
On the Security of the TLS Protocol:
A Systematic Analysis

Hugo Krawczyk, Kenneth G. Paterson⋆, and Hoeteck Wee⋆⋆

1 IBM Research
2 Royal Holloway, University of London

3 George Washington University

Abstract. TLS is the most widely-used cryptographic protocol on the Internet.
It comprises the TLS Handshake Protocol, responsible for authentication and key
establishment, and the TLS Record Protocol, which takes care of subsequent
use of those keys to protect bulk data. In this paper, we present the most
complete analysis to date of the TLS Handshake protocol and its application
to data encryption (in the Record Protocol). We show how to extract a key-
encapsulation mechanism (KEM) from the TLS Handshake Protocol, and how the
security of the entire TLS protocol follows from security properties of this KEM
when composed with a secure authenticated encryption scheme in the Record
Protocol. The security notion we achieve is a variant of the ACCE notion recently
introduced by Jager et al. (Crypto ’12). Our approach enables us to analyse
multiple different key establishment methods in a modular fashion, including the
first proof of the most common deployment mode that is based on RSA PKCS
#1v1.5 encryption, as well as Diffie-Hellman modes. Our results can be applied
to settings where mutual authentication is provided and to the more common
situation where only server authentication is applied.

1 Introduction

TLS is the mostly widely used cryptographic protocol for secure communications on the
Internet. The main purpose of TLS is to provide end-to-end security against an active,
man-in-the-middle attacker. Originally deployed (as SSL) in web browsers for https
connections, TLS is now used as a general purpose provider of secure communications
to all kinds of applications: e-commerce transactions, virtual private networks (VPN),
Android and iOS mobile apps [20, 21], as well as related procotols like DTLS [31, 37].
In short, TLS is one of the most important real-world deployments of cryptography.

TLS in a nutshell. We begin with an informal high-level overview of the TLS protocol;
a more detailed treatment is given in Section 2. The TLS protocol is executed between
a client and a server. It has two main constituents: the Handshake Protocol, which
is responsible for key establishment and authentication; and the Record Protocol,
which provides a secure channel for handling the delivery of data. The Handshake
Protocol establishes the application keys, which are in turn used to encrypt application

⋆ Supported by EPSRC Leadership Fellowship EP/H005455/1
⋆⋆ Supported by NSF CAREER Award CNS-1237429

data in the Record Protocol. The TLS specification offers multiple options for key
establishment mechanisms in the Handshake Protocol and for symmetric key encryption
schemes in the Record Protocol. The most common configuration, to which we refer
as TLS-RSA, relies on RSA PKCS #1v1.5 encryption in the Handshake Protocol.
Other configurations include TLS-DH and TLS-DHE, which rely on Diffie-Hellman
key exchange (the first uses a static server’s DH key and an ephemeral client’s key
while in the latter both parties contribute ephemeral DH keys). All these configurations
provide server authentication, with optional client authentication in settings where
clients possess public keys as well.

Prior work on TLS. In view of its importance, TLS has long been the subject of intense
research analysis, including, in chronological order, [41, 12, 36, 28, 25, 40, 16, 27, 5,
32, 22, 6, 33, 18, 35, 9, 2, 24, 30, 19, 13, 3, 10, 4]. The main, twin thrusts of this research
have been to establish to what extent the TLS Handshake Protocol and the TLS Record
Protocol are secure, for the respective tasks of key establishment and authentication and
for providing a secure channel for delivery of data.

We now have a fairly complete understanding of the underlying cryptography for
the Record Protocol, as studied in the works of Krawczyk [28] as well as Paterson,
Ristenpart and Shrimpton [35]. These works demonstrated that, when carefully imple-
mented to avoid timing and other attacks like those in [40, 16, 3], the stream-cipher
and CBC encryption modes in the TLS Record Layer achieve the security notion of
authenticated encryption; in fact, [35] puts forth and achieves a strengthening there-of,
known as stateful, length-hiding authenticated encryption (sLHAE).

On the other hand, a complete analysis of the TLS Handshake Protocol remains
elusive. A main obstacle is that the design of TLS violates the basic cryptographic
principles of key indistinguishability and separation of key exchange and secure chan-
nels. This arises because the TLS Record Protocol overlaps with the TLS Handshake
Protocol, and the application key is used to encrypt the last two messages of the
Handshake Protocol (known as the Finished messages). As such, the TLS Handshake
Protocol is deemed insecure by the existing security models for key exchange, initiated
in the work of Bellare and Rogaway [8].

Several prior works [33, 25] circumvented this issue by analyzing variants of the
TLS protocol (e.g. with a different message ordering, unencrypted Finished messages,
or RSA-OAEP encryption). In particular, Morrissey, Smart and Warinschi [33] analyze
the “Truncated TLS Handshake Protocol”, where the Finished messages are not
encrypted by the application key. An important feature of [33] is the modularity of
the approach. This conceptually simplifies the protocol and the security proofs, and
points the way forward for subsequent analysis. However, the end result applies to
truncated TLS and not to the real protocol. In addition, Morrissey et al. [33] model
TLS-RSA under the assumption that RSA encryption is replaced with CCA-secure
encryption which is provably false for RSA PKCS #1v1.5 encryption as used in TLS-
RSA. The modularity theme from [33] is developed further in recent work by Brzuska et
al. [13], who analyze the TLS protocol using a game-based framework that is designed
to enable compositional results to be be proved, but their analysis of TLS-RSA assumes
IND-CCA security for the RSA encryption, which, again, is known not to hold. Thus,

2

unfortunately, given the high sensitivity of key exchange protocols in general (and TLS
in particular) to small details, these results tell us little about TLS as used in practice.

In recent work, Jager et al. [24] put forth a new security notion — Authenticated
and Confidential Channel Establishment (ACCE) security — which captures the desired
security guarantees when the TLS Handshake and Record Protocols are used in tandem.
(This circumvents the barrier pertaining to the separation of key exchange and secure
channels.) In addition, they showed that the cryptographic core of the TLS-DHE
protocol when both server and client authentication are applied satisfies ACCE security.
Informally, this means the TLS Record Protocol when used with TLS-DHE as the
Handshake Protocol constitutes a secure channel and guarantees authentication and
privacy for data delivery between the server and the client. While this work constitutes
a significant step forward in terms of realistic modeling and analysis of TLS, the TLS-
DHE protocol is (currently) seldom used in practice, and client-side authentication via
signatures is very rarely done.

Additional literature on analyzing the TLS Handshake Protocol include works on
symbolic models, e.g. [36, 22, 9] and on security analysis of a TLS implementation
via type-checking [10]. Works on simulation-based definitions and designs for key
agreement and secure channel protocols include [39, 14, 15].

TLS-RSA. As noted earlier, the most commonly deployed mode of TLS, namely TLS-
RSA, uses RSA PKCS #1v1.5 encryption [26]. In 1998, Bleichenbacher discovered
a devastating man-in-the-middle attack on SSL, the predecessor of TLS. Specifically,
Bleichenbacher presented a chosen-ciphertext attack on RSA PKCS #1v1.5 encryption
[12], which in turn allows a man-in-the-middle adversary against SSL to recover the
pre-master secret and thence the application keys. In fact, the attack only requires
a ciphertext validity oracle. TLS, the successor to SSL, incorporates an ad hoc fix
to thwart Bleichenbacher’s attack: decryption failures are hidden from the adversary,
including via some defences against timing attacks, thereby removing access to the
ciphertext validity oracle.

