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Abstract. In this work, we explore building constructions with full do-
main hash structure, but with standard model proofs that do not employ
the random oracle heuristic. The launching point for our results will be
the utilization of a “leveled” multilinear map setting for which Garg,
Gentry, and Halevi (GGH) recently gave an approximate candidate. Our
first step is the creation of a standard model signature scheme that ex-
hibits the structure of the Boneh, Lynn and Shacham signatures. In par-
ticular, this gives us a signature that admits unrestricted aggregation.
We build on this result to offer the first identity-based aggregate signa-
ture scheme that admits unrestricted aggregation. In our construction,
an arbitrary-sized set of signatures on identity/message pairs can be ag-
gregated into a single group element, which authenticates the entire set.
The identity-based setting has important advantages over regular aggre-
gate signatures in that it eliminates the considerable burden of having to
store, retrieve or verify a set of verification keys, and minimizes the total
cryptographic overhead that must be attached to a set of signer/message
pairs. While identity-based signatures are trivial to achieve, their aggre-
gate counterparts are not. To the best of our knowledge, no prior candi-
date for realizing unrestricted identity-based aggregate signatures exists
in either the standard or random oracle models.
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A key technical idea underlying these results is the realization of a hash
function with a Naor-Reingold-type structure that is publicly computable
using repeated application of the multilinear map. We present our results
in a generic “leveled” multilinear map setting and then show how they
can be translated to the GGH graded algebras analogue of multilinear
maps.

1 Introduction

Applying a full domain hash is a common technique in cryptography where a
hash function, modeled as a random oracle, is used to hash a string into a set.
Originally, the concept referred to a signature scheme where one hashed into the
range of a trapdoor permutation [3]. Subsequently, full domain hash has been
treated as a more general concept and applied in bilinear map cryptography
where typically a hash function H : {0, 1}∗ → G is used to hash a string into
a bilinear group. (We note that multiple early works [9, 11, 10] employ this ter-
minology.) Pairing-based applications of Full Domain Hash include: the original
Boneh-Franklin [9], short and aggregate signatures [11, 10], Hierarchical Identity-
Based Encryption [23], and decentralized Attribute-Based Encryption [26]. Typ-
ically, proofs of such schemes will use the random oracle heuristic to “program”
the output of the hash function in a certain way for which there is no known
standard model equivalent (see [24]).

Given that there are well-known issues with random oracle instantiability in
general [14] and problems with Full Domain Hash in particular [18, 17], there
has been a push to find standard model realizations of these applications. These
endeavors have been successful in several applications such as signatures [8, 36]
and (Hierarchical) Identity-Based Encryption [15, 6, 7, 36, 21, 37]. Despite this
progress, the current state is not entirely satisfactory on two fronts. First, each
of the standard model examples given above created new cryptographic construc-
tions with fundamentally different structure than the original Full Domain Hash
construction. While creating a new structure is a completely valid and novel
approach, that path does not necessarily lend insight or further understanding
of the original constructions.

Second, there are important applications of the Full Domain Hash method
where implementing such a hash using a random oracle introduces significant
limitations in the applicability of the Full Domain Hash method. One example
concerns aggregate signature schemes and their identity-based counterparts.

An aggregate signature system is one in which a signature σ′ on verification
key/message pair (VK′,M ′) can be combined with a signature σ̃ on (ṼK, M̃)
producing a new signature σ on the set S = {(VK′,M ′), (ṼK, M̃)}. This process
can be repeated indefinitely to aggregrate an arbitrary number of signatures to-
gether. Crucially, the size of σ should be independent of the number of signatures
aggregated, although the description of the set S will grow. The ultimate goal,
however, is to minimize the entire transmission size [31].

The need for a public-key infrastructure for verification keys is a major
drawback of traditional public-key cryptography, and for this reason identity-



based cryptography has flourished [35, 9]: In an identity-based aggregate signa-
ture scheme, verification keys like VK would be replaced with simple identity
strings like I =“harrypotter@hogwarts.edu”. This offers a very meaningful sav-
ings for protocols such as BGPsec, which require routers to store, retrieve and
verify certificates for over 36,000 public keys [16, 13]. We note that while identity-
based signatures follow trivially from standard signatures, identity-based aggre-
gate signatures are nontrivial (more on this below).

A decade ago, the Boneh, Gentry, Lynn and Shacham (BGLS) [10] aggregate
signature scheme was built using the Full Domain Hash methodology. In the orig-
inal vision of BGLS, aggregation could be performed by any third party on any
number of signatures. The authors showed how the Boneh, Lynn and Shacham
(BLS) [11] signatures (which are in turn comprised of Boneh-Franklin [9] private
IBE keys) can be aggregated in this manner. The BLS construction uses a full
domain hash and its security proof is in the random oracle model. However,
even though the BGLS scheme was built upon the key mechanism for Boneh-
Franklin Identity-Based Encryption, BGLS does not support identity-based ag-
gregation. The Full Domain Hash in BGLS is realized using a random oracle,
which destroys the structure that would be needed for identity-based aggregate
signatures. To the best of our knowledge, no prior solution to identity-based ag-
gregate signatures in either the standard or random oracle models exists. Prior
work considered ID-based aggregates restricted to a common nonce [22] (e.g.,
where signatures can only be aggregated if they were created with the same
nonce or time period) or sequential additions [5] (e.g., where a group of sign-
ers sequentially form an aggregate by each adding their own signature to the
aggregate-so-far).

