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Abstract. Our main result is a construction of a lattice-based digital
signature scheme that represents an improvement, both in theory and in
practice, over today’s most efficient lattice schemes. The novel scheme
is obtained as a result of a modification of the rejection sampling al-
gorithm that is at the heart of Lyubashevsky’s signature scheme (Eu-
rocrypt, 2012) and several other lattice primitives. Our new rejection
sampling algorithm which samples from a bimodal Gaussian distribu-
tion, combined with a modified scheme instantiation, ends up reducing
the standard deviation of the resulting signatures by a factor that is
asymptotically square root in the security parameter. The implementa-
tions of our signature scheme for security levels of 128, 160, and 192 bits
compare very favorably to existing schemes such as RSA and ECDSA in
terms of efficiency. In addition, the new scheme has shorter signature and
public key sizes than all previously proposed lattice signature schemes.

As part of our implementation, we also designed several novel algorithms
which could be of independent interest. Of particular note, is a new
algorithm for efficiently generating discrete Gaussian samples over Zn.
Current algorithms either require many high-precision floating point ex-
ponentiations or the storage of very large pre-computed tables, which
makes them completely inappropriate for usage in constrained devices.
Our sampling algorithm reduces the hard-coded table sizes from linear
to logarithmic as compared to the time-optimal implementations, at the
cost of being only a small factor slower.

1 Introduction

Lattice cryptography is arguably the most promising replacement for standard
cryptography after the eventual coming of quantum computers. The most ubiqui-
tous public-key cryptographic primitives, encryption schemes [18,26] and digital
signatures [24,15], already have somewhat practical lattice-based instantiations.
In addition, researchers are rapidly discovering new lattice-based primitives, such
as fully-homomorphic encryption [10], multi-linear maps [9], and attribute-based
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Security Signature size Sign (ms) Sign/s Verify (ms) Verify/s

BLISS-0 6 60 bits 3.3 kilobits 0.241 4k 0.017 59k
BLISS-I 128 bits 5.6 kb 0.124 8k 0.030 33k
BLISS-II 128 bits 5 kb 0.480 2k 0.030 33k
BLISS-III 160 bits 6 kb 0.203 5k 0.031 32k
BLISS-IV 192 bits 7 kb 0.375 2.5k 0.032 31k

RSA 1024 72-80 bits 1 kb 0.167 6k 0.004 91k
RSA 2048 103-112 bits 2 kb 1.180 0.8k 0.038 27k
RSA 4096 > 128 bits 4 kb 8.660 0.1k 0.138 7.5k

ECDSA1 160 80 bits 0.32 kb 0.058 17k 0.205 5k
ECDSA 256 128 bits 0.5 kb 0.106 9.5k 0.384 2.5k
ECDSA 384 192 bits 0.75 kb 0.195 5k 0.853 1k

Table 1. Benchmarking on a desktop computer (Intel Core i7 at 3.4Ghz, 32GB RAM)
with openssl 1.0.1c

encryption [14], that had no previous constructions based on classical number-
theoretic techniques. Even though the above primitives are quite varied in their
functionalities, many of them share the same basic building blocks. Thus an
improvement in one of these fundamental building blocks, usually results in the
simultaneous improvement throughout lattice cryptography. For example, the
recent work on the lattice trapdoor generation algorithm [27] resulted in imme-
diate efficiency improvements in lattice-based hash-and-sign signatures, identity-
based encryption schemes, group signatures, and functional encryption schemes.

In this work, we propose an improvement of another such building block –
the rejection sampling procedure that is present in the most efficient construc-
tions of lattice-based digital signatures [24,15], authentication schemes [23], blind
signatures [31], and zero-knowledge proofs used in multi-party computation [4].
As a concrete application, we show that with our new algorithm, lattice-based
digital signatures become completely practical. We construct and implement
a family of digital signature schemes, named BLISS (Bimodal Lattice Signa-
ture Scheme) for security levels of 128, 160, and 192 bits. On standard 64-bit
processors, our proof-of-concept implementations constitute significant improve-
ments over previous lattice-based signatures and compare very favorably to the
openssl implementations of RSA and ECDSA signatures schemes (see Table 1).

As part of our implementation, we also designed several novel algorithms
that could be of independent interest. Chiefly among them is a new procedure
that very efficiently samples from the Gaussian distribution over Zm without
requiring a very large look-up table. The absence of such an algorithm made
researchers avoid using the Gaussian distribution when implementing lattice-
based schemes on constrained devices, which resulted in these schemes being
less compact than they could have been [15].