For over a decade, the TLS Handshake Protocol (and in particular TLS-RSA) has
largely resisted attacks; however, that in itself does not rule out the possibility of an
attack being discovered in future. The folklore belief is that TLS-RSA is secure if
we replace RSA PKCS #1v1.5 with RSA-OAEP or any other CCA-secure encryption
scheme; unfortunately, only RSA PKCS #1v1.5 is standardised in TLS and used in
practice. This begs the question:

Is TLS-RSA with RSA PKCS #1v1.5 encryption ACCE secure?

A partial answer to the above question was provided in the work of Jonsson and Kaliski
Jr. [25]: they showed that RSA PKCS #1v1.5 encryption when augmented with the
unencrypted TLS client Finished message is CCA-secure. However, their analysis
was not extended to either the TLS Handshake Protocol or the full TLS protocol;
furthermore, in TLS the client Finished message is actually encrypted with the
application key. We stress that RSA PKCS #1v1.5 encryption when augmented with the
encrypted TLS client Finished message is not even a CPA-secure key-encapsulation
mechanism (KEM), for the same reason that the TLS Handshake Protocol violates key
indistinguishability.

3

Proving security of TLS-RSA and beyond. We provide an affirmative answer to
the above question, namely, we provide the first proof of security for the unmodified
TLS-RSA protocol with RSA PKCS #1v1.5 encryption in the commonly deployed
setting of server-only authentication. More generally, we provide a systematic and
modular analysis of the different modes of TLS, which include TLS-RSA, TLS-DH
and TLS-DHE, in both the common setting of server-only authentication as well as
with combined client and server authentication. We also validate the folklore belief
that TLS Handshake with RSA replaced with any CCA-secure public-key encryption
scheme (e.g., RSA-OAEP) is secure. We refer to such an instantiation as TLS-CCA.
Following Jager et al. [24], we focus on the cryptographic core of TLS (see the full
version [29] for a discussion of what we omit). We concentrate on achieving ACCE
security with appropriate modifications to handle server-only authentication (in which
case we speak of SACCE security). We next present an overview of our framework,
summarized in Figure 1.

1.1 Systematic Analysis of All TLS Handshake Modes

Our framework. We build an abstraction of the TLS Handshake Protocol via a generic
representation using a key-encapsulation mechanism (KEM) (see Figure 2). Each of
the TLS modes is then fully defined via a specific instantiation of the KEM. The goal
is to find sufficient conditions on the KEM so that any instantiation satisfying these
conditions immediately leads to a secure protocol in the sense of ACCE security (as
discussed above). This approach has its roots in the work of Jonsson and Kaliski [25]
that studied the underlying KEM in TLS-RSA.

We formalize this statement using the existing notion of constrained CCA (CCCA)
security, introduced by Hofheinz and Kiltz [23] in the context of hybrid encryption. In
the CCCA security game, the adversary is provided with a “constrained decryption
oracle” that takes as input a pair (C, T) where C is a ciphertext and T is some
auxiliary information; the oracle returns the decryptionK ofC ifC is different from the
challenge ciphertext and (K,T) satisfies some specified predicate, and ⊥ otherwise. In
particular, if the oracle returns⊥, the adversary does not learn whether it is becauseK is
⊥ or because (K,T) fails to satisfy the predicate. In our framework, we consider CCCA
security where T is an encrypted TLS client Finished message, and the predicate
enforces validity of T . Now, if the constrained decryption oracle returns ⊥ on query
(C, T), the adversary does not learn whether it is because C is an invalid ciphertext or
because T is an invalid Finished message – this precisely captures the intention of the
TLS fix for thwarting Bleichenbacher’s attack! We note that the challenge ciphertext
in the CCCA security experiment is not accompanied by the corresponding Finished

message; this asymmetry between the challenge ciphertext and the oracle queries allows
us to bypass the key indistinguishability barrier in TLS.

ACCE Security from CCCA Security. Our first result says that if the key encap-
sulation mechanism in the TLS Handshake Protocol satisfies CCCA security and the
encryption scheme used in the TLS Record Protocol is sLHAE-secure, then TLS is
ACCE secure, in the server-only authentication setting. We stress that this result is in the
standard model. Importantly, the CCCA security game is conceptually and technically

4

..

server-only auth

.

mutual auth

.
IND-CCCA

.

OW-PCA

.
IND-CCA

.

PRF-ODH

.

PRF-ODH

.

TLS-RSA

.
TLS-CCA

.

TLS-DH

.

TLS-DHE

.

SACCE

.

ACCE

.

+PRF + RO

.
+PRF

.

+PRF+SIG

.

+PRF

. + sLHAE.

+ sLHAE + SIG

Fig. 1. Summary of our results.

much simpler to analyze than the whole TLS protocol, as we do not have to worry about
multiple sessions, nonces, or the multiple message flows in the full protocol.

To establish ACCE security, we need to achieve security against a (concurrent)
man-in-the-middle adversary communicating with multiple honest clients and multiple
honest servers. Roughly speaking, we will rely on the constrained decryption oracle
in CCCA security to simulate the honest servers. The main technical difficulty in
establishing this result arises when a man-in-the-middle adversary plays a relaying
strategy between an honest server and client and then mauls the client’s encrypted
Finished message. Here, we cannot rely on the constrained decryption oracle to
simulate the honest server’s response because the adversary is using the challenge
ciphertext. Moreover, we cannot immediately appeal to the non-malleability of the
sLHAE-secure scheme used to encrypt the Finished message since the protocol
messages leak information about the application key. To solve this problem, we exploit
the fact that the CCCA security game provides us with a real-or-random key K∗,
which we may use to decrypt and verify the client’s encrypted Finished message
for this specific adversarial strategy. We stress that this techical difficulty goes away
if the client’s Finished message is unencrypted, because the prior transcript uniquely
determines an accepting Finished message.

CCCA Security in the TLS Handshake. Our second set of results says that the key
encapsulation mechanisms underlying the TLS-RSA, TLS-CCA, TLS-DH, and TLS-
DHE variants of the TLS Handshake Protocol all satisfy CCCA security. Combined
with our first result, this yields ACCE security of TLS-RSA, TLS-CCA, TLS-DH and
TLS-DHE (see Figure 1).

ACCE Security of TLS with Mutual Authentication. We extend the above results,
developed for the case of server-only authentication, to the case of mutual authenti-
cation, namely, when the client authenticates itself via a digital signature. We show
that also in this setting, CCCA security of the underlying KEM implies ACCE security
with both server and client authentication. The extension is relatively straightforward
(a positive feature!) requiring minor changes to the server-authentication-only proofs
of server authentication and channel security, and the addition of a client authentication

5

proof. The resultant analysis is generic and independent of the different underlying
KEM instantiations, thus it directly applies to TLS-RSA, TLS-CCA, TLS-DH and TLS-
DHE (demonstrating the power of our modular analysis).

1.2 Summary of Results

As a result of the above methodology we obtain proofs of ACCE security for the
TLS handshake protocol for all of the above TLS modes, both in the common setting
of server-only authentication as well as with mutual authentication. These results are
depicted in Figure 1 and are enumerated here with the assumptions used in each
case. In all cases we assume a secure PRF and the TLS Record Protocol encryption
implemented with an sLHAE encryption scheme. For the case of ACCE security with
mutual authentication a secure client signature is also assumed. Certificates for both
servers and clients are assumed to be provided by a minimally trusted CA that faithfully
checks identities before issuing certificates. No other checks from the CA (such as
proofs of possession, uniqueness of public keys, etc.) are assumed.