Our results in a nutshell. In this work, we give a new method for implementing
the Full Domain Hash method using leveled multilinear maps, including the
ones recently proposed by Garg, Gentry, and Halevi (GGH) [19]. We show how
to use this method to implement aggregate signatures in the standard model
in a way that naturally extends to give the first full solution to the problem of
identity-based aggregate signatures (also in the standard model).

Prior work on standard model aggregate signatures. All previous work on achiev-
ing standard model aggregate signatures did so by departing fundamentally from
the Full Domain Hash methodology.

Subsequently to BGLS [10], different standard model solutions were pro-
posed, but with different restrictions on aggregation. These include: construc-
tions [27] where the signatures must be sequentially added in by the signers,
multisignatures [27] where aggregation can occur only for the same message M ,
or where aggregation is limited to signatures associated with the same nonce or
time period [1].4 These restrictions limit their practical applicability.

4 We remark that these restrictions were considered in other works such as [33, 32, 29,
4, 28] prior to the standard model constructions cited above.



In 2009, Rückert and Schröder [34] gave an intriguing vision on how mul-
tilinear maps might enable standard model constructions of aggregate signa-
tures, also departing from the Full Domain Hash methodology. They did not
discuss or achieve identity-based aggregate signatures. Their proposal came be-
fore the Garg, Gentry and Halevi [19] candidate and used the earlier Boneh-
Silverberg [12] view of multilinear maps, where a k-linear map would allow the
simultaneous multiplication of k source group elements into one target group
element. The GGH candidate in contrast allows for encodings to exist on multi-
ple levels and a pairing between an encoding on level i and one on level j gives
an encoding on level i + j as long as i + j is less than or equal to some k. One
drawback of the Rückert and Schröder construction is that the security proof re-
quires access to an interactive (or oracle-type) assumption in order to answer the
signature queries where the structure of the oracle output is essentially identical
to the signatures required. This property seems to be tightly coupled with the
modeling of a multilinear map as a one time multiplication. In contrast, we will
exploit the leveling of the GGH abstraction to actually replace the hash function
in a BLS-type structure and obtain proofs from non-interactive assumptions.

1.1 Overview of our Aggregate Signature Constructions

We now overview the constructions and their security claims. To simplify the
description of the main ideas, we describe the constructions here in terms of
leveled multilinear maps. Later on, we give translations to the GGH framework.

The Base Construction. A trusted setup algorithm will take as input security
parameter λ and message bit-length ` and run a group generator G(1λ, k = `+1)
and outputs a sequence of groups G = (G1, . . . ,Gk) of prime order p.5 The group
sequence will have canonical generators g = g1, g2, . . . , gk along with a pairing
operation that computes e(gai , g

b
j) = gabi+j for any a, b ∈ Zp and i + j ≤ k. The

setup algorithm will also choose A = (A1,0 = ga1,0 , A1,1 = ga1,1), . . . , (A`,0 =

ga`,0 , A`,1 = ga`,1) ∈ G2
1. We defineH : {0, 1}` → Gk−1 asH(M) = g

∏
i∈[1,`] ai,mi

k−1 ,
where mi are the bits of message M . The hash function hashes a message into
the group Gk−1. It exhibits a Naor-Reingold [30]-type structure and is publicly
computable using repeated application of a multilinear map. Since a group ele-
ment in Gk−1 has one pairing left, it intuitively reflects the bilinear map setting.
In our scheme a private key contains a random exponent α ∈ Zp and the cor-
responding verification key VK contains gα. A signature on a message M is

computed as σ = H(M)α and verified by testing e(σ, g)
?
= e(H(M), gα).

Stepping back, the structure of our scheme very closely resembles BLS sig-
natures. For this reason it is possible to aggregate them in the BGLS fashion by
simply multiplying two together. The size of an aggregate signature depends on
the security parameter plus message length ` (assuming the group representa-
tion size increases with k = ` + 1), but is independent of the number of times

5 In practice one will perform a CRHF of an arbitrary length message to ` bits.



aggregation is applied. Aggregation is unrestricted and can be done by any third
party.

The Rückert and Schröder construction [34] also insightfully uses a Naor-
Reingold type function for aggregation. A key distinction is that in the RS
method there is a unique NR function for each signer and it is privately computed
by each signer per each message/input. In our construction the Naor-Reingold
function is computed as a public hash using the levels of the multilinear map.
A signer simply multiplies in his secret exponent after computing the hash.
Thus, this mimicks the BLS structure much more closely. One advantage of our
structure is that the hash function can be derived from a single common reference
string and then public keys are just a single group element. In addition, we will
see that our structure is amenable to proofs under non-interactive assumptions
and allow us to extend to the identity-based setting. In the aggregation setting,
where bandwidth is at a premium, our smaller public keys and the ability to go
identity-based is important.

Proofs of Security. We view our aggregate signatures as signatures on a multi-
set of message/verification key pairs for full generality. We prove security in a
modular way as a two step process. First, we define a weaker “distinct message”
variant of security that only considers an attacker successful if the aggregate
forgery no two signers sign the same message. We then show how to transform
any distinct message secure scheme into one with standard security. The trans-
formation captures the BGLS idea (formalized by Bellare, Namprempre and
Neven [2]) of hashing the public key plus message together. Using the trans-
formation we can focus on designing proofs in the distinct message game. We
first prove selective security under a natural analog of the CDH assumption we
call the k-Multilinear Computational Diffie-Hellman (k-MCDH) assumption. We
next show full (a.k.a., adaptive) security using a subexponentially secure version
of the assumption. Finally, we show full security with only polynomial factors in
the reduction using a non-interactive, but parameterized assumption.

