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1 Introduction

Functional encryption [SW05,SW08] is a new paradigm for public-key encryption
that enables fine-grained control of access to encrypted data. It extends several
previous notions, most notably identity-based encryption [Sha84,BF01,Coc01],
and provides, for instance, the ability to generate and release secret keys
associated with a keyword that can decrypt only those documents that contain
the keyword. More generally, functional encryption allows the owner of a
“master” secret key to release restricted secret keys that reveal a specific function
of encrypted data. This stands in stark contrast to traditional encryption, where
access to the encrypted data is all or nothing: namely, given the secret key, one
can decrypt and read the entire plaintext, but without it, nothing about the
plaintext is revealed at all (other than its length).

Functional Encryption. A functional encryption scheme for a circuit family
[BSW11,O’N10] C, associates secret keys SKC with every circuit C ∈ C and
ciphertext CT with input messages x.4

In broad terms, functional encryption requires that the owner of a secret
key SKC and a ciphertext CT (corresponding to an input message x) be able to
compute C(x), but learn nothing else about x itself. (Typically, and throughout
this work, we assume that the circuit family C as well as the circuit queries C
are public, in the sense that they are not hidden from the key holders.)

Moreover, security should hold in the presence of collusions amongst “key
holders”, that is, malicious users should not be able to combine their secret keys
to learn unauthorized information. More formally, a collusion of users that hold
secret keys SKC1 , . . . ,SKCq and an encryption of x should learn nothing else
about x apart from C1(x), . . . , Cq(x), for any polynomial q.

An important subclass of functional encryption is that of public-index
predicate encryption. Here, the input x is a pair (ind, µ) where ind is an index
and µ the payload message. Let P be a Boolean predicate defined on indices,
the circuit family C is given by:

CP (ind, µ) =

 (ind, µ) if P (ind) = 1

(ind,⊥) otherwise

Even though public index predicate encryption seems like a weak object,
it already captures identity-based encryption, and is also very useful in
constructing protocols for verifiably delegating computation as shown recently
by Parno, Raykova and Vaikuntanathan [PRV12].

Predicate encryption captures and generalizes a large number of previous con-
structions, including identity-based encryption (IBE) [Sha84,BF01,Coc01,BW06],
fuzzy IBE [SW05,ABV+12], attribute-based encryption (ABE) [GPSW06,LOS+10],

4 An alternative approach is associate secret keys to inputs and ciphertexts to circuits.
This is equivalent to our approach by taking a new “universal” family Ux that on
input C outputs C(x).



and inner product encryption [KSW08,LOS+10,AFV11]. Specifically, IBE cor-
responds to P encoding a point function. Moreover, essentially all known
constructions are examples of public-index predicate encryption schemes or its
variants, with a few exceptions – constructions in [BF01,BW06,KSW08] achieve
a stronger private-index security notion in which the index ind also remains
hidden from the adversary.

Security Notions. Boneh, Sahai and Waters [BSW11] and O’Neill [O’N10]
were the first to put forth a general definitional framework for functional
encryption. They considered two security notions for functional encryption,
namely: indistinguishability (IND) based security and simulation (SIM) based
security. The former stipulates that it is infeasible to distinguish encryptions of
any two messages, without getting a secret key that decrypts the ciphertexts
to distinct values; the latter stipulates the existence of an efficient simulator
that given C1(x), . . . , Cq(x), outputs the view of the colluders that are given an
encryption of x as well as secret keys SKC1

, . . . ,SKCq
.

Both of these notions may be further refined in two ways:

– adaptive (AD) versus non-adaptive (NA) which capture whether the adver-
sary’s queries to the key derivation oracle may or may not depend on the
challenge ciphertext; and

– one versus many, referring to whether the adversary receives a single or
multiple challenge ciphertexts.

Together, these give rise to eight security notions xx-yy-zzz, where xx ∈
{1,many}, yy ∈ {NA,AD}, and zzz ∈ {IND,SIM}.

Recent work. We briefly outline the known relationships amongst these eight
notions. We note that in general, indistinguishability based security provides
a weaker guarantee than simulation based security (that is, xx-yy-SIM implies
xx-yy-IND and xx-yy-IND does not imply xx-yy-SIM in general); on the other
hand, we have that 1-yy-IND implies many-yy-IND. Boneh, et al. [BSW11]
pointed out that indistinguishability based security is vacuous and inadequate for
certain circuit families, which indicate that we should opt for simulation-based
security whenever possible.5 O’Neill [O’N10] showed that NA-IND and NA-SIM
are equivalent for some subclass of circuit families that are roughly speaking,
“easy to invert”.