TLS-RSA. We obtain the first proof of security of TLS-RSA as deployed in practice,
with RSA PKCS #1v1.5 and server-only authentication, in the random oracle model
and under the assumption that RSA PKCS #1v1.5 is OW-PCA secure. The latter
assumption, formalized in Section 5, states that inverting the encryption function is hard
even given an oracle that on input a plaintext-ciphertext pair (K,ψ) checks whether the
decryption of ψ equals K (for K ̸=⊥). The OW-PCA security of RSA PKCS #1v1.5
can be proven under an RSA-like assumption, known as “partial-domain RSA with
decision oracle”, introduced by Jonsson and Kaliski in [25] and which we present in
Section 5.2. We refer to [25] for a discussion on why this assumption is reasonable
for typical parameters used in TLS; to the best of our knowledge no weakness in this
assumption has been discovered since its introduction in [25]. When clients authenticate
in TLS-RSA using digital signatures then full ACCE (i.e. with mutual authentication)
is proven assuming a secure signature scheme. We stress that TLS-RSA is the only
TLS mode whose proof is in the random oracle model; we prove all other modes in the
standard model.

TLS-CCA. We prove that when instantiated with a CCA-secure public-key encryption
scheme (instead of RSA PKCS #1v1.5), TLS is ACCE secure in the standard model.
While no such schemes are currently standardised for TLS, this result confirms the
intuition that IND-CCA security is the “right” target for the public key encryption
scheme used in TLS. It also means that, should the current RSA-based encryption
scheme used in TLS ever be replaced by a CCA-secure one, for example RSA-OAEP,
then our analysis will immediately provide strong security guarantees for the protocol.

TLS-DH and TLS-DHE. We prove ACCE security (with and without client authenti-
cation) of TLS-DH in the standard model under the PRF-ODH assumption introduced
in [24].4 The PRF-ODH assumption rules out some potential related-key attacks on the

4 The assumption is a variant of the ODH assumption from [1] where the oracle is implemented
via a PRF rather than by a hash function. In the proof of TLS-DH we require security against
multiple oracle queries while for TLS-DHE a single query suffices, as was the case in [24].

6

Kdf function that would render the protocol insecure. In the full version [29] we show
this assumption to be provably necessary for the security of TLS-DH, showing attacks
on the protocol with PRFs for which the assumption does not hold. We note that we
can also prove TLS-DH in the random oracle model under the Strong DH assumption.
Finally, we obtain security for TLS-DHE as a corollary of our results for TLS-DH
security, under the PRF-ODH assumption as well as secure signatures for servers (and
clients in the case of mutual authentication). Note that our results for TLS-DHE do not
encompass forward security, but this is guaranteed by the results of [24].

2 The TLS Handshake Protocol with Server-Only Authentication

In this section, we present our model of the TLS Handshake Protocol when no client
authentication takes place. As noted in the introduction, this includes TLS-RSA, the
most common usage of the TLS protocol. The parties to the protocol are a client C
and a server S. Each maintains an internal state variable ST and Λ ∈ {∅, acc, rej}.
The protocol makes use of a number of cryptographic components: a key derivation
function (KDF) Kdf, a pseudorandom function PRF, a stateful authenticated encryption
with associated data (AEAD) scheme stE = (stE.Gen, stE.Init, stE.Enc, stE.Dec), and
a KEM (KeyGen,FC ,FS). The protocol is shown schematically in Figure 2. We also
describe below how the keys established by this protocol are subsequently used by the
TLS Record Protocol.

The model is derived from the current TLS specification [17], and we believe that
our model captures the cryptographic core of TLS. It has a comparable level of accuracy
to the model of TLS-DHE used in [24]. We highlight several salient properties of our
model, and defer a detailed justification and discussion to the full version [29]:

– We assume that the ciphersuites, KDF, PRF and the stateful AEAD scheme, are
fixed once and for all. We do not model ciphersuite negotiation/renegotiation,
nor session resumption. In particular, this means that, while our treatment covers
multiple ciphersuites (such as those based on RSA key transport and various Diffie-
Hellman (DH) ciphersuites) in a modular fashion, our analysis currently does not
treat the case where different protocols runs may negotiate different ciphersuites.
This requires the application of a suitable composability framework that is beyond
the immediate scope of this paper.

– In the case of TLS-RSA, (KeyGen,FC ,FS) represents the algorithms of the RSA
PKCS#1v1.5 encryption scheme (c.f. Section 5.2). The specifics of this encoding
were analysed in detail in [12, 25]. For this mode, we assume that the outcome of
processing CRES at the server end is completely hidden from the adversary. Such an
assumption is necessary; otherwise, TLS-RSA is susceptible to Bleichenbacher’s
attack [12]. Formally, we model this by treating CRES∥CFIN as a monolithic
message in the proof of security.

– Our generic description includes the TLS-DH mode, where the server has a
certificate on a static DH key PKS and DH key exchange is used to establish PMS.
Here (CRES, PMS) ← FC(PKS) denotes the client’s computation of an ephemeral
DH value (CRES) and the pre-master secret (PMS); PMS ← FS(SKS , CRES) denotes
the corresponding computation on the server side. In this situation, we may

7

..

CREQ

.

SRES

.

CRES

.

HC , CFIN

.

1. CREQ := ηC ←R {0, 1}λ

.

1. abort if verification of CERTS fails

2. η := ηC∥ηS

3. PEER := IDS

4. (CRES, PMS)← FC(PKS);

5. MS := Kdf(PMS, η)

6. AKEY := CKEY∥SKEY := PRF(MS, 0∥η)

7. UCFIN := PRF(MS, 1∥CREQ∥SRES∥CRES)

8. (STC
e , STC

d)← stE.Init(1λ)

9. CFIN ← stE.Enc(CKEY, ℓC , HC , UCFIN, STC
e)

.

1. USFIN ← stE.Dec(SKEY, HS , SFIN)

2. verify USFIN using MS.

3. if fail, set Λ := rej and abort.

4. otherwise, set Λ := acc. .

1. ηS ←R {0, 1}λ

2. (η := ηC∥ηS)

3. CERTS = {IDS , PKS}CA

4. SRES := ηS∥CERTS

.

1. PMS ← FS(SKS , CRES)

2. if PMS =⊥, then PMS ←R {0, 1}λ

3. MS := Kdf(PMS, η)

4. AKEY := CKEY∥SKEY := PRF(MS, 0∥η)

1. (STS
e , STS

d)← stE.Init(1λ)

2. UCFIN ← stE.Dec(CKEY, HC , CFIN)

3. verify UCFIN using MS.

4. if fail, set Λ := rej and abort.

5. HSMSGS := CREQ∥SRES∥CRES∥UCFIN

6. USFIN := PRF(MS, 2∥HSMSGS)

7. SFIN ← stE.Enc(SKEY, ℓS , HS , USFIN, STS
e)

8. send HS , SFIN, set Λ := acc.
.

HS , SFIN

.

Server SKS

.

Client

Fig. 2. Basic Generic TLS Handshake Protocol Parameterized by (KeyGen,FC ,FS)

alternatively think of (KeyGen,FC ,FS) as being the algorithms of a Diffie-Hellman
(or Elgamal-type) KEM based on public key PKS . See Section 6. Specifically, with
appropriate choices of Diffie-Hellman groups, our analysis covers the DH DSS,
DH RSA, ECDH ECDSA, and ECDH RSA key exchange methods from [17, 11];
here the suffix DSS/RSA/ECDSA has no meaning since the server does not sign in
this mode.