Realizing Identity-Based Aggregation. The authority will run a setup algorithm
that takes the message bit-length ` and identity bit-length n. It runs a group
generator G(1λ, k = ` + n) and outputs a sequence of groups G = (G1, . . . ,Gk)
of prime order p. It creates the parameters A as in the prior scheme and B =
(B1,0 = gb1,0 , B1,1 = gb1,1), . . . , (Bn,0 = gbn,0 , Bn,1 = gbn,1) ∈ G2

1. We define

H : {0, 1}n × {0, 1}` → Gk−1 as H(I,M) = g
(
∏
i∈[1,n] bi,idi )(

∏
i∈[1,`] ai,mi )

k , where
mi are the bits of message M and idi the bits of I. The hash function is publicly
computable from the multilinear map. A secret key for identity I is computed

as SKI = g
∏
i∈[1,n] bi,idi

n−1 ∈ Gn−1. This can be used to produce a signature on

message M by computing (gk−1)(
∏
i∈[1,n] bi,idi )(

∏
i∈[1,`] ai,mi ) using the multilinear

map. Finally, a signature can be verified by checking e(σ, g)
?
= H(I,M). The

signatures will aggregate in the same manner by multiplying together.
The distinct message translation is not required in the identity-based setting,

because there is no rogue key problem. We first prove selective security under



the k-MCDH assumption, and then show full security using a subexponentially
secure version of the assumption. We provide these proofs in both the generic
multilinear and the GGH framework.

Further Applications. Taken altogether we show that multilinear forms provide
an opportunity for revisiting cryptographic structures that were strongly asso-
ciated with the random oracle heuristic. It remains to be seen how widely this
direction will apply. One interesting example of an application that currently
requires the full domain hash is the decentralized Attribute-Based Encryption
system of Lewko and Waters [26]. There is no standard model candidate that
has comparable expressiveness. Here performing an analogous transformation to
our aggregate signatures hash function gives a candidate construction that we do
not immediately see how to break. However, it is less easy to see how our proof
techniques would extend to the variant of the Lewko-Waters [26] decentralized
ABE scheme.

2 Leveled Multilinear Maps and the GGH Graded
Encoding

We give a description of generic, leveled multilinear maps. The assumptions
used in this setting are defined inline with their respective security proofs. Basic
details of the GGH graded algebras analogue of mulitlinear maps are included
where used, and for further details, please refer to [19].

For generic, leveled multilinear maps, we assume the existence of a group
generator G, which takes as input a security parameter 1λ and a positive integer k
to indicate the number of allowed pairing operations. G(1λ, k) outputs a sequence
of groups G = (G1, . . . ,Gk) each of large prime order p > 2λ. In addition, we let
gi be a canonical generator of Gi (and is known from the group’s description).
We let g = g1.

We assume the existence of a set of bilinear maps {ei,j : Gi×Gj → Gi+j | i, j ≥
1; i+ j ≤ k}. The map ei,j satisfies the following relation:

ei,j
(
gai , g

b
j

)
= gabi+j : ∀a, b ∈ Zp

We observe that one consequence of this is that ei,j(gi, gj) = gi+j for each
valid i, j.

When the context is obvious, we will sometimes abuse notation and drop the
subscripts i, j, For example, we may simply write e

(
gai , g

b
j

)
= gabi+j .

Algorithmic components of GGH encodings. While we assume familiarity with
the basics of GGH encodings [19], we now review the algorithmic components of
the GGH encodings that we will use in our constructions and proofs. The setup
algorithm InstGen(1λ, 1k) takes as input a security parameter 1λ and the level of
multilinearity 1k, and outputs the public parameters params needed for using the
remaining GGH algorithms, along with a special parameter pzt to be used for



zero testing. The sampling algorithm samp(params) outputs a level-0 encoding
of a randomly chosen element. The canonicalizing encoding cence(params, i, α)
algorithm takes as input an encoding α of some element a, and outputs a level-i
encoding of a, with re-randomization parameter e. This canonicalizing encod-
ing algorithm can re-randomize an encoding for a fixed constant number of
re-randomization parameters e. Finally, the zero-testing algorithm isZero(pzt, α)
takes as input a level-k encoding α, and accepts iff α is an encoding of 0. A more
elaborate review of these algorithms can be found elsewhere in these proceed-
ings [20] (omitted here for lack of space).

3 Definitions for Aggregate and ID-based Aggregate
Signatures

We now give our definitions for aggregate signatures. In our setting, each ag-
gregate signature is associated with a multiset S over verification key/message
pairs (or identity/message pairs in the ID-based setting). A set S is of the
form {(VK1,M1), . . . , (VK|S|,M|S|)}. Since S is a multiset it is possible to have
(VKi,Mi) = (VKj ,Mj) for i 6= j. All signatures, including those that come out
of the sign algorithm, are considered to be aggregate signatures. The aggrega-
tion algorithm is general in that it can take any two aggregate signatures and
combine them into a new aggregate signature.