1 ECDSA on a prime field Fp: ecdsap160, ecdsap256 and ecdsap384 in openssl.



1.1 Related Work

Rejection Sampling. Rejection sampling in lattice constructions was first used
by Lyubashevsky [22] to construct a three-round identification scheme. A stan-
dard identification scheme is a three round sigma protocol that consists of a
commit, challenge, and response stages. The main idea underlying their con-
structions and security proofs from number theoretic assumptions (e.g. Schnorr
and GQ schemes [2]) is that the value y committed to in the first stage is used
to information-theoretically hide the secret key s in the third stage. This is rel-
atively straight-forward to do in number-theoretic schemes because one can just
commit to a random y and then add it to (or multiply it by) some challenge-
dependent function of s. Since all operations are performed in a finite ring, y
being uniformly random hides s. In lattice constructions, however, we need to
hide the secret key with a small y. The solution is thus to choose y from a
narrow distribution and then perform rejection sampling so that s is not leaked
when we add y to it (we describe this idea in much greater detail in Section
1.2). The improvements in lattice-based identification schemes (and therefore
signature schemes via the Fiat-Shamir transformation) partly came via picking
distributions that were more amenable to rejection sampling.

Lattice Signatures. Early lattice-based signature proposals did not have se-
curity reductions [13,19,17], and they were all subsequently broken because it
turned out that every signature leaked a part of the secret key [12,29,6]. Among
known provably-secure signature schemes, [11,23], [24,27], the most efficient
seems to be that of [24] whose most efficient instantiation has both signature
and key size of the order of 9kb [15] for approximately 80 bits of security.2

1.2 Our Results and Techniques

Rejection Sampling and Signature Construction. To understand our im-
provement of the rejection sampling procedure, we believe that it is useful to first
give an overview of rejection sampling and the most efficient way in which it is
currently used in constructing lattice-based signatures [24]. Rejection sampling
is a well-known method introduced by von Neumann [33] to sample from an
arbitrary target probability distribution f , given a source bound to a different
probability distribution g. Conceptually, the method works as follows. A sample
x is drawn from g and is accepted with probability f(x)/(M · g(x)), where M
is some positive real. If it is not accepted, then the process is restarted. It is
not hard to prove that if f(x) 6 M · g(x) for all x, then the rejection sam-
pling procedure produces exactly the distribution of f . Furthermore, because
the expected number of times the procedure will need to be restarted is M , it

2 In [15], a 100-bit security level was claimed, but the cryptanalysis we use in the full
version of this paper [5], which combines lattice-reduction attacks with combinatorial
meet-in-the-middle techniques [20], estimates the actual security to be around 75-80
bits.
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Fig. 1. Rejection sampling from the distribution of g to get the distribution of f

is crucial to keep M as small as possible, possibly by tailoring the function g so
that it resembles the target function f as much as possible. In particular, since
rejection sampling can be interpreted as sampling a random point (xi, yi) in the
area under the distribution M · g (see Figure 1) and accepting if and only if
yi 6 f(xi), reducing the area between the two curves will reduce M .

The digital signature from [24] works as follows (for the sake of this discussion,
we will present the simplest version based on SIS): the secret key is an m ×
n matrix S with small coefficients, and the public key consists of a random
n × m matrix A whose entries are uniform in Zq and T = AS mod q. There
is also a cryptographic hash function H, modeled as a random oracle, which
outputs elements in Zn with small norms. To sign a message digest µ, the signing
algorithm first picks a vector y according to the distribution Dm

σ , where Dm
σ is

the discrete Gaussian distribution over Zm with standard deviation σ. The signer
then computes c = H(Ay mod q, µ) and produces a potential signature (z, c)
where z = Sc + y. Notice that the distribution of z depends on the distribution
of Sc, and thus on the distribution of S – in fact, the distribution of z is exactly
Dm
σ shifted by the vector Sc.

To remove the dependence of the signature on S, rejection sampling is used.
The target distribution that we want for signatures is Dm

σ , whereas we obtain
samples from the distribution Dm

σ shifted by Sc (call this distribution Dm
Sc,σ).

To use rejection sampling, we need to find a positive real M such that for all (or
all but a negligible fraction) x distributed according to Dm

σ we have Dm
σ (x) 6

M ·Dm
Sc,σ(x). A simple calculation (see [24, Lemma 4.5]) shows that

Dm
σ (x)/Dm

Sc,σ(x) = exp

(
−2〈x,Sc〉+ ‖Sc‖2

2σ2

)
. (1)

The value of 〈x,Sc〉 behaves in many ways as a one-dimensional discrete Gaus-
sian, and it can be thus shown that |〈x,Sc〉| < τσ‖Sc‖ with probability 1 −
exp(−Ω(τ2)). Asymptotically, the value of τ is proportional to the square root
of the security parameter. Concretely, if we would like to have, for example,
1−2−100 certainty that |〈x,Sc〉| < τσ‖Sc‖, we would set τ = 12. Thus with prob-

ability 1− exp(−Ω(τ2)), we have exp
(
−2〈x,Sc〉+‖Sc‖2

2σ2

)
6 exp

(
2τσ‖Sc‖+‖Sc‖2

2σ2

)
.