– By suitably extending CERTS to include the server’s signature on its choice of
ephemeral DH value, our description captures the TLS-DHE mode, where now
PKS is a signature verification key and PMS is the result of a DH key exchange
based on the ephemeral values chosen by client and server. This then covers
the DHE DSS, DHE RSA, ECDHE ECDSA, and ECDHE RSA key exchange
methods from [17, 11], where the suffix DSS/RSA/ECDSA refers to the signature
scheme used by the server.

– Our description also captures TLS-CCA, where (KeyGen,FC ,FS) represents the
algorithms of an IND-CCA-secure encryption scheme, such as RSA-OAEP.

– For notational simplicity, we use the same symbol λ to denote the security
parameter, as well as the bit length of PMS,MS, CKEY and SKEY.

TLS Record Protocol. A party that concludes the TLS Handshake protocol success-
fully continues to use the application key AKEY = CKEY∥SKEY in the TLS Record
Protocol. Specifically, the client uses CKEY to encrypt messages to the server, and the
server uses the same key CKEY to decrypt these messages. Similarly, the server uses
SKEY to encrypt messages to the client, and the client uses the same key SKEY to

8

decrypt these messages. As noted above, the client and server Finished messages
are already encrypted in this way. As in [24], we model the TLS Record Protocol via a
stateful AEAD scheme stE which we will assume to be sLHAE-secure in the sense of
[35]. For further details, see the full version [29].

3 Authenticated and Confidential Channel Establishment (ACCE)

We begin with the definition of authenticated and confidential channel establishment
(ACCE) from [24, 8]. We will describe the syntax for a general ACCE protocol
but for security, we consider a specialization to the setting where only the server
is authenticated – we call this server-only authenticated and confidential channel
establishment (SACCE).

ACCE protocol. An ACCE protocol is a protocol executed between two parties, a
client and a server. In the original description [24], an ACCE protocol has two distinct
phases, called the ‘pre-accept’ phase and the ‘post-accept’ phase, corresponding to
whether a party has accepted a session key in a particular session or not. We dispense
with this distinction (though it is still expressed in our security model by making the
queries that are available to the adversary depend on an oracle’s acceptance state). The
parties in the protocol first compute as the session key an application key AKEY. Then,
encrypted and authenticated data is transmitted using a symmetric encryption scheme
with the application key AKEY. More specifically, AKEY is parsed as CKEY||SKEY, the
client uses CKEY in a stateful AEAD scheme stE to send data to the server, and the
server uses SKEY in stE to protect data sent to the client. Henceforth, we will only refer
to application keys and not to session keys. Parties also maintain internal state Λ, and
clients keep an additional PEER variable. We assume that an ACCE protocol is such
that, when a party reaches the state Λ = acc, it has already computed an application
key AKEY and executed stE.Init. TLS meets this requirement.

3.1 Execution environment

Protocol entities. Following [24, 8], we consider a set of parties P = S ∪ C, where S
and C are disjoint and each party P ∈ P is a (potential) protocol participant. Moreover,
each P ∈ S (the servers) have a unique key pair (PKP , SKP), an identity IDP ∈ {0, 1}λ
along with a certificate CERTP := (IDP , PKP)CA signed by a certification authority CA.
We also assume that all the parties in S have distinct identities.

Session oracles. To model several sequential and parallel executions of the protocols
and sessions, each party P maintains a collection of oracles {πP

1 , π
P
2 , . . .}. The oracle

πP
i models party P executing a single instance of a protocol in “session” i. We stress

that the session numbers i are just an artefact of our security game – they are designed to
provide a means for the adversary to deliver messages to different sessions at different
parties. In particular, the protocols and oracles need not even be “aware” of what their
session numbers are (i.e. those numbers need not form part of the state).

Each oracle πP
i maintains as internal state a set of variables comprising:

9

– Λ ∈ {∅, acc, rej};
– AKEY = CKEY∥SKEY ∈ {0, 1}2λ, where {0, 1}2λ is the application key space of

the protocol;
– if P ∈ C, then it has an additional PEER variable to denote the intended partner

(only client oracles have the PEER variable because only servers have identities);
– if P ∈ S , then πP

i also knows the party identity IDP .

The internal state of each oracle is initialized to (Λ, AKEY, PEER) = (∅, ∅, ∅), where ∅
denotes undefined.

Adversarial queries. The adversary interacts with the oracles via the following
queries:

Send(πP
i ,m): the adversary uses this query to send a message m to oracle πP

i ;
the oracle will respond with an outgoing message according to the protocol
specification and its internal state. If πP

i has reached state Λ = acc, then it replies
with ⊥. When the attacker asks the first Send-query to an oracle πC

i where C ∈ C,
the oracle checks whether m is a special “Initiate client session” symbol ⊤, and if
so, responds with the first protocol message (which will be a fresh client nonce).
The variables Λ, AKEY are also set according to the protocol specification.

Reveal(πP
i): the oracle πP

i responds with the contents of the application key AKEY.
Note that this query can be issued to πP

i before it has reached state Λ = acc.

Encrypt(πP
i , ℓ, H,m0,m1): if πP

i has not reached state Λ = acc, this oracle
returns ⊥. Otherwise, prior to reaching state acc, πP

i has (by assumption)
computed AKEY and run the stE.Init algorithm of a stateful AEAD scheme
stE = (stE.Gen, stE.Init, stE.Enc, stE.Dec) to define states STe, STd specific to
the oracle πP

i ; the game also samples a random bit bPi at this point, parses AKEY as
CKEY∥SKEY, and adds the 5-tuple (STe, STd, b

P
i , CKEY, SKEY) to the oracle state

ST. Now, when receiving the Encrypt query, the message mbPi
is encrypted along

with header data H using algorithm stE.Enc and key K = CKEY (if P ∈ C)
or key K = SKEY (if P ∈ S) to form a ciphertext of length ℓ, and to update
the encryption state STe. The resulting ciphertext is returned to the adversary. For
details, see Figure 3.

Decrypt(πP
i , H, c): this query is intended to allow the adversary to decrypt ciphertexts

that would be processed by the communication partner of the oracle πP
i (a server S

if P ∈ C, and a client C if P ∈ S). When bPi = 0, the response is always ⊥; when
bPi = 1, this query involves the decryption of H and c using algorithm stE.Dec and
the appropriate key K obtained from ST at the oracle: if P ∈ C, this will be CKEY,
and if P ∈ S , then it will be SKEY. The resulting message (or failure symbol ⊥) is
returned if the query is “out-of-sync”. For details, see Figure 3.

Certificate authority. We assume that there is a single certificate authority (CA),
which uses a secure signature scheme casig and its public key is distributed to all the
clients. For each S ∈ S with public key PKS , the CA signs the pair (IDS , PKS) to

10

Encrypt(πP
i , ℓ, H,m0,m1):

u← u+ 1

(c0, ST0
e)←R stE.Enc(K, ℓ, H,m0, STe)

(c1, ST1
e)←R stE.Enc(K, ℓ, H,m1, STe)

If c0i =⊥ or c1i =⊥ then return ⊥
Set cu = cb

P
i , Hu = H and STe = ST

bPi
e

Ret cu

Decrypt(πP
i , H, c):

If bPi = 0 then Ret ⊥
v ← v + 1

(m, STd)← stE.Dec(K, H, c, STd)

If v > u or c ̸= cv or H ̸= Hv then phase← 1

If phase = 1 then Ret m
Ret ⊥

Fig. 3. The Encrypt and Decrypt oracles in the ACCE security game.

provide a certificate CERTS := (IDS , PKS)CA. We also allow the adversary access to
the CA to register any number of parties, not in the set S, with any public key of the
adversary’s choice.