Our definition allows for an initial trusted setup that will generate a set of
common public parameters PP. This will define a bit length of all messages
(and identities). In practice one could set these fixed lengths to be the output
length ` of a collision resistant hash function and allow arbitrary-length mes-
sages/identities by first hashing them down to ` bits. In the ID-based setting,
the authority also produces a master secret key used later to run the key gener-
ation algorithm.

We emphasize a few features of our setting. First, aggregation is very general
in that it allows for the combination of any two aggregate signatures into a
single one. Some prior definitions required an aggregate signature to be combined
with a single message signature. This is a limitation for applications where an
aggregator comes across two aggregate signatures that is wishes to combine. The
aggregation operation does not require any secret keys. The multiset structure
allows one to combine two aggregate signatures which both include the same
message from the same signer.

We begin formally with the ID-based definition, because it is novel to this
work, and then discuss its simpler counterpart.

Authority-Setup(1λ, `, n) The trusted setup algorithm takes as input the security
parameter as well the bit-length ` of messages and bit-length n of the identities.
It outputs a common set of public parameters PP and master secret key MSK.

KeyGen(MSK, I ∈ {0, 1}n) The key generation algorithm is run by the author-
ity. It takes as input the system master secret key and an identity I, and outputs
a secret signing key SKI .



Sign(PP,SKI , I ∈ {0, 1}n,M ∈ {0, 1}`) The signing algorithm takes as input a
secret signing key and corresponding identity I ∈ {0, 1}n, the common public
parameters as well as a message M ∈ {0, 1}`. It outputs a signature σ for
identity I. We emphasize that a single signature that is output by this algorithm
is considered to also be an aggregate signature.

Aggregate(PP, S̃, S′, σ̃, σ′). The aggregation algorithm takes as input two mul-
tisets S̃ and S′ and purported signatures σ̃ and σ′. The elements of S̃ consist of
identity/message pairs {(Ĩ1, M̃1), . . . , (Ĩ|S̃|, M̃|S̃|)} and the elements of S′ con-

sist of {(I ′1,M ′1), . . . , (I ′|S′|,M
′
|S′|)}. The process produces a signature σ on the

multiset S = S̃ ∪ S′, where ∪ is a multiset union.

Verify(PP, S, σ). The verification algorithm takes as input the public parame-
ters, a multiset S of identity and message pairs and an aggregate signature σ. It
outputs true or false to indicate whether verification succeeded.

Correctness The correctness property states that all valid aggregate signatures
will pass the verification algorithm, where a valid aggregate is defined recur-
sively as an aggregate signature derived by an application of the aggregation
algorithm on two valid inputs or the signing algorithm. More formally, for all in-
tegers λ, `, n, k ≥ 1, all PP ∈ Authority-Setup(1λ, `, n), all I1, . . . , Ik ∈ {0, 1}n,
all SKIi ∈KeyGen(PP, Ii), Verify(PP, S, σ) = 1, if σ is a valid aggregate for mul-
tiset S under PP. We say that an aggregate signature σ is valid for multiset S if:
(1) S = {(Ii,M)} for some i ∈ [1, k], M ∈ {0, 1}` and σ ∈ Sign(PP,SKIi , Ii,M);
or (2) there exists multisets S′, S̃ where S = S′∪S̃ and valid aggregate signatures
σ′, σ̃ on them respectively such that σ ∈ Aggregate(PP, S̃, S′, σ̃, σ′).

Security Model for Aggregate Signatures. Adapting aggregation [10, 2] to the
identity-based setting takes some care in considering how keys are handled and
which query requests the adversary should be allowed to make. Informally, in the
unforgeability game, it should be computationally infeasible for any adversary to
produce a forgery implicating an honest identity, even when the adversary can
control all other identities involved in the aggregate and can mount a chosen-
message attack on the honest identity. This is defined using a game between a
challenger and an adversary A with respect to scheme Π = (Authority-Setup,
KeyGen, Sign, Aggregate, Verify).

– ID-Unforg(Π,A, λ, `, n):

Setup. The challenger runs Authority-Setup(1λ, `, n) to obtain PP. It sends PP
to A.

Queries. Proceeding adaptively, A can make three types of requests:
1. Create New Key: The challenger begins with an index i = 1 and an

empty sequence of index/identity/private key triples T . On input an
identity I ∈ {0, 1}n, the challenger runs KeyGen(MSK, I) to obtain
SKI . It adds the triple (i, I,SKI) to T and then increments i for the next



call. Nothing is returned to the adversary. We note that the adversary can
query this oracle multiple times for the same identity. This will capture
security for applications that might release more than one secret key per
identity.

2. Corrupt User: On input an index i ∈ [1, |T |], the challenger returns to
the adversary the triple (i, Ii,SKIi) ∈ T . It returns an error if T is empty
or i is out of range.

3. Sign: On input an index i ∈ [1, |T |] and a message M ∈ {0, 1}`, the
challenger obtains the triple (i, Ii,SKIi) ∈ T (returning an error if it does
not exist) and returns the signature resulting from Sign(PP,SKIi , Ii,M)
to A.

Response. Finally, A outputs a multiset S∗ of identity/message pairs and a
purported aggregate signature σ∗.

