS, pages 318–335. Springer, Apr. 2012. 3

25. B. Libert and M. Yung. Non-interactive CCA-secure threshold cryptosystems
with adaptive security: New framework and constructions. In R. Cramer, editor,
TCC 2012, volume 7194 of LNCS, pages 75–93. Springer, Mar. 2012. 6, 15

26. M. Naor and O. Reingold. Number-theoretic constructions of efficient pseudo-
random functions. In 38th FOCS, pages 458–467. IEEE Computer Society Press,
Oct. 1997. 2, 5

27. M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen
ciphertext attacks. In 22nd ACM STOC. ACM Press, May 1990. 6

28. T. Okamoto and K. Takashima. Fully secure functional encryption with general re-
lations from the decisional linear assumption. In T. Rabin, editor, CRYPTO 2010,
volume 6223 of LNCS, pages 191–208. Springer, Aug. 2010. 3

29. H. Shacham. A cramer-shoup encryption scheme from the linear assumption and
from progressively weaker linear variants. Cryptology ePrint Archive, Report
2007/074, 2007. http://eprint.iacr.org/. 2, 10

30. J. L. Villar. Optimal reductions of some decisional problems to the rank problem.
In X. Wang and K. Sako, editors, ASIACRYPT, volume 7658 of Lecture Notes in
Computer Science, pages 80–97. Springer, 2012. 4

http://eprint.iacr.org/2003/032.ps.gz
http://eprint.iacr.org/

	An Algebraic Framework for Diffie-Hellman Assumptions