Matching conversations. We consider a definition of matching conversation which is
specific to TLS (and differs from the one in [24]):

Definition 1 (Matching conversations). We say that πP
i has a matching conversation

with πP ′

j if (i) either P ∈ C and P ′ ∈ S , or P ∈ S and P ′ ∈ C; and (ii) πP
i accepts;

and (iii) the transcripts at both πP
i and πP ′

j begin with the same three messages
(CREQ, SRES, CRES).

Remark 1. Defining matching conversations as above means that we may treat the
vector (CREQ, SRES, CRES) as a post-specified session identifer. Observe that these
three messages uniquely determine the parties’ nonces and server’s identity as well
as the key PMS which in turn determines the application keys. In addition, these three
messages determine the client’s Finished message, as well as the server’s Finished
message if the server reaches the accept state.

3.2 Correctness and Security

Correctness. For every honest C ∈ C and S ∈ S, if two sessions πC
i , πS

j have
matching conversations with each other, then we require that they have the same
application key AKEY and πC

i has its PEER variable set to IDS . We also require that
the encryption scheme stE used to model the secure channel is correct.

SACCE Security. Security of an ACCE protocol with server-only authentication
(SACCE) is defined by requiring that (i) the protocol provides server authentication
(but with no guarantee of client authentication, and that (ii) the subsequent use of the
application keys in the stateful AEAD scheme stE provides stateful Length Hiding
Authenticated Encryption (sLHAE), as per [35]. We consider a game played between
the adversary A and a challenger. This game is obtained by adapting [24, Definition 7]
to our setting. At the beginning of the game, the challenger generates the long-term key-
pair (PKS , SKS) along with the certificate CERTS := (IDS , PKS)CA for all S ∈ S and
gives all the certificates to A as input. Now the adversary issues a sequence of queries

11

defined before. The challenger answers all queries to πC
i by running the honest client

protocol, and all queries to πS
j by running the honest server protocol using the key SKS .

The challenger will also provide certificates along with signatures to the adversary for
any identities outside the set {IDS : S ∈ S}.

Advantage measures. We associate to an adversary A against an ACCE protocol Π
two advantage measures:

– (server authentication, i.e. client accepts⇒ matching conversations.)
Advsacce−saΠ (A) is the probability that whenA terminates, there is a (honest) client
C and oracle πC

i that reaches an accept state with honest PEER = IDS , but there is
no unique oracle πS

j for which πC
i has had a matching conversation with πS

j .

– (channel security.)
Advsacce−aeΠ (A) is defined to be p− 1/2, where p is the probability that A outputs
(P, i, b′) such that b′ = bPi where bPi is set during the Encrypt(πP

i , . . .) query and
we define b′ to be ⊥ unless the following conditions hold: (i) πP

i reaches an accept
state; (ii) πP

i is not the subject of a Reveal query, and if there is an oracle πP ′

j with
which πP

i has a matching conversation then πP ′

j is not the subject of a Reveal query
either; and (iii) P ∈ C.

Definition 2 (SACCE-secure). We say that an ACCE protocol Π is SACCE-secure
if Π satisfies correctness, and for all PPT adversaries A, both Advsacce−saΠ (A) and
Advsacce−ae

Π (A) are a negligible function of the security parameter λ.

4 From CCCA KEM Security to SACCE Security of TLS

In this section we state the following theorem which is our core intermediate result
for proving ACCE security of all TLS modes. It uses the notion of CCCA security
and the definition of the TLS KEM tlskem introduced below in Sections 4.1 and 4.2,
respectively.

Theorem 1. If tlskem is IND-CCCA secure, casig is an existentially unforgeable
signature scheme and stE is sLHAE-secure then TLS is SACCE-secure.

The IND-CCCA security of the KEMs arising from all TLS modes (and hence the
SACCE security of these modes) is shown in the subsequent sections.

4.1 IND-CCCA Security

We consider a variant of IND-CCCA security from [23]:

12

Definition 3 (IND-CCCA). For a stateful adversary A, an LKEM lkem and a predi-
cate pred, we define the advantage function

Advind−cccalkem,pred (A) := Pr

b = b′ :

(PK, SK)← KeyGen(1λ);

L∗ ← ACDec(SK,·,·,·)(PK);

(C∗,K∗)← Enc(PK, L∗);

K0 := K∗;K1 ←R {0, 1}λ; b←R {0, 1};
b′ ← ACDec(SK,·,·,·)(C∗,Kb)

−
1

2

with the restriction that (1) L∗ must be different from all previously queried L, and (2)
the restriction on the decryption oracle for queries after getting the challenge ciphertext
is (L,C) ̸= (L∗, C∗); and where the “constrained” decryption oracle CDec is given
by:

CDec(SK, L, C, T) :

K ←R Dec(SK, L, C)

if K =⊥ or pred(K,T) = 0 then return ⊥
else return K

A LKEM lkem is said to be IND-CCCA-secure if for all PPT adversaries A, the
advantage Advind−cccalkem,pred (A) is a negligible function in λ.

Remark 2 (comparison with [23]). We point out the differences between our formu-
lation and that in [23]. First, we consider a setting with labels. Second, in [23], the
predicate is specified by the adversary via a circuit. Here, we consider a fixed predicate
that takes an additional input T . To capture the prior formulation, the predicate would
be circuit evaluation and T would be a circuit. Third, by fixing the predicate, we avoid
having to explicitly consider plaintext uncertainty.

4.2 The TLS Labeled KEM

Following [25], we describe a labeled KEM which is extracted from the TLS protocol.
Unlike [25] which stopped at analyzing (labeled) CCA-security of the ensuing scheme
for the RSA mode of TLS, we show how to derive SACCE security of TLS (for any
mode) based on the IND-CCCA security of the labeled KEM. We then prove this IND-
CCCA property to hold for the KEMs arising in various TLS modes, namely TLS-RSA,
TLS-CCA, TLS-DH, and TLS-DHE.

LKEMs from TLS. Given a generic TLS protocol parameterized by (KeyGen,FC ,FS)
(see Fig. 2) along with cryptographic components Kdf and PRF, we consider the LKEM
tlskem with algorithms (tls.Gen, tls.Enc, tls.Dec), in which tls.Gen(1λ) is the same as
KeyGen and the algorithms tls.Enc, tls.Dec are as below.

13

tls.Enc(PK, η∥CERTS):
(CRES, PMS)← FC(PK);
MS := Kdf(PMS, η);
UCFIN := PRF(MS, 1∥η∥CERTS∥CRES);
AKEY := PRF(MS, 0∥η);
USFIN :=

PRF(MS, 2∥η∥CERTS∥CRES∥UCFIN);
output (CRES, AKEY∥USFIN∥UCFIN).

tls.Dec(SK, η∥CERTS , CRES):
PMS ← FS(SK, CRES);
if PMS =⊥, set PMS ←R {0, 1}λ;
MS := Kdf(PMS, η);
UCFIN := PRF(MS, 1∥η∥CERTS∥CRES);
AKEY := PRF(MS, 0∥η);
USFIN := PRF(MS, 2∥η∥CERTS∥CRES∥UCFIN);
output AKEY∥USFIN∥UCFIN.