We say the adversary “wins” or that the output of this experiment is 1 if: (1)
Verify(PP, S∗, σ∗) = 1 and (2) there exists an element (I∗,M∗) ∈ S∗ such that
M∗ was not queried for a signature by the adversary on any index corresponding
to I∗; i.e., any index i such that (i, I∗, ·) ∈ T . Otherwise, the output is 0.
Define ID-ForgA as the probability that Unforg(Π,A, λ, `, n) = 1, where the
probability is over the coin tosses of the Authority-Setup, KeyGen, and Sign
algorithms and of A.

Definition 1 (Adaptive Unforgeability). An ID-based aggregate signature
scheme Π is existentially unforgeable with respect to adaptive chosen-message
attacks if for all probabilistic polynomial-time adversaries A, the function ID-
ForgA is negligible in λ.

Selective Security. We consider a selective variant to ID-Unforg (selective in
both the identity and the message) where there is an Init phase before the
Setup phase, wherein A gives to the challenger a forgery identity/message pair
(I∗ ∈ {0, 1}n,M∗ ∈ {0, 1}`). The adversary cannot request a signing key for I∗.
(It may request that the challenger create one or more keys for this identity, but
it cannot corrupt any user index i associated with I∗.) Moreover, the adversary
only “wins” causing the experiment output to be 1 if the normal checks hold (i.e.,
its signature verifies and it did not request that I∗ sign M∗) and additionally
(I∗,M∗) appears in S∗.

Non-ID-Based Aggregates and the Distinct Message Variant. We provide se-
curity definitions for the non-ID-based setting in the full version [25] that fol-
low from [10, 2]. We provide adaptive and selective variants. We also identify a
weaker “distinct message” security game that is easier to work with. In the full
version [25], we describe and prove secure a simple transformation from distinct
message security to standard aggregate signature security. The transformation
captures the idea of hashing the public key and message together [10, 2] in a mod-
ular way. Focusing on distinct message security allows one to avoid the “rogue
key” attack (see Section 4.2). We do not consider distinct message security in
the ID-based setting, because there are no verification keys.



4 Our Base Aggregate Signature Construction

4.1 Generic Multlinear Construction

Setup(1λ, `) The trusted setup algorithm takes as input the security parameter
as well as the length ` of messages. It first runs G(1λ, k = ` + 1) and outputs a
sequence of groups G = (G1, . . . ,Gk) of prime order p, with canonical generators
g1, . . . , gk, where we let g = g1.

Next, it outputs random group elements (A1,0, A1,1), . . . , (A`,0, A`,1) ∈ G2
1.

These will be used to compute a function H(M) : {0, 1}` → Gk−1, which
serves as the analog of the full domain hash function of the BGLS [10] con-
struction. Let m1, . . . ,m` be the bits of message M . It is computed iteratively
as H1(M) = A1,m1

and for i ∈ [2, `], Hi(M) = e(Hi−1(M), Ai,mi). We define
H(M) = H`(M). The public parameters, PP, consist of the group descriptions
plus (A1,0, A1,1), . . . , (A`,0, A`,1).

KeyGen(PP) The key generation algorithm first chooses random α ∈ Zp. It
outputs the public verification key as VK = gα. The secret key SK is α ∈ Zp.

Sign(PP,SK,M ∈ {0, 1}`) The signing algorithm computes the signature as
σ = H(M)α ∈ Gk−1. This serves as an aggregate signature for the (single
element) multiset S = (VK,M).

Aggregate(PP, S̃, S′, σ̃, σ′). The aggregation algorithm simply computes the out-
put signature σ as σ = σ̃ ·σ′. The serves as a signature on the multiset S = S̃∪S′,
where ∪ is a multiset union.

Verify(PP, S, σ). The verification algorithm parses S as {(VK1,M1), . . . , (VK|S|,

,M|S|)}. It then checks that e(σ, g)
?
=
∏
i=1,...,|S| e(H(Mi),VKi) and accepts if

and only if it holds.

Correctness To see correctness, an aggregate σ on S = {(VK1,M1), . . . , (VK|S|,

M|S|} is the product of individual signatures; i.e., σ =
∏|S|
i=1H(Mi)

αi where
VKi = gαi , and thus passes the verification equation as:

e(σ, g) = e(

|S|∏
i=1

H(Mi)
αi , g) =

|S|∏
i=1

e(H(Mi)
αi , g) =

|S|∏
i=1

e(H(Mi), g)αi

=

|S|∏
i=1

e(H(Mi), g
αi) =

|S|∏
i=1

e(H(Mi), V Ki).

Efficiency and Tradeoffs An aggregate signature is one group element in Gk−1

independent of the number of messages aggregated. In a multilinear setting, the
space to represent a group element might grow with k (which is `+ 1). Indeed,
this happens in the GGH [19] graded algebra translation. One way to mitigate



this is to differ the message alphabet size in a tradeoff of computation versus
storage. The above construction uses a binary message alphabet. If it used an
alphabet of 2d symbols, then the aggregate signature could resident in the group
G`/d with `/d − 1 pairings required to compute it, at the cost of the public

parameters requiring 2d` group elements in G.

Construction in the GGH Framework We give a translation of the above con-
struction to the GGH [19] framework in the full version of this work [25].

4.2 Security Analysis

Assumption 1 (Multilinear Computational Diffie-Hellman: k-MCDH)
The k-Multilinear Computational Diffie-Hellman (k-MCDH) problem states the
following: A challenger runs G(1λ, k) to generate groups and generators of order
p. Then it picks random c1, . . . , ck ∈ Zp. The assumption then states that given

g = g1, g
c1 , . . . , gck it is hard for any poly-time algorithm to compute g

∏
j∈[1,k] cj

k−1

with better than negligible advantage (in security parameter λ).