So if σ = τ‖Sc‖, we will have Dm
σ (x)/Dm

Sc,σ(x) 6 exp
(
1 + 1

2τ2

)
. Therefore
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Fig. 2. Improvement of Rejection Sampling with Bimodal Gaussian Distributions. In
blue is the distribution of z, for fixed Sc and over the space of all y in Figure (a) and
all (b,y) in Figure (b), before the rejection step and its decomposition as a Cartesian
product over Span{Sc} and (Sc)⊥. In dashed red is the target distribution scaled by
1/M .

if we set M = exp
(
1 + 1

2τ2

)
, rejection sampling outputs signatures that are

distributed according to Dm
σ where σ = τ‖Sc‖ and the expected number of

repetitions is M ≈ exp(1).3

Prior to explaining our technique to improve the scheme, we need to state
how the verification algorithm in [24] works. Upon receiving the signature (z, c)
of µ, the verifier checks that ‖z‖ is “small” (roughly σ

√
m) and also that

c = H(Az − Tc mod q, µ). It is easy to check that the outputs of the signing
procedure satisfy the two requirements. In this work, we show how to remove
the factor τ (in fact even more) from the required standard deviation. Above, we
described how to perform rejection sampling when we were sampling potential
signatures as z = Sc + y. Consider now, an alternative procedure, where we
first uniformly sample a bit b ∈ {−1, 1} and then choose the potential signa-
ture to be z = bSc + y. In particular z is now sampled from the distribution
1
2D

m
Sc,σ+ 1

2D
m
−Sc,σ. If our target distribution is still Dm

σ , then, as above, we need

to have Dm
σ (x)/

(
1
2D

m
Sc,σ(x) + 1

2D
m
−Sc,σ(x)

)
6 M . By using Equation (1) and

some algebraic manipulations, we obtain that

Dm
σ (x)/

(
1

2
Dm

Sc,σ(x) +
1

2
Dm
−Sc,σ(x)

)
= exp

(
‖Sc‖2

2σ2

)
/ cosh

(
〈x,Sc〉
σ2

)
6 exp

(
‖Sc‖2

2σ2

)
,

where the last inequality follows from the fact that cosh(y) > 1 for all y. Thus
for rejection sampling to work with M = exp(1), as in the previous example, we
only require that σ = ‖Sc‖/

√
2 rather than τ‖Sc‖.

Our improvement is depicted on Figure 2. Part 2(a) shows the rejection sam-
pling as done in [24]. There, the distribution Dm

σ (the dashed red line) must be
scaled by a somewhat large factor so that all but a negligible fraction of it fits

3 More precisely σ = τ maxS,c ‖Sc‖, since Sc is not known in advance.



under Dm
Sc,σ. In 2(b), which represents our improved sampling algorithm, the

distribution from which we are sampling is bimodal having its two centers at Sc
and −Sc. As can be seen from the figure, the distribution Dm

σ fits much “bet-
ter” (i.e. needs to be scaled by a much smaller factor) underneath the bimodal
distribution and therefore there is a much smaller rejection area between the
two curves. As a side note, whereas in (a), a negligible fraction of the scaled Dm

σ

is still above Dm
Sc,σ, in (b), all of Dm

σ is underneath the bimodal distribution
1
2D

m
Sc,σ + 1

2D
m
−Sc,σ.

While the above sampling procedure potentially produces much shorter sig-
natures since the Gaussian “tail-cut” factor τ is never used, it does not give
an improved signature scheme by itself because the verification procedure is no
longer guaranteed to work. The verification checks that c = H(Az−Tc mod q, µ)
and so will verify correctly if and only if Ay = Az−Tc = A(bSc + y)−Tc =
Ay + bTc − Tc, which will only happen if bTc = Tc mod q for b ∈ {−1, 1}.
In other words, we will need Tc = −Tc mod q, which will never happen if q is
prime unless T = 0. 4 Our solution, therefore, is to work modulo 2q and to set
T = qI where I is the n × n identity matrix. In this case Tc = −Tc mod 2q,
and so the verification procedure will always work.

Changing the modulus from q to 2q and forcing the matrix T to always be
qI creates several potential problems. In particular, it is no longer clear how to
perform key generation, and also the outline for the security proof from [24] no
longer holds. But we show that these problems can be overcome. We will now
sketch the key generation and the security proof based on the hardness of the
SIS problem in which one is given a uniformly random matrix B ∈ Zn×mq , and
is asked to find a short vector w such that Bw = 0 (mod q). To generate the

public and secret keys, we first pick a uniformly random matrix A′ ∈ Zn×(m−n)q

and a random (m − n) × n matrix S′ consisting of short coefficients. We then
compute A′′ = A′S′ mod q and output A = [2A′|2A′′ + qI] as the public key.
The secret key is S = [S′| − I]T . Notice that by construction we have AS = qI
(mod 2q) and S consists of small entries. The dimensions m and n are picked so
that the distribution of [A′|A′S′ mod q] can be shown to be uniformly random
in Zn×mq by the leftover hash lemma.