In order to consider CCCA security we augment tlskem with the following predicate.
tls.Pred(AKEY∥USFIN∥UCFIN, CFIN):
(STS

e , STS
d)← stE.Init(1λ);

check if UCFIN = stE.Dec(CKEY, HC , CFIN, STS
d).

5 TLS-RSA: Instantiations from OW-PCA

Here, we show that if the underlying KEM (KeyGen,FC ,FS) is OW-PCA secure, then
the tlskem scheme in Section 4.2 is IND-CCCA-secure in the random oracle model.
Hence, by Theorem 1, the corresponding TLS scheme is SACCE-secure. In Section 5.2
we apply this result to show the security of TLS-RSA.

OW-PCA for KEM [34]. For a stateful adversary A and a KEM kem with algorithms
(KeyGen,Enc,Dec), we define the advantage function

Advow−pcakem (A) := Pr

K ′ = K∗ :

(PK, SK)← KeyGen(1λ);

(ψ∗,K∗)← Enc(PK);

K ′ ← APCA(SK,·,·)(ψ∗)

where PCA(SK, ·, ·) is the oracle that takes as input (K,ψ) with K ̸= ⊥ and outputs
1 if Dec(SK, ψ) = K and 0 otherwise. An encryption scheme is said to be one-
way against plaintext checking attacks (OW-PCA) if for all PPT adversaries A, the
advantage Advow−pca

kem (A) is a negligible function in λ.

5.1 IND-CCCA from OW-PCA

The following lemma is similar to that in [25, Theorem 3], with some significant
differences: (i) the KEM key in [25, Theorem 3] is AKEY and the ciphertext is
CRES∥UCFIN, whereas our KEM key is AKEY∥USFIN∥UCFIN and the ciphertext is
simply CRES; (ii) [25] models PRF (referred to as hs and hz therein) also as a random
oracle; (iii) [25] proves (labeled) IND-CCA security and does not consider encryption
of UCFIN.

Lemma 1 (IND-CCCA from OW-PCA). If (KeyGen,FC ,FS) is OW-PCA secure,
PRF is a pseudorandom function, and we model Kdf() as a random oracle, then the
LKEM tlskem with predicate tls.Pred (in Section 4.2) is IND-CCCA secure in the

14

random oracle model (c.f. Section 4.1). That is, for any adversary A that makes at
most Q decryption queries, there exists adversaries A1,A2,A4 such that

Advind−cccalkem,pred (A) ≤ Q · (Advprf
PRF(A1) + 2−λ) + Advow−pca

kem (A2) + AdvprfPRF(A4).

Moreover, the running times of A1,A2,A4 are roughly that of A.

5.2 Implications for TLS-RSA

TLS-RSA KEM. The definition of the TLS-RSA KEM follows from the RSA PKCS
#1v1.5 standard [26] adopted in TLS. Building on [25] we abstract the specification
with parameters λ0 = Θ(λ), λ1 = Θ(λ) with λ0 ≤ λ1 − 88 as follows:

– KeyGen(1λ) is standard RSA key generation that outputs (PK, SK) := ((N, e), d)
where de = 1 (mod ϕ(N)) and N has λ1 bits, where we assume that λ1 is a
multiple of 8.

– FC : {0, 1}λ0 → Z∗N takes as input λ0-bit r, picks a paddingP ←R {0, 1}λ1−λ0−24

at random (subject to none of the bytes of P being 00), sets x := 00∥02∥P∥00∥r
(where 00, 02 are byte encodings), and outputs y := xe (mod N).

– FS : Z∗N → {0, 1}λ0 takes as input y, and attempts to parse yd (mod N) as a byte
sequence of the form 00∥02∥P∥00∥r where P contains no zero bytes and r has
exactly λ0 bits. The procedure then outputs r if the parsing is successful (and ⊥ if
the parsing fails).

Here, the condition that λ0 ≤ λ1 − 88 ensures that the random padding P has at least
8 bytes, as required by the standard [26]. We also assume in our description that KEM
decapsulation involves performing a strict set of parsing checks.

The assumption that RSA PKCS #1v1.5 is OW-PCA is justified in [25, Theorem 1]
via a reduction to an RSA-like assumption, known as “partial-domain RSA with
decision oracle”. The latter, given in [25, Section 2.3], asserts that the RSA permutation
is one-way, even given an oracle that is parameterized by λ0 < λ1, takes as input
(x0, y), and reports whether the first λ0 bits of yd mod N equals x0 or not. A
close examination of the proof of [25, Theorem 1] shows that the theorem holds no
matter what set of parsing checks are carried out during decapsulation (so long as the
decapsulation algorithm is correct). This is convenient because, as recent work [7] has
shown, there is a good deal of variation in how the required parsing is done in different
PKCS #1v1.5 implementations.5

In TLS-RSA, λ0 is fixed to 384, reflecting the fixed size of PMS (at 48 bytes)
in the TLS specification, while λ1 (the bit-size of N) is typically 1024 or 2048
in TLS deployments. Jonsson and Kaliski in [25] discuss at some length why the
above assumption is reasonable for typical parameters λ0, λ1 used in practice. While
seemingly strong, it seems hard to avoid using an assumption of this type given the
many known weaknesses in RSA-PKCS#1 v1.5. We are not aware of any further

5 This property of the proof would also allow us to incorporate into our analysis the additional
check from the TLS specification that the leading 2 bytes of r should be an encoding of the
TLS protocol version as sent by the client, at the cost of reducing λ0, the bit-size of r, by 16.
However, we omit this fine detail.

15

significant work studying this assumption. In particular, in spite of the importance of the
widely-deployed PKCS #1v1.5 scheme and its use in TLS, to the best of our knowledge
no weaknesses on the assumption have been reported since its introduction in [25] over
10 years ago.

The security of TLS-RSA follows from Theorem 1 and Lemma 1:

Theorem 2. Under the following assumptions:

– RSA PKCS #1v1.5 is OW-PCA;
– PRF is a secure pseudorandom function;
– stE is a sLHAE encryption scheme,

the TLS-RSA Protocol is a secure SACCE protocol in the random oracle model.

6 TLS-DH: Instantiation from PRF-ODH

We prove the security of TLS-DH following our methodology: We show that the
KEM (KeyGen,FC ,FS) that instantiates this mode in accordance with our generic
representation of TLS (Figure 2) induces a labeled KEM, dh.tlskem, that is IND-
CCCA secure. Then, by Theorem 1 we conclude that TLS-DH is a secure SACCE
protocol. Finally, we apply these results to TLS-DHE, namely, when both client and
server provide ephemeral DH keys. Here, we merely provide a summary of our results;
details can be found in the full version [29].

TLS-DH KEM. Let G = ⟨g⟩ be a cyclic group of prime order q generated by an
element g. We define the TLS-DH KEM (KeyGen,FC ,FS) via the following three
algorithms.

– KeyGen(1λ): Set (PK, SK) := (gv, v), v ←R Zq, |q| = λ.
– FC(PK = gv): Set (ψ,K) := (gu, guv), u←R Zq .
– FS(SK = v, h): Check that h ∈ G, if yes, output hv , else output ⊥ (reject).