We say that the k-MCDH assumption holds against subexponential advan-
tage if there exists a universal constant ε0 > 0 such that no polynomial-time
algorithm can succeed in the experiment above with probability greater than
2−λ

ε0
. In Section 5.3, we will give a variant of the k-MCDH assumption in

the approximate multilinear maps setting of GGH [19] that we will call the
GGH k-MCDH assumption. We note that the best cryptanalysis available of the
GGH framework [19] suggests that the GGH k-MCDH assumption holds against
subexponential advantage.

In the full version [25], we show that the basic aggregate signature scheme
for message length ` in the distinct message unforgeability game is:

– Selectively secure under the (`+1)-Multilinear Computational Diffie-Hellman
(MCDH) assumption.

– Fully secure under the (` + 1)-MCDH assumption against subexponential
advantage.

– Fully secure under a non-interactive, parameterized assumption which de-
pends on message length `, the number of adversarial signing queries and
the number of messages in the adversary’s forgery.

By applying a simple transformation given in the full version [25] which
follows from [10, 2], the distinct message requirement can be removed. Without
this transformation, there is a simple attack where the attacker sets some VK′ =
VK−1 and submits the identity element in Gk−1 as an aggregate forgery for
S = {(VK,M), (VK′,M)} for any message M of its choosing.



5 Our ID-Based Aggregate Signature Construction

5.1 Generic Multilinear Construction

Authority-Setup(1λ, `, n) The trusted setup algorithm is run by the master au-
thority of the ID-based system. It takes as input the security parameter as
well the bit-length ` of messages and bit-length n of identities. It first runs
G(1λ, k = ` + n) and outputs a sequence of groups G = (G1, . . . ,Gk) of prime
order p, with canonical generators g1, . . . , gk, where we let g = g1.

Next, it chooses random elements (A1,0 = ga1,0 , A1,1 = ga1,1), . . . , (A`,0 =
ga`,0 , A`,1 = ga`,1) ∈ G2

1 and random exponents (b1,0, b1,1), . . . , (bn,0, bn,1) ∈ Zp2.
It sets Bi,β = gbi,β for i ∈ [1, n] and β ∈ {0, 1}. These will be used to define a
function H(I,M) : {0, 1}n×{0, 1}` → Gk. Let m1, . . . ,m` be the bits of message
M and id1, . . . , idn as the bits of I. It is computed iteratively as

H1(I,M) = B1,id1 for i ∈ [2, n] Hi(I,M) = e(Hi−1(I,M), Bi,idi)

for i ∈ [n+ 1, n+ ` = k] Hi(I,M) = e(Hi−1(I,M), Ai−n,mi−n).

We define H(I,M) = Hk=`+n(I,M).
The public parameters, PP, consist of the group sequence description plus:

(A1,0, A1,1), . . . , (A`,0, A`,1), (B1,0, B1,1), . . . , (Bn,0, Bn,1)

The master secret key MSK includes PP together with the values (b1,0, b1,1), . . . ,
(bn,0, bn,1).

KeyGen(MSK, I ∈ {0, 1}n) The signing key for identity I is SKI = g
∏
i∈[1,n] bi,idi

n−1 ∈
Gn−1.

Sign(PP,SKI , I ∈ {0, 1}n,M ∈ {0, 1}`) The signing algorithm lets temporary
variable D0 = SKI . Then for i = 1 to ` it computes Di = e(Di−1, Ai,mi) ∈
Gn−1+i. The output signature is

σ = D` = (gk−1)(
∏
i∈[1,n] bi,idi )(

∏
i∈[1,`] ai,mi ).

This serves as an ID-based aggregate signature for the (single element) multiset
S = (I,M).

Aggregate(PP, S̃, S′, σ̃, σ′). The aggregation algorithm simply computes the out-
put signature σ as σ = σ̃ ·σ′. The serves as a signature on the multiset S = S̃∪S′,
where ∪ is a multiset union.

Verify(PP, S, σ). It parses S as {(I1,M1), . . . , (I|S|,M|S|)}. It then accepts if
and only if

e(σ, g)
?
=

∏
i=1,...,|S|

H(Ii,Mi).



Correctness and Security. For correctness, an aggregate σ on S = {(I1,M1), . . . ,
(I|S|,M|S|) is the product of individual signatures; i.e., σi where e(σi, g) =

H(Ii,Mi), and thus
∏|S|
i=1 e(σi, g) = e(

∏|S|
i=1 σi, g) = e(σ, g) =

∏|S|
i=1H(Ii,Mi).

Proof of the following theorem appears in the full version [25] and is similar to
the proof for the GGH translation which we provide shortly in Section 5.3.

Theorem 2 (Selective Security of ID-Based Construction). The ID-
based aggregate signature scheme for message length ` and identity length n in
Section 5.1 is selectively secure in the unforgeability game in Section 3 under the
(`+ n)-MCDH assumption.