In the security proof, we are given a random matrix B = [A′|A′′] ∈ Zn×mq by
the challenger and use the adversary that forges a signature to find a short vector
w such that Bw = 0 (mod q). We create the public key A = [2A′|2A′′+qI] and
give it to the adversary. Even though we do not know a secret key S such that
AS = qI (mod 2q), we can still create valid signatures for any messages of the
adversary’s choosing by picking the (z, c) according to the correct distributions
and then programming the random oracle as is done in [24]. When the adversary
forges, we use the forking lemma to create two equations Az = qc (mod 2q) and
Az′ = qc′ (mod 2q). Combining them together, we obtain A(z− z′) = q(c− c′)

4 One may think that a possible solution could be to output the bit b as part of the
signature, but this is not secure. Depending on the sign of 〈z,Sc〉, one of the two
values of b is more likely to be output than the other. Therefore outputting the bit
b leaks information about S.



(mod 2q). Under some very simple requirements for z, z′, c, and c′, the previous
equation implies that A(z− z′) = 0 (mod q) and z 6= z′. This then implies that
2B(z − z′) = 0 (mod q) and since 2 is invertible modulo q, we have found a
w = (z− z′) such that Bw = 0 (mod q).

The above scheme construction and proof work for SIS and equally well
for Ring-SIS, when instantiated with polynomials. As in [24], we can also con-
struct much more efficient schemes based on LWE and Ring-LWE by creating
the matrix A′′ = A′S′ such that (A′,A′′) is not uniformly random, but only
computationally. For optimal efficiency, though, we can create the key in yet
a different manner related to the way NTRU keys are generated. The formal
construction is described in the full version, and we just give the intuition here.
We could create two small polynomials s1, s2 ∈ Z[x]/(xn + 1) and output the
public key as a = q−s2

s1
(mod 2q). Notice that this implies that as1 + s2 = q

(mod 2q), and so we can think of the public key as A = [a,1] and the secret key
as S = [s1, s2]T . Assuming that it is a hard problem to find small vectors w such
that Aw = 0 (mod 2q), the signature scheme instantiated in the above manner
will be secure. To those readers familiar with the key generation in the NTRU
encryption scheme, the above key generation should look very familiar, except
that the modulus is 2q rather than q. Since we are not sure what happens when
the modulus is 2q, we show in the full version of this paper [5] how to instantiate
our scheme so that it is based on NTRU over modulus q. We then explain how
for certain instantiations, this is as hard a problem as Ring-SIS (using the results
of Stehlé, Steinfeld [32]) and how for more efficient instantiations, it is a weaker
assumption than the ones underlying the classic NTRU encryption scheme and
the recent construction of fully-homomorphic encryption [21].

Gaussian Sampling. There are two generic methods for sampling according to
a discrete Gaussian distribution. The first one uses basic rejection sampling as
follows: choose a uniform integer x ∈ {−τσ, . . . , τσ} (where τ ≈ 12, as in the pre-
ceding discussion) and accept it with probability proportional to exp(−x2/2σ2)
(and restart otherwise). This involves the computation of the exp function to
high precision and requires an average of 2τ/

√
2π ≈ 10 trials, thus wasting a

lot of random bits. The second one involves storing large pre-computed data,
namely the cumulative distribution table of the discrete Gaussian from −τσ
to τσ. While the second method is very efficient when given enough memory,
neither of the two approaches is appropriate for use in constrained devices.

We solve this issue by modifying the first approach to exploit the properties
of discrete Gaussians. We recall that a Bernoulli distribution Bc assigns 1 (True)
with probability c ∈ [0, 1] and 0 (False) with probability 1− c. Overloading the
notation for the sake of clarity, we will denote by Bc both the distribution and
a generic random variable that follows that distribution independently of all
others (thus we may write, for example, Ba⊕Bb = Ba+b−2ab). As a first step, to
avoid explicit computation of exp, we use the simple fact that for an integer x
in binary form x = x1 · · ·xn we have Bexp(−x/f) =

∧
i s.t. xi=1 Bexp(−2i/f). This

allows us to sample according to Bexp(−x/f) using only logarithmically many



precomputed values exp(−2i/f). Similarly, we also design another algorithm to
sample according to B1/ cosh(x/f), using a Markov chain that makes less than two
calls to Bexp(−x/f) on average.

The second step is to replace the uniform distribution from which one chooses
an integer by a more adapted one to decrease the rejection rate. It is essential,
though, that the rejection rate retains an easily samplable form. To do this, we
build on a specific discrete Gaussian of variance σ2

2 = 1/(2 ln 2) for which the

distribution Dσ2
(x) is proportional to 2−x

2

. This makes it very easily samplable,
and the rejection rate still has the required form exp(·/f). The final algorithm
has bounded repetition rate of 1.5 rather than 2τ/

√
2π ≈ 10. All the operations

are very simple, requiring only small integer arithmetic, and are therefore well-
suited for constrained devices.

Cryptanalysis and Experiments on NTRU Lattices. Previous cryptana-
lytic efforts against schemes based on SIS and LWE mostly involved computing
the Hermite factor of the underlying average-case instance, as in the work of
Gama and Nguyen [8], and making sure that its value is below the level required
for the desired security guarantees. In this work (described in detail in the full
version of this paper [5]) we undertake a more careful cryptanalysis by using the
results on BKZ 2.0 of Chen and Nguyen [3] in combination with other techniques
– namely dual lattice reduction and the combinatorial meet-in-the-middle attack
of Howgrave-Graham [20].