All prior positive results achieve many-AD-IND security or relaxations
there-of.6 The only known impossibility result we have for general functional
encryption is that of Boneh et al. [BSW11] for realizing the IBE functionality
under many-AD-SIM security. In particular, in light of known results, it is entirely

5 [BSW11, Section 5.3] presents an “equivalence” between many-AD-IND and many-
AD-SIM in the programmable random oracle model for public-index predicate
encryption. For this work, we consider only the standard model.

6 A commonly used relaxation of AD-IND security for predicate encryption is that of
“selective security” [CHK03].



realizable for public-index realizable for all circuits

xx-yy-IND [GVW13,GGH+13]7 open

xx-yy-SIM
open no (Section 4)(xx = 1 OR yy = NA)

many-AD-SIM no [BSW11] no ←

xx-yy-USIM
open open(xx = 1 OR yy = NA)

many-AD-USIM no [BSW11] ] no ←

Fig. 1. Summary of results and open problems. Results from this work are marked
with boldface. Results implicit in previous works are marked with ]. Results that are
trivially implied by results in a previous column are marked with ←. The second and
third columns indicate whether the definition is realizable for all public-index predicate
encryption schemes (e.g. IBE) and for all circuits respectively. USIM refers to the notion
of unbounded simulation discussed in Section 1.2.

conceivable that we can realize functional encryption for all poly-size circuits
under either 1-AD-SIM security (thus 1-AD-IND and many-AD-IND security) or
many-NA-SIM security.

In this work, we narrow the gap between existing security definitions
for functional encryption, as well as that between existing constructions and
impossibility results. Our results are as follows.

1.1 New Lower Bound: Impossibility for Simulation-based
Definitions

Our main result rules out general functional encryption under the one message
secure, non-adaptive simulation definition (1-NA-SIM). In particular, this rules
out both of the scenarios presented at the end of the preceding section (i.e. 1-
AD-SIM or many-NA-SIM for all circuits) in a strong sense. This is the first lower
bound that exploits unbounded collusions in an essential way. We compare the
impossibility result from [BSW11] with ours in the full version.

Theorem 1 (Informal). There exists a circuit family C for which there is no
1-NA-SIM-secure functional encryption scheme.

Specifically, assuming the existence of a family of weak pseudo-random function
wPRF(·, ·) (See Definition 3) that outputs one bit, we show that there does not
exist a functional encryption scheme for the family:

Cd(x) = wPRF(x, d),where the input message x is the PRF seed

We show that the ciphertext size in a 1-NA-SIM-secure scheme realizing this
circuit family must grow with the size of the collusion; this yields a contradiction,



since the scheme must handle unbounded collusions. In fact, the result is
unconditional since any non-trivial functional encryption scheme gives rise to
a one-way function and thus pseudo-random functions.

The key observation is as follows. Suppose the adversary requests for
q secret keys corresponding to random inputs Cd1 , . . . , Cdq and then re-
quests for an encryption of a random x. Then, the simulated ciphertext
together with the q simulated secret keys constitute a description of the values
wPRF(x, d1), . . . ,wPRF(x, dq), which is computationally indistinguishable from
a sequence of q truly random bits via pseudo-randomness. By a standard
information-theoretic argument, this means that the length of the ciphertext
plus the secret keys must grow with q. To obtain a lower bound on the
ciphertext size, we carefully exploit the fact that the simulator has to generate
the secret keys before it sees the output of wPRF(x, ·). Then, the simulator
has to generate a small ciphertext that “explains” all these pseudorandom
values which is impossible using a compressibility argument. More generally, we
show that (1) weak pseudo-random family is “incompressible”, and (2) NA-SIM-
secure functional encryption only exists for “compressible” circuit families.
(In particular, the circuit family for all public-index predicate encryption is
compressible.)

This idea is reminiscent of the obfuscation impossibility result of Goldwasser
and Kalai [GK05], although the precise settings are quite different (in particular,
functional encryption and program obfuscation seem incomparable, although
related, objects).

Implications. The basic idea described above can be extended to a lower bound
for even weaker forms of the simulation-based definition, including (a non-
adaptive variant of) the definition of Boneh, Sahai and Waters [BSW11]. Here,
we mention yet another implication of this idea.

Gorbunov, Vaikuntanathan and Wee [GVW12] recently presented a 1-
AD-SIM-secure functional encryption scheme for all circuits, assuming that the
adversary can only corrupt an a-priori bounded number of users (and thus,
get the corresponding secret keys). One of the shortcomings of their bounded-
collusion security notion as well as their construction is that the parameters of
the system, and especially the size of the ciphertext depends on the collusion
bound q. A natural question is whether their ciphertexts can be made to have
size independent of q (or, at the very least, o(q)).8 Indeed, in light of the results
of Dodis, Katz, Xu and Yung [DKXY02] and most recently, Goldwasser, Lewko
and Wilson [GLW12] in the context of bounded-collusion IBE, one might expect
that achieving “short” ciphertexts can actually be possible in general.