5.2 ID-Based Construction in the GGH Framework

We show how to modify our ID-based construction to use the GGH [19] graded
algebras analogue of multilinear maps. Please note that we use the same notation
developed in [19], with some minor changes: Firstly, we use the canonical encod-
ing function cenc provided by the GGH framework more than once at each level
of the encoding, but only a globally fixed constant number of times per level. This
is compatible with the GGH encoding [19], and allows for a simpler exposition
of our scheme and proof. Also, for ease of notation on the reader, we sup-
press repeated params arguments that are provided to every algorithm.
Thus, for instance, we will write α← samp() instead of α← samp(params). Note
that in our scheme, there will only ever be a single uniquely chosen value for
params throughout the scheme, so there is no cause for confusion. Finally, we use
the variant of the GGH framework with “strong” zero-testing, where the zero
test statistically guarantees that a vector is a valid encoding of zero if it passes
the zero test. For further details on the GGH framework, please refer to [19]. See
also [20] in these proceedings.

Authority-Setup(1λ, `, n) The trusted setup algorithm is run by the master au-
thority of the ID-based system. It takes as input the security parameter as
well the bit-length ` of messages and bit-length n of identities. It then runs
(params,pzt)← InstGen(1λ, 1k=`+n). Recall that params will be implicitly given
as input to all GGH-related algorithms below.

Next, it chooses random encodings ai,β = samp() for i ∈ [1, `] and β ∈ {0, 1};
and random encodings bi,β = samp() for i ∈ [1, n] and β ∈ {0, 1}. Then it
assigns Ai,β = cenc1(1, ai,β) for i ∈ [1, `] and β ∈ {0, 1}; and it assigns Bi,β =
cenc1(1, bi,β) for i ∈ [1, n] and β ∈ {0, 1}.

These will be used to compute a function H mapping ` + n bit strings to
level k − 1 encodings. Let m1, . . . ,m` be the bits of M and id1, . . . , idn be the
bits of I. It is computed iteratively as

H1(I,M) = B1,id1
for i ∈ [2, n] Hi(I,M) = Hi−1(I,M) ·Bi,idi

for i ∈ [n+ 1, n+ ` = k] Hi(I,M) = Hi−1(I,M) ·Ai−n,mi−n .

We define H(I,M) = cenc2(k,Hk=`+n(I,M)).



The public parameters, PP, consist of the params,pzt plus:

(A1,0, A1,1), . . . , (A`,0, A`,1), (B1,0, B1,1), . . . , (Bn,0, Bn,1)

Note that params includes a level 1 encoding of 1, which we denote as g.
The master secret key MSK includes PP together with the encodings (b1,0, b1,1),

. . . , (bn,0, bn,1).

KeyGen(MSK, I ∈ {0, 1}n) The signing key for identity I is SKI = cenc2(n −
1,
∏
i∈[1,n] bi,idi).

Sign(PP,SKI , I ∈ {0, 1}n,M ∈ {0, 1}`) The signing algorithm lets temporary
variable D0 = SKI . Then for i = 1 to ` it computes Di = Di−1 · Ai,mi . The
output signature is

σ = cenc3(k − 1, D`).

This serves as an ID-based aggregate signature for the (single element) multiset
S = (I,M).

Aggregate(PP, S̃, S′, σ̃, σ′). The aggregation algorithm simply computes the out-
put signature σ as σ = σ̃+σ′. The serves as a signature on the multiset S = S̃∪S′,
where ∪ is a multiset union.

Verify(PP, S, σ). The verification algorithm parses S as {(I1,M1), . . . , (I|S|,M|S|)}.
It rejects if the multiplicity of any identity/message pair is greater than 2λ.

The algorithm then proceeds to check the signature by setting τ = cenc2(1, g),
and testing: :

isZero

pzt, τ · σ −
∑

i=1,...,|S|

H(Ii,Mi)


and accepts if and only if the zero testing procedure outputs true. Recall that g
above is a canonical level 1 encoding of 1 that is included in params, part of the
public parameters.

Correctness. Correctness follows from the same argument as for the ID-based
aggregate signature scheme in the generic multilinear setting.

5.3 Proof of Security for ID-based Aggregate Signatures in the
GGH framework

We now describe how to modify our proof of security for our ID-based con-
struction to use the GGH [19] graded algebras analogue of multilinear maps. As
before, for ease of notation on the reader, we suppress repeated params arguments
that are provided to every algorithm. For further details, please see [19].

We begin by describing the GGH analogue of the k-MCDH assumption that
we will employ:



Assumption 3 (GGH analogue of k-MCDH: GGH k-MCDH) The GGH
k-Multilinear Computational Diffie-Hellman (GGH k-MCDH) problem states the
following: A challenger runs InstGen(1λ, 1k) to obtain (params,pzt). Note that
params includes a level 1 encoding of 1, which we denote as g. Then it picks
random c1, . . . , ck each equal to the result of a fresh call to samp().

The assumption then states that given params,pzt, cenc1(1, c1), . . . , cenc1(1, ck)
it is hard for any poly-time algorithm to compute an integer t ∈ [1, 2λ] and an
encoding z such that

zTst

pzt, cenc2(1, g) · z − cenc1(k, t ·
∏

j∈[1,k]

cj)


outputs true.

We say the GGH k-MCDH assumption holds against subexponential advan-
tage if there exists a universal constant ε0 > 0 such that no polynomial-time
algorithm can succeed in the experiment above with probability greater than
2λ

ε0
. The best cryptanalysis available of the GGH framework [19] suggests that

the GGH k-MCDH assumption holds against subexponential advantage.
We establish full security of our ID-based aggregate signature scheme condi-

tioned on the k-MCDH assumption holding against subexponential advantage.
This follows immediately from the following theorem and a standard complexity
leveraging argument:

Theorem 4 (Selective Security of GGH ID-Based Construction). The
ID-based aggregate signature scheme for message length ` and identity length n
in Section 5.2 is selectively secure in the unforgeability game in Section 3 under
the GGH (`+ n)-MCDH assumption.