For optimal efficiency, the security of our scheme relies on the hardness of
a type of NTRU problem that has recently (re-)appeared in the literature [21]
and which, we believe, could play a major role in the future of lattice-based
cryptography (see Section 2 for the precise definition of the problem). The only
cryptanalysis of which we are aware of that studies NTRU lattices deals with
instances where the modulus is very close in size to the dimension of the lattice
[8,16]. It is thus unclear as to what roles each of the variables plays when looked
at independently.

In our work, and also in the previously-mentioned work of [21], the modulus is
required to be substantially larger than the dimension. As far as we are aware, no
previous cryptanalysis was done for these types of instances. The most complete
study of the behavior of BKZ in the presence of unusually short vector(s) is due
to Gama and Nguyen [8] who thoroughly analyzed the algorithm’s running time
in the presence of one such vector. Their experiments show that the hardness
of finding this vector depends on the ratio λ2/λ1, that is, the gap between the
second-shortest and the shortest vectors in them-dimensional lattice. In practice,
for BKZ-20, the shortest vector was found when λ2/λ1 > .48 · 1.01m.

We ran similar experiment of BKZ-20 in the case of 2n-dimensional NTRU
lattices where λ1 = . . . = λn. In NTRU lattices, the gap normally occurs between
the n-th and the n+ 1-st successive minima, and one might think that the ratio
between these two quantities would somehow determine the hardness of the
instance. Our experiments showed that this is not the case, and the shortest
vector was found when

√
qm/2πe

/
λ1 was greater than .40 · 1.012m (see Figure



(a) Shortest vector not found (b) Shortest vector found

Fig. 3. Results BKZ-20 for n ∈ [48, 150], q ∈ [6000, 25000] and binary search on the
λ1-threshold. On horizontal axis is the value of n + random(0,5) and on vertical axis

is
(

1
.40

√
qm
2πe

/
λ1

)1/2n

3). Despite the fact that there is no vector in the lattice having length
√
qm/2πe

this is actually consistent with the results of [8]! The reason is that
√
qm/2πe is

the expected length of the shortest vector according to the Gaussian heuristic,5

and we would also expect λ2 ≈
√
qm/2πe in a random q-ary lattice analyzed

in [8]. Thus one could say that the hardness of finding a short vector in q-ary
lattices depends not on the gap, but rather on the ratio between the Gaussian
heuristic and the actual length of the shortest vector.

Similar to the results in [8], when the ratio was smaller than .40 ·1.012m, the
resulting shortest vector had length about

√
q · 1.012m. In other words, BKZ-

20 behaved as if the lattice were truly random. Because of our experiments
with BKZ-20, it seems reasonable to assume that BKZ behaves analogously for
larger block sizes. Thus we can measure its efficacy according to the BKZ 2.0
methodology in [3]. We would like to stress that we have no explanation for the
reason why the ratio between the Gaussian heuristic and the actual length of the
vector seems to dictate the hardness of finding short vectors in NTRU lattices.
We are equally unsure whether this phenomenon implies that these lattices are
indeed as hard as the random lattices that have been more exhaustively studied
[8,3].

The general dearth of lattice cryptanalysis papers stands in contrast to the
vast number of articles proposing theoretical lattice-based constructions. Our
belief is that this lack of cryptanalytic effort is in part due to the fact that
most of the papers with scheme proposals give no concrete targets to attack.
One of the proposed instantiations in the present work is a “toy example” that
we estimate has approximately 60 bits of security. Thus if it turns out that
NTRU lattices are weaker than believed, it is wholly possible that this example
could be broken on a personal computer, and we think this would be of great

5 The Gaussian heuristic says that for certain types of random lattices L, we will have
λ1(L) ≈ det(L)1/m ·

√
m
2πe

[8].



interest to the practical community. In addition, it could be argued that we do
not yet know enough about lattice reduction to be able to propose such “fine-
grained” security estimates like 160-bit or 192-bit. But one of the main reasons
that we make these proposals is to make it “worthwhile” for cryptanalysts to
work on these problems. In short, one of our hopes is that this work spurs on
the cryptanalysis that is currently much needed in the field.
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2 Preliminaries

2.1 Notation

For any integer q, we identify the ring Zq with the interval [−q/2, q/2) ∩ Z, and
in general for a ring R, we define Rq to be the quotient ring R/(qR). Whenever
working in the quotient ring Rq = Zq[x]/(xn + 1), we will assume that n is
a power of 2 and q is a prime number such that q = 1 (mod 2n). Vectors,
considered as column vectors, will be written in bold lower case letters. Matrices
will be written in bold upper case letters. For a positive integer n, we write In
to be the identity matrix of dimension n.

We recall that the `p-norm of a vector v is defined as ‖v‖p = (
∑
i|vi|p)1/p

for p > 0, and its `∞-norm as ‖v‖∞ = maxi|vi|. By default, we use ‖·‖ for the
`2-norm.