We show the security of TLS-DH in the standard model based on the PRF-ODH
assumption on the function Kdf. This assumption is an adaptation of the Oracle Diffie-
Hellman (ODH) assumption [1] to the PRF setting and was introduced in [24] for
their proof of TLS-DHE. For the proof of TLS-DH we need the multi-query version
of the assumption while for TLS-DHE the single-query case is sufficient, as in [24].
In [29] we describe the assumption and also prove its necessity by constructing secure
pseudorandom functions for which PRF-ODH does not hold and with which TLS-DH
violates ACCE security.

Theorem 3. Protocol TLS-DH obtained by instatiating the generic TLS protocol from
Figure 2 with the above defined TLS-DH KEM is a secure SACCE protocol provided
Kdf is PRF-ODH, PRF is a secure pseudorandom function, and stE is an sLHAE-
secure encryption scheme.

16

Extension to TLS-DHE with server-signed ephemeral DH (and no client authentica-
tion). In this variant of TLS-DH, the certified server’s public key corresponds to
a signature algorithm and the DH value, typically an ephemeral one, is signed by
the server itself. All other details are exactly as in TLS-DH. The security of this
protocol follows essentially from the analysis of TLS-DH by replacing CERTS =
{IDS , PK = gv}CA with CERTS = (CERTSIGS , sigS(g

v, . . .), gv), where CERTSIGS =
{IDS , PKSIGS}CA, PKSIGS is a public key of S for a secure signature scheme, and sigS
is a signature produced by S under the corresponding signature key.

We note that [24] provided a specialized proof of TLS-DHE with client authentica-
tion. We obtain a proof for that particular case in Section 7 (Corollary 1). However,
while [24] show forward security we do not include this property in our general
treatment as it is not achieved by any of the other TLS modes.

7 The TLS Handshake Protocol with Mutual Authentication

In the full version [29] we augment server-only authentication, the SACCE model, with
client authentication to obtain mutual authentication. The resultant model, ACCE, is
mostly the same as in [24] except for the definition of matching sessions presented in
Section 3. In this setting, the TLS client possesses a signature key (with a corresponding
certificate CERTC) which it uses to authenticate to the server (by computing a signature
on the session transcript up to the CRES message). In this case both the definition of
matching conversations and the TLS LKEM are augmented with CERTC .

We first extend Theorem 1 to the case of mutual authentication, namely, showing
that if tlskem is IND-CCCA secure and stE is sLHAE-secure then TLS with client
and server authentication is ACCE-secure. Then we immediately obtain the following
powerful corollary:

Corollary 1. TLS-RSA, TLS-CCA, TLS-DH and TLS-DHE where the client is authenti-
cated using a secure signature scheme are all ACCE secure under the same assumptions
stated for the SACCE security of these modes.

8 Conclusions and Discussion

Establishing the security of a central protocol like TLS is clearly a significant result.
The fact that we achieve this in a systematic way that covers the different TLS modes
(TLS-RSA, TLS-DH, and TLS-DHE, as well as the hypothetical TLS-CCA), has clear
methodological advantages and may be seen as indicating that the core design of the
protocol is sound. Yet, we find it important to stress the many shortcomings of the
TLS protocol that would be best avoided in future secure channel protocol designs. We
summarise these issues here, expanding on them in [29].

On the TLS design. A main weakness in the overall TLS design is the unfortunate
interaction of the TLS Handshake and the Record protocols with respect to the
Finished messages. Instead, these two conceptually and functionally different parts

17

of a secure channel protocol can and should be designed as separate components. This
separation makes engineering sense for implementing and maintaining the protocol,
especially in evolving application settings as is the case with TLS. It also makes formal
security analysis of the protocol easier, which in turn increases the likelihood that this
analysis will be correct and applicable to the actual protocol under study.

In addition to the above structural weakness of the protocol, TLS has suffered
from the early implementation of its public key encryption mode, TLS-RSA, with RSA
PKCS#1v1.5. Rather than moving to a CCA-secure implementation of the encryption
function (e.g., via RSA-OAEP), the TLS community responded to Bleichenbacher’s
attack by keeping RSA PKCS#1v1.5 as the default implementation but disabling the
error message in case of a decryption error. We stress that our proof of security for TLS-
RSA relies crucially on there being no side channel that would reveal the existence of
decryption failures to the attacker. While the TLS specification now takes care to avoid
some explicit forms of leaking this information, implementations may still find ways
of leaking it. This makes the security of the protocol non-robust and shows the clear
advantage of using a CCA-secure scheme in TLS that, as we show, would avoid these
complications and potential weaknesses.

The fragility of the TLS-RSA design is further illustrated by the somewhat
“accidental” nature of its security. The security of this mode relies crucially on the
fact that the client’s Finished message, CFIN, is sent immediately after the CRES
message (containing the RSA ciphertext in TLS-RSA) and before the server responds
with its own Finished message SFIN. Had CFIN been omitted or sent after SFIN,
TLS-RSA would be completely insecure, e.g. subject to Bleichenbacher’s attack.

On our attack model. We caution that, while our work shows that accurate de-
scriptions of already-deployed, complex protocols can be analysed using the provable
security paradigm, we only analyse the “cryptographic core” of TLS. This means that
our analysis rules out many (but not all) attacks. More specifically:

– Several recent attacks on the TLS Record Protocol are possible because TLS
supports symmetric encryption algorithms that have turned out not to be sLHAE-
secure: see, for example, the BEAST attack [18], the short MAC attack [35], Lucky
13 [3], and the RC4 attacks in [4]. Such attacks can be mounted by the adversary in
our security model but are ruled out by our theorem statements, which assume the
use of an sLHAE-secure encryption scheme.

– Our description of TLS-RSA includes the standard countermeasures to Ble-
ichenbacher’s attack, and our security proof then gives assurance that these
countermeasures are effective in the context of the entire TLS protocol.

On the other hand, we do not treat ciphersuite (re)negotiation nor the TLS Record
Protocol’s compression or fragmentation features, meaning that, for example, none of
the attacks from [19, 30, 38] are covered by our analysis.

A final thought. We believe that one cannot overstate the importance of adopting
protocols in practice that have been first rigorously analyzed and proven in a plausible
cryptographic model. Such proofs are necessarily limited by the expressiveness of

18

the underlying model and do not guarantee security in every imaginable deployment
setting, yet they can serve as a major source of confidence in the soundness of the
design. This is particularly important given the practical difficulty in changing protocols
when weaknesses are found – and TLS serves as a good example for the latter.

References

[1] M. Abdalla, M. Bellare, and P. Rogaway. The oracle Diffie-Hellman assumptions and an
analysis of DHIES. In CT-RSA, pages 143–158, 2001.

[2] N. AlFardan and K. G. Paterson. Plaintext-recovery attacks against Datagram TLS. In
Network and Distributed System Security Symposium (NDSS 2012), 2012.

[3] N. AlFardan and K. G. Paterson. Lucky thirteen: Breaking the TLS and DTLS record
protocols. In IEEE Symposium on Security and Privacy, 2013. URL www.isg.rhul.ac.

uk/tls/Lucky13.html.
[4] N. AlFardan, D. J. Bernstein, K. G. Paterson, B. Poettering, and J. C. Schuldt. On the

security of RC4 in TLS and WPA. In USENIX Security Symposium, 2013. URL www.isg.

rhul.ac.uk/tls.
[5] G. V. Bard. The vulnerability of SSL to chosen plaintext attack. IACR Cryptology ePrint

Archive, 2004:111, 2004.
[6] G. V. Bard. A challenging but feasible blockwise-adaptive chosen-plaintext attack on SSL.