Unfortunately, our techniques result in a strong negative answer to this
question.

8 The previous lower bound for many-AD-SIM IBE in [BSW11] (which says that the
secret key size must grow with the number of challenge ciphertexts) is not applicable
here as the [GVW12] construction considers only a single challenge ciphertext.



Corollary 1. There exists a family of circuits C such that for every q =
q(κ), there are no q-collusion resistant 1-NA-SIM-secure functional encryption
schemes with ciphertexts of size o(q).

1.2 New Perspectives: Unbounded Simulation

The preceding lower bound together with those of Boneh, Sahai and Wa-
ters [BSW11] show that even fairly weak simulation-based definitions of func-
tional encryption are unachievable for a large and natural class of circuits. This
state of affairs begs the question:

What is a meaningful and generally realizable security notion for
functional encryption?

While we do not provide a definitive answer to this question in our work, we
believe that the quest for the right definition should incorporate insights from
secure computation and zero knowledge. Indeed, Sahai and Seyalioglu [SS10]
used Yao’s garbled circuits to construct a one-query secure functional encryption
scheme for all circuits. Subsequently, Gorbunov et al. [GVW12] exploited
more techniques and insights from secure computation [Yao86,BGW88,BMR90]
to derive general feasibility results for functional encryption with bounded
collusions.

We put forth USIM security, where the simulator has unbounded computa-
tional power. In particular, this would allow us to circumvent our lower bound
in the previous section, since the lower bound crucially relies on the existence
of an efficient simulator in order to break the weak pseudo-random function.
Similar notions have been considered for zero knowledge and secure computation
[Pas03,PS04,BS05].9 In the more basic setting of public-key encryption, we know
that IND and SIM are equivalent [GM82], and it follows readily that all of IND,
USIM, and SIM are also equivalent.

We begin an intuitive interpretation of what USIM security buys us, via the
real/ideal paradigm. Consider an efficient adversary A holding a secret key skC .
Then, an encryption of x leaks no more information about x apart from what
a computationally unbounded adversary can learn from C(x). Specifically, in
the case of public-index predicate encryption where the predicate is false, C(x)
hides the payload message µ completely, even against unbounded adversaries.
Thus, USIM security for public-index predicate encryption offers very meaningful
simulation-based security.10 On the other hand, for circuits that only hide

9 The works on zero knowledge and secure computation focus on quasi-polynomial-
time simulators. We observe that our lower bound also rules out quasi-polynomial-
time simulators assuming the existence of one-way functions with sub-exponential
hardness.

10 Prior work of O’Neill [O’N10, Section 4] implies that NA-IND,NA-USIM and NA-SIM
are equivalent for public-index predicate encryption. This does not subsume the
point we are making because our argument applies also to the adaptive setting,
where AD-IND and AD-SIM are provably not equivalent for public-index predicate
encryption.



information about x computationally, USIM security would be inadequate and
SIM security remains the desirable notion.

We observe that USIM security is “sandwiched” between IND and SIM
security, that is, for yy ∈ {NA,AD}:

yy-IND⇐ yy-USIM⇐ yy-SIM

This result holds for both single and many message definitions. Then, we build
upon the results in [BSW11] to obtain separations and impossibility results for
USIM security:

– We present a counter-example separating SIM and USIM security. In fact,
the example (which encodes a one-way permutation into the circuit family)
is exactly that in [BSW11, Section 4.2] for separating SIM and IND security.

– We show that it is impossible to achieve many-AD-USIM security for the
IBE functionality. This strengthens the many-AD-SIM lower bound for IBE
in [BSW11, Section 5.2]. That is, the latter is fundamentally about the
limitations of simulation-based security notion, and not about efficiency.

– A discussion in [BSW11] pointed that IND security is inadequate whenever
“the output of the functionality is supposed to have some computational
hiding properties”; however, there was no precise formalization of the latter.
USIM security provides a way to make this statement precise. Recall that
USIM security implies IND security, and therefore, if USIM security is
inadequate for some functionality, then IND security must be inadequate
for the same functionality. Thanks to the real/ideal paradigm, we have a
simple “litmus test” for checking whether USIM security is adequate or not.
Specifically, USIM security is inadequate if C(x) reveals more information
about x to an unbounded adversary than to an efficient adversary. (Indeed,
this is trivially the case for the separation for USIM and SIM security since
an unbounded adversary can invert the one-way permutation.)