We now state a general rejection sampling lemma. The proof of this lemma
is quite standard (cf. [24]).

Lemma 2.1 (Rejection Sampling). Let V be an arbitrary set, and h : V → R
and f : Zm → R be probability distributions. If gv : Zm → R is a family of
probability distributions indexed by v ∈ V with the property that there exists a
M ∈ R such that

∀v ∈ V,∀z ∈ Zm,M · gv(z) > f(z) ,

then, the output distributions of the following two algorithms are identical:

1. v ← h, z ← gv, output (z, v) with probability f(z)/
(
M · gv(z)

)
.

2. v ← h, z ← f , output (z, v) with probability 1/M .

2.2 Discrete Gaussian Distribution

Gaussian Distribution. The (un-normalized) Gaussian distribution with stan-
dard deviation σ ∈ R and center c ∈ R evaluated at x ∈ R is defined by

ρc,σ(x) = exp
(−(x−c)2

2σ2

)
, and more generally by ρc,σ(x) = exp

(−‖x−c‖2
2σ2

)
for



x, c ∈ Rn. When the center c is 0, we generally omit it from the notation
and simply write ρσ(x). The discrete Gaussian distribution over Z centered
at 0 is defined by Dσ(x) = ρσ(x)/ρσ(Z), and more generally, over Zm by
Dm
σ (x) = ρσ(x)/ρσ(Z)m.

Tailcutting. It is generally useful to ignore large values which are unlikely to
appear when drawing according to a Gaussian distribution.

Lemma 2.2 ([28]). For any dimension m, σ > 0 and τ > 1, ρσ(Zm\τσ
√
mB) <

2C(τ)m · ρσ(Z)m, where C(τ) = τ exp
(
1−τ2

2

)
< 1, and B is the centered `2 unit

ball.

Therefore, to tailcut less than 2−λ of a 1-dimensional Gaussian, one should
choose τ ≈

√
λ · 2 ln 2, the typical value being τ = 12 for λ = 100.

2.3 Hardness Assumptions

All the constructions in this paper are based on the hardness of the generalized
SIS (Short Integer Solution) problem, which we define below.

Definition 2.3 (R-SISKq,n,m,β problem). Let R be some ring and K be some
distribution over Rn×mq , where Rq is the quotient ring R/(qR). Given a random
A ∈ Rn×mq drawn according to the distribution K, find a non-zero v ∈ Rmq such
that Av = 0 and ‖v‖2 6 β.

If we let R = Z and K be the uniform distribution, then the resulting prob-
lem is the classical SIS problem first defined by Ajtai [1] in his seminal paper
showing connections between worst-case lattice problems and the average-case
SIS problem. By the pigeonhole principle, if β >

√
mqn/m then the SIS instances

are guaranteed to have a solution. Using Gaussian techniques, Micciancio and
Regev [28] improved Ajtai’s result to show that, for a large enough q as a function
of n and β, the SISq,n,m,β problem is as hard (on the average) as the Õ(

√
nβ)-

SIVP problem for all lattices of dimension n.
In 2006, a ring variant of SIS was introduced independently by Peikert and

Rosen [30] and Lyubashevsky and Micciancio [25]. In [25] it was shown that if
R = Z[x]/(xn + 1), where n is a power of 2, then the R-SISKq,1,m,β problem is as

hard as the Õ(
√
nβ)-SVP problem in all lattices that are ideals in R (where K

is again the uniform distribution over R1×m
q ).

NTRU Lattices. In the NTRU cryptosystem over the ring Rq = Zq[x]/(xn +
1) [18], the key generation procedure picks two short secret keys f ,g ∈ Rq
(according to some distribution) and computes the public key as a = g/f .6 When
the norm of f ,g is large enough, it can be shown that a is actually uniformly

6 In the original NTRU scheme, the ring was Zq[x]/(xn − 1), but lately researchers
have also used Zq[x]/(xn+1) when n is a power of 2. Indeed, the latter choice seems
at least as secure.



random in Rq [32], but even when the secret keys do not have enough entropy,
their quotient still appears to be pseudorandom, although no proof of this fact is
known [21]. In the NTRU cryptosystem (or its more secure modification of [32]
which is based on the Ring-LWE problem), one encrypts a message µ, represented
as a polynomial in Rq with {0, 1} coefficients, by picking two short vectors
r, e ∈ Rq and outputting z = 2(ar + e) +µ. The security of the scheme relies on
the fact that the distribution of (a, z) is pseudo-random in R2

q.

One can define an NTRU version of the SIS problem that is at least as hard
as breaking the NTRU cryptosystem.7 In particular, given an NTRU public key
a, find two polynomials v1,v2 ∈ Rq such that ‖(v1|v2)‖ 6 β and av1+v2 = 0 in
Rq. Notice that (f ,−g) is a solution to this problem, but in fact, finding larger
solutions can also be useful in breaking the NTRU cryptosystem. In particular,
notice that for any solution (v1|v2), one can compute zv1 = 2(−rv2+ev1)+µv1.
If β is sufficiently small with respect to ‖(r|e)‖, then z · v1 mod 2 = µv1, and
µ can be recovered. Thus, for certain parameters, the NTRU version of the SIS
problem is at least as hard as breaking the NTRU cryptosystem. As a side-
note, we would like to point out that the NTRU encryption scheme remains
hard even after 15 years of cryptanalysis. The weakness in the NTRU signature
scheme, which uses the same key generation procedure, is due to the fact that
signatures slowly leak the secret key [29,6], but this is provably (i.e. information-
theoretically) avoided in our scheme.