In SECRYPT, pages 99–109, 2006.
[7] R. Bardou, R. Focardi, Y. Kawamoto, L. Simionato, G. Steel, and J.-K. Tsay. Efficient

padding oracle attacks on cryptographic hardware. In CRYPTO, pages 608–625, 2012.
[8] M. Bellare and P. Rogaway. Entity authentication and key distribution. In CRYPTO, pages

232–249, 1993.
[9] K. Bhargavan, C. Fournet, R. Corin, and E. Zalinescu. Verified cryptographic

implementations for TLS. ACM Trans. Inf. Syst. Secur., 15(1):3, 2012.
[10] K. Bhargavan, C. Fournet, M. Kohlweiss, A. Pironti, and P.-Y. Strub. Implementing TLS

with verified cryptographic security. In IEEE Symposium on Security and Privacy, 2013.
URL http://mitls.rocq.inria.fr/.

[11] S. Blake-Wilson, N. Bolyard, V. Gupta, C. Hawk, and B. Moeller. Elliptic Curve
Cryptography (ECC) Cipher Suites for Transport Layer Security (TLS), May 2006. URL
http://www.rfc-editor.org/rfc/rfc4492.txt.

[12] D. Bleichenbacher. Chosen ciphertext attacks against protocols based on the RSA
encryption standard PKCS #1. In CRYPTO, pages 1–12, 1998.

[13] C. Brzuska, M. Fischlin, N. Smart, B. Warinschi, and S. Williams. Less is more: Relaxed
yet composable security notions for key exchange. Cryptology ePrint Archive, Report
2012/242, 2012.

[14] R. Canetti and H. Krawczyk. Analysis of key-exchange protocols and their use for building
secure channels. In EUROCRYPT, pages 453–474, 2001. See also Cryptology ePrint
Archive, Report 2001/040.

[15] R. Canetti and H. Krawczyk. Universally composable notions of key exchange and secure
channels. In EUROCRYPT, pages 337–351, 2002. See also Cryptology ePrint Archive,
Report 2002/059.

[16] B. Canvel, A. P. Hiltgen, S. Vaudenay, and M. Vuagnoux. Password Interception in a
SSL/TLS Channel. In CRYPTO, pages 583–599, 2003.

[17] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.2, Aug.
2008. URL http://www.rfc-editor.org/rfc/rfc5246.txt.

[18] T. Duong and J. Rizzo. Here come the ⊕ Ninjas. Unpublished manuscript, 2011.

19

www.isg.rhul.ac.uk/tls/Lucky13.html
www.isg.rhul.ac.uk/tls/Lucky13.html
www.isg.rhul.ac.uk/tls
www.isg.rhul.ac.uk/tls
http://mitls.rocq.inria.fr/
http://www.rfc-editor.org/rfc/rfc4492.txt
http://www.rfc-editor.org/rfc/rfc5246.txt

[19] T. Duong and J. Rizzo. The CRIME attack. Presentation at ekoparty Security Conference,
2012. URL http://www.ekoparty.org/eng/2012/juliano-rizzo.php.

[20] S. Fahl, M. Harbach, T. Muders, M. Smith, L. Baumgärtner, and B. Freisleben. Why Eve
and Mallory love Android: An analysis of Android SSL (in)security. In ACM CCS, pages
50–61, 2012.

[21] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and V. Shmatikov. The most
dangerous code in the world: Validating SSL certificates in non-browser software. In ACM
CCS, pages 38–49, 2012.

[22] C. He, M. Sundararajan, A. Datta, A. Derek, and J. C. Mitchell. A modular correctness
proof of IEEE 802.11i and TLS. In ACM CCS, pages 2–15, 2005.

[23] D. Hofheinz and E. Kiltz. Secure hybrid encryption from weakened key encapsulation. In
CRYPTO, pages 553–571, 2007.

[24] T. Jager, F. Kohlar, S. Schäge, and J. Schwenk. On the security of TLS-DHE in the standard
model. In CRYPTO, pages 273–293, 2012.

[25] J. Jonsson and B. S. Kaliski Jr. On the security of RSA encryption in TLS. In CRYPTO,
pages 127–142, 2002.

[26] B. Kaliski. PKCS#1: RSA Encryption Version 1.5, Mar. 1998. URL http://www.

rfc-editor.org/rfc/rfc2313.txt.
[27] V. Klı́ma, O. Pokorný, and T. Rosa. Attacking RSA-based sessions in SSL/TLS. In CHES,

pages 426–440, 2003.
[28] H. Krawczyk. The order of encryption and authentication for protecting communications

(or: How secure is SSL?). In CRYPTO, pages 310–331, 2001.
[29] H. Krawczyk, K. G. Paterson, and H. Wee. On the security of the TLS protocol: A

systematic analysis. Cryptology ePrint Archive, Report 2013/339, 2013. Full version of
this paper.

[30] N. Mavrogiannopoulos, F. Vercauteren, V. Velichkov, and B. Preneel. A cross-protocol
attack on the TLS protocol. In ACM CCS, pages 62–72, 2012.

[31] N. Modadugu and E. Rescorla. The Design and Implementation of Datagram TLS. In
NDSS. The Internet Society, 2004. ISBN 1-891562-18-5, 1-891562-17-7.

[32] B. Moeller. Security of CBC ciphersuites in SSL/TLS: Problems and countermeasures.
Unpublished manuscript, May 2004. http://www.openssl.org/~bodo/tls-cbc.txt.

[33] P. Morrissey, N. P. Smart, and B. Warinschi. A modular security analysis of the TLS
handshake protocol. In ASIACRYPT, pages 55–73, 2008.

[34] T. Okamoto and D. Pointcheval. REACT: Rapid enhanced-security asymmetric
cryptosystem transform. In CT-RSA, pages 159–175, 2001.

[35] K. G. Paterson, T. Ristenpart, and T. Shrimpton. Tag size does matter: Attacks and proofs
for the TLS record protocol. In ASIACRYPT, pages 372–389, 2011.

[36] L. C. Paulson. Inductive analysis of the internet protocol TLS. ACM Trans. Inf. Syst. Secur.,
2(3):332–351, 1999.

[37] E. Rescorla and N. Modadugu. Datagram Transport Layer Security, Apr. 2006. URL
http://www.rfc-editor.org/rfc/rfc4347.txt.

[38] E. Rescorla, M. Ray, S. Dispensa, and N. Oskov. Transport Layer Security (TLS)
Renegotiation Indication Extension. RFC 5746 (Proposed Standard), Feb. 2010. URL
http://www.ietf.org/rfc/rfc5746.txt.

[39] V. Shoup. On formal models for secure key exchange. Cryptology ePrint Archive, Report
1999/012, 1999. http://eprint.iacr.org/.

[40] S. Vaudenay. Security Flaws Induced by CBC Padding - Applications to SSL, IPSEC,
WTLS ... In EUROCRYPT, pages 534–546, 2002.

[41] D. Wagner and B. Schneier. Analysis of the SSL 3.0 protocol. In USENIX Workshop on
Electronic Commerce, pages 29–40, 1996.

20

http://www.ekoparty.org/eng/2012/juliano-rizzo.php
http://www.rfc-editor.org/rfc/rfc2313.txt
http://www.rfc-editor.org/rfc/rfc2313.txt
http://www.openssl.org/~bodo/tls-cbc.txt
http://www.rfc-editor.org/rfc/rfc4347.txt
http://www.ietf.org/rfc/rfc5746.txt
http://eprint.iacr.org/

	On the Security of the TLS Protocol:A Systematic Analysis