We leave as an intriguing open problem the question of establishing either a
separation or an equivalence between USIM and IND security. As a first step,
we establish an equivalence between USIM and IND security in the “fully non-
adaptive” setting, where all queries and messages are generated by the adversary
before it sees the public parameters (See Remark ?? for details).

Organization. We refer the reader to Figure 1 for a survey of our results and
open problems, and to Appendix ?? for results on the unbounded simulator
definition.

1.3 Discussion

FunctoMania. Let’s be wishful thinkers for a minute – suppose we can have
whatever we hope for in functional encryption, call this world “Functomania”.



What does Functomania look like? In light of the existing (im)possibilities, there
will be two incomparable “dream results”11:

– 1-AD-SIM secure public index predicate encryption for all efficient predicates;
such schemes also satisfy 1-AD-IND, 1-AD-USIM, and many-AD-IND security.

– 1-AD-USIM secure functional encryption for all poly-size circuits; such
schemes also satisfy 1-AD-IND and many-AD-IND security.

The IND-(U)SIM Conundrum. From a definitional stand-point, SIM/USIM-based
security notions are preferable to IND-based security notion, as they offer a
stronger security guarantee that has a natural, intuitive and aesthetically pleas-
ing interpretation via the real/ideal paradigm. On the other hand, IND-based
security notion allows us to bypass the impossibility results given in [BSW11]
and in this work; in addition, they guarantee message composability in that
security with a single ciphertext implies security for multiple ciphertexts (and
so does NA-SIM considered in [GVW12] and those considered in an independent
work [BF13]). We do not offer a complete answer to this conundrum; instead, we
point out that 1-AD-SIM and 1-AD-USIM appear to be an adequate compromise
for predicate encryption and general functional encryption respectively. We also
note that such a conundrum is not unique to functional encryption, and has
indeed previously surfaced and widely studied in the context of zero knowledge
[FS90,Pas03] and secure multi-party computation [PS04,BS05,MPR06]. One
notable difference is that in zero knowledge and secure computation, super-
polynomial time simulation offers concurrency; this is not the case for functional
encryption. (The lower bound for many-AD-USIM-secure IBE indicates that even
unbounded-time simulation does not help with message composability.)

Concurrent and independent work. In an independent work, Bellare and O’Neill
[BO12] put forth simulation-based definitions for functional encryption with non-
black-box simulators. In addition, they extended the [BSW11] lower bound for
IBE to the setting of efficient, non-black-box simulators, assuming the existence
of collision-resistant hash functions. At a high level, the work is similar in spirit
to our results on USIM security in that both consider larger classes of simulators
than that in [BSW11] The independent work of Barbosa and Farshim [BF13]
takes a orthognal approach, namely to restrict the adversary’s key queries via
some “potential leakage relation”.

As with [BSW11], the definitions we study in this work are “inherently black-
box” since the simulator must explicitly provide the adversary with secret keys
and ciphertexts. Moreover, our NA-SIM lower bound relies crucially on black-box
simulation as the compression comes from the simulated ciphertext. This leaves
as an open problem the question of realizing (or ruling out) many-AD-USIM IBE
with a non-black-box simulator.
11 Substantial progress were made recently on both of these problems in

[SW12,GVW13,GKP+13].



2 Functional Encryption

Let X = {Xκ}κ∈N and Y = {Yκ}κ∈N denote ensembles where each Xκ and Yκ
is a finite set. Let C =

{
Cκ
}
κ∈N denote an ensemble where each Cκ is a finite

collection of circuits, and each circuit C ∈ Cκ takes as input a string x ∈ Xκ and
outputs C(x) ∈ Yκ.

A functional encryption scheme FE for C consists of four algorithms FE =
(FE.Setup,FE.Keygen, FE.Enc,FE.Dec) defined as follows12.

– Setup FE.Setup(1κ) is a p.p.t. algorithm takes as input the unary represen-
tation of the security parameter and outputs the master public and secret
keys (MPK,MSK).

– Key Generation FE.Keygen(MSK, C) is a p.p.t. algorithm that takes as
input the master secret key MSK and a circuit C ∈ Cκ and outputs a
corresponding secret key SKC .

– Encryption FE.Enc(MPK, x) is a p.p.t. algorithm that takes as input the
master public key MPK and an input message x ∈ Xκ and outputs a
ciphertext CT.

– Decryption FE.Dec(SKC ,CT) is a deterministic algorithm that takes as
input the secret key SKC and a ciphertext CT and outputs C(x).