Corollary 1. The ID-based aggregate signature scheme for message length ` in
Section 5.2 is fully secure in the distinct message unforgeability game under the
GGH (`+ n)-MCDH assumption against subexponential advantage.

Proof. This follows immediately from a complexity leveraging argument: the
security parameter λ is chosen to ensure that 2λ

ε0
>> 2`, where 2−λ

ε0
is the

maximum probability of success allowed in the k-MCDH assumption against
subexponential advantage. Now, to establish full security, the simulator performs
exactly as in the selective security proof, but first it simply guesses the message
that will be forged (instead of expecting the adversary to produce this message).
Because this guess will be correct with probability at least 2−`, and the security
parameter λ is chosen carefully, full security with polynomial advantage (or
even appropriately defined subexponential advantage) implies an attacker on
the GGH k-MCDH assumption with subexponential advantage.

Proof. (of Theorem 4) We show that if there exists a PPT adversary A that
can break the selective security of the ID-based aggregate signature scheme



in the unforgettability game with probability ε for message length `, iden-
tity length n and security parameter λ, then there exists a PPT simulator
that can break the GGH (` + n)-MCDH assumption for security parameter
λ with probability ε. The simulator takes as input a GGH MCDH instance
params,pzt, C1 = cenc1(1, c1), . . . , Ck = cenc1(1, ck) where k = ` + n. Let mi

denote the ith bit of M and idi denote the ith bit of I. The simulator plays the
role of the challenger in the game as follows.

Init. Let I∗ ∈ {0, 1}n and M∗ ∈ {0, 1}` be the forgery identity/message pair
output by A.

Setup. The simulator chooses random x1, . . . , x`, y1, . . . , yn with fresh calls to
samp(). For i = 1 to `, let Ai,m∗i = Ci+n and Ai,m̄∗i = cenc1(1, xi). For

i = 1 to n, let Bi,id∗i = Ci and Bi, ¯id∗i
= cenc1(1, yi). The parameters are

distributed independently and uniformly at random as in the real scheme.
Queries. Conceptually, the simulator will be able to create keys or signatures

for the adversary, because his requests will differ from the challenge identity
or message in at least one bit. More specifically,
1. Create New Key: The simulator begins with an index i = 1 and an empty

sequence of index/identity/private key triples T . On input an identity
I ∈ {0, 1}n, if I = I∗, the simulator records (i, I∗,⊥) in T . Otherwise,
the simulator computes the secret key as follows. Let β be the first index
such that idi 6= id∗i . Compute s =

∏
i=1,...,n∧i 6=β Bi,idi . Then compute

SKI = cenc2(n − 1, s · yβ). Record (i, I,SKI) in T . Secret keys are
well-formed and, due to the rerandomization in the cenc2 algorithm,
are distributed in a manner statistically exponentially close to the keys
generated in the real game.

2. Corrupt User: On input an index i ∈ [1, |T |], the simulator returns to the
adversary the triple (i, Ii,SKIi) ∈ T . It returns an error if T is empty
or i is out of range. Recall that i cannot be associated with I∗ in this
game.

3. Sign: On input an index i ∈ [1, |T |] and a message M ∈ {0, 1}`, the
simulator obtains the triple (i, Ii,SKIi) ∈ T or returns an error if it
does not exist. If Ii 6= I∗, then the simulator signs M with SKIi in the
usual way.
If Ii = I∗, then we know M 6= M∗. Let β be the first index such
that mβ 6= m∗β . First compute σ′ =

∏
i=1,...,`∧i6=β Ai,mi . Next, compute

σ′′ = σ′ · xi. Also compute γ =
∏
i=1,...,nBi,idi . Finally, compute σ =

cenc3(k − 1, γ · σ′′) Return σ to A. Signatures are well-formed and, due
to the rerandomization in the cenc3 algorithm, distributed in a manner
statistically exponentially close to the keys generated in the real game.

Response. Eventually, A outputs an aggregate signature σ∗ on multiset S∗

where (I∗,M∗) ∈ S∗. The simulator will extract from this a solution to the
MCDH problem. This works by iteratively computing all the other signatures
in S∗ and then subtracting them out of the aggregate until only one or more
signatures on (I∗,M∗) remain. That is, the simulator takes an aggregate
for S∗ and computes an aggregate signature for S′ where S′ has one less



verification key/message pair than S at each step. These signatures will be
computed as in the query phase.
Eventually, we have an aggregate σ′ on t ≥ 1 instances of (I∗,M∗). However
recall thatH(I∗,M∗) is a level k encoding of (

∏
i∈[1,n] bi,id∗i )(

∏
i∈[1,`] ai,m∗i ) =∏

i∈[k] ci. Thus verification of the signature σ′ implies that (t, σ′) is a solu-

tion to the GGH k-MCDH problem, and so the simulator returns (t, σ′) to
break the GGH k-MCDH assumption.

The responses of the challenger are distributed statistically exponentially
closely to the real unforgeability game. The simulator succeeds whenever A does.
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