In the full version of this paper [5], we propose a practical instantiation of
our signature scheme inspired by the NTRU key-generation, and analyze the
hardness of the NTRU version of the SIS problem using combinations of lattice
[3] and hybrid attacks [20]. We provide concrete parameters, and the resulting
signature scheme was implemented as a proof-of-concept on a desktop computer
(and yielded the timings of Table 1).

3 BLISS: A Lattice Signature Scheme using Bimodal
Gaussians

In this section, we present our new signature scheme along with the proof of
correctness. The security of the signature scheme is based on the hardness
of the R-SISKq,n,m,β problem. We mention that this is the “simple” version of
our algorithm, and its more optimized implementation that uses numerous en-
hancements is presented in the full version of this paper [5]. For simplicity, we
present our algorithm for R = Z, but it works in exactly the same way for rings
R = Z[x]/(xn + 1).

7 A way to state the NTRU SIS problem in terms of the R-SISKq,1,2,β problem is to set
R = Z[x]/(xn + 1) and let K be the distribution that picks small f ,g and outputs
the public key A = (a,1) ∈ R1×2

q for a = g/f .



3.1 New Signature and Verification Algorithms

Key pairs. The secret key is a (short) matrix S ∈ Zm×n2q and the public key

is given by the matrix A ∈ Zn×m2q such that AS = qIn (mod 2q). A crucial
property, for our new rejection sampling algorithm, satisfied by the key pair,
is that AS = A(−S) = qIn (mod 2q). Obtaining such a key pair is easy and
can be done efficiently. In the full version of this paper [5], we explain the key-
generation procedure which results in a scheme whose security is based on the
classic SISq,n,m,β problem and we present an “NTRU-like” variant of the key
generation which yields a more efficient instantiation of the signature scheme.

Random Oracle Domain. We model the hash function H as a random oracle
that has uniform output in Bnκ, the set of binary vectors of length n and weight
κ. Such a mapping can be found in [7] but its complexity is quadratic in n; in
the full version of this paper, we provide an efficient construction.

Algorithm 1: Signature Algorithm

Input: Message µ, public key A ∈ Zn×m2q , secret key S ∈ Zm×n2q , stand. dev. σ ∈ R
Output: A signature (z, c) of the message µ
1: y← Dm

σ

2: c← H(Ay mod 2q, µ)
3: Choose a random bit b ∈ {0, 1}
4: z← y + (−1)bSc

5: Output(z, c) with probability 1
/(

M exp
(
− ‖Sc‖2

2σ2

)
cosh

(
〈z,Sc〉
σ2

))
otherwise

restart

Algorithm 2: Verification Algorithm

Input: Message µ, public Key A ∈ Zn2q, signature (z, c)
Output: Accept or Reject the signature
1: if ‖z‖ > B2 then Reject
2: if ‖z‖∞ > q/4 then Reject
3: Accept iff c = H(Az + qc mod 2q, µ)

The Signature Algorithm. The signer, who is given a message digest µ, first
samples a vector y from the m-dimensional discrete Gaussian distribution Dm

σ

and then computes c← H(Ay mod 2q, µ). He then samples a bit b in {0, 1} and
computes the potential output z ← y + (−1)bSc. Notice that z is distributed
according to the bimodal discrete Gaussian distribution 1

2D
m
Sc,σ + 1

2D
m
−Sc,σ. At

this point we perform rejection sampling and output the signature (z, c) with



probability 1
/(

M exp
(
−‖Sc‖

2

2σ2

)
cosh

(
〈z,Sc〉
σ2

))
, where M is some fixed positive

real that is set large enough to ensure that the preceding probability is always
at most 1. We explain how to set M in accordance with the standard deviation
σ in the next section. If the signing algorithm did not output the signature, then
it is restarted and repeated until something is output. The expected number of
iterations of the signing algorithm is M .

The Verification Algorithm. The verification algorithm will accept (z, c) as the
signature for µ if the following three conditions hold:

1. ‖z‖ 6 B2

2. ‖z‖∞ < q/4
3. c = H(Az + qc mod 2q, µ)

The signer outputs signatures of the form (z, c) where z is distributed ac-
cording to Dm

σ , thus the acceptance bound B2 should be set a little bit higher
than

√
mσ, which is the expected value around which the output of Dm

σ is tightly
concentrated; denoting B2 = η

√
mσ, one can set η so that ‖z‖ 6 B2 is verified

with probability 1− 2−λ [24, Lemma 4.4] for the security parameter λ (in prac-
tice, η ∈ [1.1, 1.4]). For technical reasons in the security proof, we also need that
‖z‖∞ < q/4, but this condition is usually verified whenever the first one is and
does not restrict the manner in which we choose the parameters for the scheme.
Condition 3 will also hold for valid signatures because

Az + qc = A(y + (−1)bSc) + qc = Ay +
(
(−1)bAS

)
c + qc = Ay + (qIn)c + qc

= Ay mod 2q.