Definition 1 (Correctness). A functional encryption scheme FE is correct if
for all C ∈ Cκ and all x ∈ Xκ,

Pr

[
(MPK,MSK)← FE.Setup(1κ);

FE.Dec(FE.Keygen(MSK, C),FE.Enc(MPK, x)) 6= C(x)

]
= negl(κ)

where the probability is taken over the coins of FE.Setup, FE.Keygen, and FE.Enc.

2.1 A Simulation-based Definition of Security

In this section, we present a simulation-based definition of functional encryption,
similar in spirit to the way one defines security for secure computation via the
ideal/real paradigm. We define the security game for a single message since our
lower bounds apply to this weaker setting. However, this definition can be easily
extended to many messages setting (see Appendix ??).

Definition 2 (1-NA-SIM- and 1-AD-SIM- Security). Let FE be a functional
encryption scheme for a circuit family C. Consider a p.p.t. adversary A =
(A1, A2) and a stateful p.p.t. simulator Sim.13 Let Ux(·) denote a universal
oracle, such that Ux(C) = C(x). Consider the following two experiments:

12 Unlike in [BSW11], we do not consider the “empty key”.
13 One can replace a stateful simulator can be replaced by a regular (stateless) simulator

that outputs a state sts upon each invocation which is carried over to its next
invocation.



ExprealFE,A(1κ): ExpidealFE,Sim(1κ):

1: (MPK,MSK)← FE.Setup(1κ)

2: (x, st) ←AFE.Keygen(MSK,·)
1 (MPK)

3: CT← FE.Enc(MPK, x)

4: α ← A
O(MSK,·)
2 (MPK,CT, st)

5: Output (x, α)

1: MPK← Sim(1κ)

2: (x, st)← A
Sim(·)
1 (MPK)

3: CT← SimUx(·)(1κ, 1|x|)

4: α← A
O′(·)
2 (MPK,CT, st)

5: Output (x, α)

We distinguish between two cases of the above experiment:

1. The adaptive experiment, where:
– the oracle O(MSK, ·) = FE.Keygen(MSK, ·) and
– the oracle O′(·) is the simulator, namely SimUx(·)(·)

We call a stateful simulator algorithm Sim admissible if, on each input C,
Sim makes just a single query to its oracle Ux(·) on C itself.
The functional encryption scheme FE is then said to be simulation-secure
for one message against adaptive adversaries (1-AD-SIM-secure, for short) if
there is an admissible stateful p.p.t. simulator Sim such that for every p.p.t.
adversary A = (A1, A2), the following two distributions are computationally
indistinguishable:{

ExprealFE,A(1κ)

}
κ∈N

c
≈
{
ExpidealFE,Sim(1κ)

}
κ∈N

2. The non-adaptive experiment, where the oracles O(MSK, ·) and O′(·) are
both the “empty oracles” that return nothing.
The functional encryption scheme FE is then said to be simulation-secure for
one message against non-adaptive adversaries (1-NA-SIM-secure, for short) if
there is an admissible stateful p.p.t. simulator Sim such that for every p.p.t.
adversary A = (A1, A2), the two distributions above are computationally
indistinguishable.

Remarks on the Definition. Our definition is stronger than that in [BSW11] but
weaker than that in [GVW12]; our lower bound in Section 4 holds for all three
definitions. Amongst the three, the one in [GVW12] is the only for which we
know a composition theorem where security for one message implies security
for many messages, in the non-adaptive setting. Note that composition in the
non-adaptive setting is the “best” we can hope for; composition in the adaptive
setting is essentially impossible by many-AD-SIM lower bound for IBE [BSW11].
In more detail:

– In [BSW11], the simulator is given oracle access to A2, which it can
call on any ciphertext. Therefore, it can “rewind” the adversary A2 and
adaptively reconstruct the view, which is problematic for composition
[PRS02,Lin04,BMQU07]. We call this a “rewinding” definition. In our
“straight-line” definition, the simulator must commit to a ciphertext once
and for all, which makes it stronger.



– Unlike our definition, the [GVW12] definition does not allow the simulator
to fake or “program” the setup parameters and the secret keys. The difficulty
in proving a composition theorem for our definition lies in that the simulator
may use “trapdoor” information from faking the setup parameters and secret
keys while simulating the ciphertext.

We note that in the equivalence of NA-IND and NA-SIM under pre-image
sampleability in [O’N10, Section 4], the NA-SIM-simulator actually satisfies the
stronger definition in [GVW12].

The Indistinguishability-based Definition of Security. We refer the reader to the
full version for the non-adaptive NA-IND and the adaptive AD-IND notions of
security.

3 Preliminaries

Notations. Let D denote a distribution over some finite set S. Then, x ← D is
used to denote the fact that x is chosen from the distribution D. When we say
x ← S, we simply mean that x is chosen from the uniform distribution over S.
Let κ denote the security parameter.

Definition 3 (wPRF). Let wPRF = {wPRFκ}κ∈N denote a family of efficiently
computable functions where wPRFκ : {0, 1}n(κ) × {0, 1}m(κ) → {0, 1}k(κ), the
first argument of which is called the seed to the wPRF and the second argument
is the input.

For every probabilistic polynomial time oracle distinguisher Dist, consider the
following two experiments:

– RealDist(1
κ): Choose x

$← {0, 1}n(κ) and run Dist with access to a proba-
bilistic oracle Oreal(x) which, when invoked, chooses a uniformly random
d ← {0, 1}m(κ) and returns the pair (d,wPRFκ(x, d)). This experiment
outputs whatever Dist outputs.

– RandDist(1
κ): Choose a uniformly random function R : {0, 1}m(κ) →

{0, 1}k(κ) and run Dist with access to a probabilistic oracle Orand(R) which,
when invoked, chooses a uniformly random d ← {0, 1}m(κ) and returns the
pair (d,R(d)). This experiment outputs whatever Dist outputs.

We say wPRF is a weak pseudo-random function if for all p.p.t. distinguishers
Dist, ∣∣Pr[RealDist(1

κ) = 1]− Pr[RandDist(1
κ) = 1]

∣∣ = negl(κ)

where the probabilities are over the choice of x and R, as well as the coin-tosses
of Dist and the oracles Oreal and Orand.

This is in contrast to the stronger notion of (regular) pseudo-random
functions where the distinguisher Dist gets query access to the function, namely
it can query the function on inputs x of its choice and get either the output of
the function (in the real world) or independent random bits (in the ideal world).

In our impossibility result, we will use a weak pseudo-random function with
seed length n(κ) = κ and output length k(κ) = 1.



4 Impossibility Results for Functional Encryption

In this section, we present our main lower bound for 1-NA-SIM-secure functional
encryption. We begin with a notion of “incompressible” circuits. Then, we show
that (1) weak pseudo-random functions are “incompressible”, and (2) 1-NA-SIM-
secure functional encryption only exists for “compressible” circuits. Putting the
two together yields our lower bound.

4.1 Incompressible Circuits

We first define a family of compressible circuits. Informally, we say that a family
of circuits {Gκ} is (`, t)-compressible if for a list of uniformly random circuit
descriptions G1, . . . , G` ∈ Gκ and a uniformly chosen input x, there is some
efficiently computable description of G1(x), . . . , G`(x) of size t.

Definition 4 (Incompressible Circuits). Let ` = `(κ) and t = t(κ) be
functions of the security parameter κ. A family of circuits G = {Gκ}κ∈N is
(`, t)-compressible if there exists a family of (deterministic) compressor circuits
{Cκ}κ∈N and a family of decompressor circuits {Dκ}κ∈N such that:

– (polynomial size) the circuits Cκ and Dκ have size poly(κ, `).
– (mild compression) for sufficiently large κ and all x,∣∣Cκ(G1, . . . , G`, y1, . . . , y`)

∣∣ = t

where yi = Gi(x).
– (correctness) there is a polynomial p = p(κ) such that

Pr[x
$←{0, 1}κ, G1, . . . , G`

$← Gκ, yi = Gi(x) :

Dκ(G1, . . . , G`,Cκ(G1, . . . , G`, y1, . . . , y`)) = (y1, . . . , y`)] ≥ 1/p(κ)

where the probability is taken over the choice of x as well as the circuits
G1, . . . , G`.

The family G is (`, t)-incompressible if it is not (`, t)-compressible.

We now give examples of (in)compressible circuits. First, consider the notion
of pre-image samplable family of circuits introduced by O’Neill [O’N10] which
requires that given G1(x), . . . , G`(x), there is a polynomial-time algorithm that
returns an arbitrary x′ such that Gi(x

′) = Gi(x) for all i. In our language, this
says that the family G is (`, |x′|)-compressible; the compression algorithm simply
outputs x′.