3.2 Rejection Sampling: Correctness and Efficiency

We now explain how to pick the standard deviation σ and positive real M so
that the signing algorithm in the preceding section produces vectors z according
to the distribution Dm

σ . Because y is distributed according to Dm
σ , it is easy

to see that in Step 4 of the signing algorithm, z is distributed according to
gSc = 1

2D
m
Sc,σ + 1

2D
m
−Sc,σ for fixed Sc and over the space of all (b,y). Thus for

any z∗ ∈ Rm, we have

Pr[z = z∗] =
1

2
Dm

Sc,σ(z∗) +
1

2
Dm
−Sc,σ(z∗)

=
1

2ρσ(Zm)
exp

(
−‖z

∗ − Sc‖2

2σ2

)
+

1

2ρσ(Zm)
exp

(
−‖z

∗ + Sc‖2

2σ2

)

=
1

2ρσ(Zm)
exp

(
−‖z

∗‖2

2σ2

)
exp

(
−‖Sc‖2

2σ2

)(
e−
〈z∗,Sc〉
σ2 + e

〈z∗,Sc〉
σ2

)

=
1

ρσ(Zm)
exp

(
−‖z

∗‖2

2σ2

)
exp

(
−‖Sc‖2

2σ2

)
cosh

(
〈z∗,Sc〉
σ2

)
.



The desired output distribution is the centered Gaussian distribution f(z∗) =
ρσ(z∗)/ρσ(Zm). Thus, by Lemma 2.1, one should accept the sample z∗ with
probability:

pz∗ =
f(z∗)

MgSc(z∗)
= 1
/(

M exp

(
− ‖Sc‖2

2σ2

)
cosh

(
〈z∗,Sc〉
σ2

))
,

where M is chosen large enough so that pz∗ 6 1. Note that cosh(x) > 1 for any
x, so it suffices that

M = e
1

2α2 (2)

where α is such that σ > α · ‖Sc‖.

Bound on ‖Sc‖. Notice that if we fix the repetition rate M , then the standard
deviation of the signature z, and therefore also its size, only depend on the
maximum possible norm of the vector Sc. For this reason, it is important to
obtain a bound as tight as possible on this product. Several upper bounds on
‖Sc‖ can be used such as ‖Sc‖ 6 ‖c‖1 ·‖S‖ = κ ‖S‖ (as in [24]) or ‖Sc‖ 6 s1(S)·
‖c‖ = s1(S) ·

√
κ where s1(S) is the singular norm of S. Here we introduce a new

measure of S, adapted to the form of c, which helps us achieve a tighter bound
than with all previous methods. We believe that this norm and the technique
for bounding it could be of independent interest.

Definition 3.1. For any integer κ, we define Nκ : Rm×n → R as:

Nκ(X) = max
I⊂{1,...,n}

#I=κ

∑
i∈I

(
max

J⊂{1,...,n}
#J=κ

∑
j∈J

Ti,j

)
where T = Xt ·X ∈ Rn×n .

The following proposition states that
√
Nκ(S) is also an upper bound for

‖Sc‖.

Proposition 3.2. Let S ∈ Rm×n be a real matrix. For any c ∈ Bnκ, we have

‖Sc‖2 6 Nκ(S).

In practice, we will use this upper bound to bound ‖Sc‖ and derive the
parameters. Some secret keys S will be rejected according to the value of Nκ(S),
which is easily computable. In addition to the gain from the use of bimodal
Gaussians, this new upper bound lowers the standard deviation σ by a factor
≈
√
κ/2 compared to [24].

3.3 Security of BLISS

Any existential forger against our signature scheme can solve the R-SISKq,n,m,β
problem for β = 2B2 where K is the distribution induced by the public-key
generation algorithm.



Theorem 3.3. Suppose there is a polynomial-time algorithm F which makes
at most s queries to the signing oracle and h queries to the random oracle H,
and succeeds in forging with non negligible probability δ. Then there exists a
polynomial-time algorithm which can solve the R-SISKq,n,m,β problem for β = 2B2

with probability ≈ δ2

2(h+s) . Moreover the signing algorithm produces a signature

with probability ≈ 1/M and the verifying algorithm accepts a signature produced
by an honest signer with probability at least 1− 2m.

The proof of the theorem follows from standard arguments, and is simpler
and tighter than the proof of [24]. In a nutshell, the fact that the distribution
of the signatures in the scheme does not depend on the secret key means that
the simulator can “sign” arbitrary messages without having the secret key by
programming the random oracle. Then when the adversary produces a forgery,
the simulator can extract a solution to the SIS problem. The proof is provided
in the full version of this paper [5].
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