Next, consider an arbitrary public-index circuit family parametrized by
predicates P and given by:

GP (ind, µ) =

 (ind, µ) if P (ind) = 1

(ind,⊥) otherwise



It is easy to see that this circuit family is (`, |(ind, µ)|)-compressible. On input

GP1
(ind, µ), . . . , GP`

(ind, µ)

the compression algorithm always learn ind. In addition, if Pi(ind) = 1 for some
i, then the compressor also learns µ and hence it outputs (ind, µ). If Pi(ind) = 0
for all i, then the compressor outputs (ind,⊥). Given

(
GP1

, . . . , GP`
, (ind, µ)

)
the decoding algorithm outputs yi = (ind, µ) if GPi(ind) = 1 and yi = (ind,⊥
) otherwise. Given

(
GP1

, . . . , GP`
, (ind,⊥)

)
the decoder simply outputs yi =

(ind,⊥) for all i.
On the other hand, as we show below (see Lemma 1), any family of (weak)

pseudo-random functions is incompressible in a strong sense. More precisely,
consider a family of circuits G = {Gdi(·) = wPRF(·, di)} where di serves as the
input to the pseudo-random function. Informally, the incompressibility is due to
the fact that a sequence (Gd1(x), . . . , Gd`(x)) = (wPRF(x, d1), . . . ,wPRF(x, d`))
is indistinguishable from a sequence of uniformly random bits, which are clearly
incompressible.

Lemma 1 (weak PRFs are (`, ` − κ)-incompressible). Let wPRF =
{wPRFκ : {0, 1}κ × {0, 1}m(κ) → {0, 1}}κ∈N be a family of weak pseudo-random
functions, where m(κ) = ω(log κ). Define Gd(x) = wPRF(x, d). Consider a
family G = {Gκ}κ∈N defined as

Gκ =
{
Gd(·) : |d| = m(κ)

}
Then, G is (`, `− κ)-incompressible.

We refer the reader to the full version for the formal proof.

4.2 The Impossibility Result

We are now ready to state and prove our main theorem.

Theorem 2. There exists a family of circuits G for which there are no 1-
NA-SIM-secure functional encryption schemes.

Proof. We consider two cases.

Case 1: Assume there exists a circuit family of weak pseudo-random functions

wPRF = {wPRFκ : {0, 1}κ × {0, 1}m(κ) → {0, 1}}κ∈N

where m(κ) = ω(log κ). Let Gd(x) = wPRF(x, d) and consider a family G =
{Gκ}κ∈N defined as

Gκ =
{
Gd(·) : |d| = m(κ)

}
Assume, for the sake of contradiction, there exist a 1-NA-SIM-secure function

encryption scheme FE for G, and let |CT| denote the length of a ciphertext in
the scheme. Let ` = `(κ) = |CT|+ κ.



From Lemma 1, we know that G is (|CT|+κ, |CT|)-incompressible. However,
Lemma 2 below tells us that since there is a 1-NA-SIM secure scheme for
G, the family G is (|CT| + κ, |CT|)-compressible. This gives us the desired
contradiction, and therefore, there cannot exist a 1-NA-SIM-secure functional
encryption scheme for G.

Case 2: Assume there does not exist a family of weak pseudo-random functions.
Also, for the sake of contradiction, assume there exists a 1-NA-SIM-secure
function encryption scheme for all families of circuits G.

In particular, this means that there is a functional encryption scheme
for the empty circuit family (namely, a family G that does not contain any
circuits at all). A 1-NA-SIM-secure scheme FE for G is also a secure public-key
encryption scheme. Since public-key encryption implies one-way functions, which
in turn imply pseudo-random functions [GGM86,HILL99], we obtain the desired
contradiction.

Lemma 2 (1-NA-SIM ⇒ (`, |CT|)-compressibility). Let G = {Gκ}κ∈N be a
family of circuits. Suppose there exists a 1-NA-SIM-secure functional encryption
scheme for the G. Then, the family G is (`, |CT|)-compressible for any polyno-
mially bounded ` = `(κ), where |CT| denotes size of the encryption of input
x.

Informally, the compression algorithm works as follows: on input G1, . . . , G` and
G1(x), . . . , G`(x), the output is the simulated ciphertext corresponding to an
encryption of x. The decompression algorithm then evaluates the decryption
algorithm, which is guaranteed to produce G1(x), . . . , G`(x).

Proof. Let (FE.Setup,FE.Keygen,FE.Enc,FE.Dec) denote the encryption scheme
for the family G. Consider the adversary A = (A1, A2) in the 1-NA-SIM security
experiment that acts as follows:

– A1 chooses G1, . . . , G`
$← G independently at random and requests for

the corresponding secret keys SK1, . . . ,SK`. In addition, it chooses x
$←

{0, 1}m(κ) and outputs x as the challenge message and state

(G1, . . . , G`,SK1, . . . ,SK`)

– A2 outputs α composed of the challenge ciphertext and the state

(G1, . . . , G`,SK1, . . . ,SK`)

Let Sim denote the (admissible) stateful p.p.t. simulator guaranteed by 1-
NA-SIM security. We show how to use the simulator to construct a family of
(deterministic) compressor and decompressor circuits Cρ and Dρ, indexed by a
random string ρ corresponding to the random tape for the simulator:

– The compressor Cρ, on input G1, . . . , G` and y1, . . . , y` works as follows: first,
compute MPK← Sim(1κ; ρ) and secret keys {SKi : SKi ← Sim(Gi; ρ)}i∈[`].



Then compute and output CT as the compressed string, where queries Gi(x)
are answered with yi:

CT← SimUx(·)(1|m(κ)|)

– The decompressor Dρ, on input G1, . . . , G` and CT first reconstructs the
master public key MPK← Sim(1κ; ρ) and the set of secret keys:

{SKi : SKi ← Sim(Gi; ρ)}i∈[`]
Note that Dρ has the same randomness ρ hard-wired, and so the secret keys
SKi are exactly the same as those used by Cρ. Finally, it computes and
outputs: {

yi ← FE.Dec(SKi,CT)
}
i∈[`]

Formally, we output (Cρ,Dρ) for a random ρ, which is a pair of polynomial-size
circuits. Clearly, we achieve mild compression (where |CT| is the compressor’s
output size), since the size of CT is determined by the functional encryption
scheme and independent of `. To establish correctness, it suffices to show that:

Pr
ρ,x,G1,...,G`

[Dρ(G1, . . . , G`,Cρ(G1, . . . , G`, G1(x), . . . , G`(x))) =

(G1(x), . . . , G`(x))] ≥ 1− negl(κ)

Here, we will rely on the correctness of the functional encryption scheme as well
as 1-NA-SIM-security. First, consider the distinguisher Dist that given the output
(x,CT, G1, . . . , G`,SK1, . . . ,SK`) of the adversary A2 proceeds as follows:

Output 1 iff for all i ∈ [`], FE.Dec(SKi,CT) = Gi(x).

Observe that by correctness of the encryption scheme, Dist outputs 1 with
probability 1 − negl(κ) given the output of the adversary A2 in the 1-
NA-SIM experiment. Therefore, by 1-NA-SIM-security, Dist also outputs 1 with
probability 1 − negl(κ) given the output of the (admissible) simulator, where
the randomness is taken over the coin tosses ρ of the simulator, along with the
random choices of x,G1, . . . , G`.

This shows that the pair of circuits (Cρ,Dρ) for a uniformly random ρ
is a correct compressor-decompressor pair. Therefore, we obtain a (`, |CT|)-
compressor and a decompressor, thus establishing the lemma.

We point out here that our lower bound extends to the setting where the
simulator is not required to be admissible, by using a family of (standard)
pseudo-random functions.

Finally, the argument here generalizes to showing that functional encryption
secure against an a-priori bounded number q = q(κ) of collusions is impossible
if one insists on small ciphertexts (namely, ciphertexts with much fewer than q
bits). This matches the recent result of [GVW12] who construct such functional
encryption schemes with ciphertexts of size polynomial in q.

Corollary 2. There exists a family of circuits G such that for every q =
q(κ), there are no q-collusion resistant 1-NA-SIM-secure functional encryption
schemes with ciphertexts of size o(q).



4.3 Extensions: Impossibility of Weaker Simulation-based
Definitions

The idea behind our impossibility result is robust enough to apply to various
relaxations of the simulation-based security definition. In this section, we
describe a number of such extensions of our result.

Impossibility for the selective and random-input definitions. In the selective
model, the adversary is required to commit to the secret key queries G1, . . . , Gq
as well as the challenge input x before the setup phase. In particular, this means
that the adversary will not be able to pick up the circuits or the challenge input
depending on the system parameters. Variants of the selective security model are
frequently considered in the literature as a relaxations of regular security notions
(see, e.g., [BB11,GPSW06,AFV11]). Another relaxation one can consider is one
where the adversary is not allowed to choose the circuits or the challenge, but
instead, they are chosen uniformly at random.

Our lower bound easily extends to these weaker notions, simply because the
adversary we consider in the proof of Lemma 2 chooses the circuits and the
challenge uniformly at random, and independent of the system parameters.

Impossibility for the non-adaptive BSW Definition (the “Rewinding Definition”).
The main difference between the definition proposed by [BSW11] and our
definition in Section 2 is that whereas our definition restricts the simulator
to be “straight-line”, the BSW definition allows the simulator to “rewind” the
adversary and interact with it in order to generate the view. For more details,
we direct the reader to the full version.

We also state the impossibility extension for secret-key functional encryption
in the full version.
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