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Abstract. A protocol has everlasting security if it is secure against ad-
versaries that are computationally unlimited after the protocol execution.
This models the fact that we cannot predict which cryptographic schemes
will be broken, say, several decades after the protocol execution. In clas-
sical cryptography, everlasting security is difficult to achieve: even using
trusted setup like common reference strings or signature cards, many
tasks such as secure communication and oblivious transfer cannot be
achieved with everlasting security. An analogous result in the quantum
setting excludes protocols based on common reference strings, but not
protocols using a signature card. We define a variant of the Universal
Composability framework, everlasting quantum-UC, and show that in
this model, we can implement secure communication and general multi-
party computation using signature cards as trusted setup.

1 Introduction

Everlasting security. Computers and algorithms improve over time and so
does the ability of an adversary to break cryptographic complexity assumptions
and protocols. It may be feasible to make a good estimate as to which computa-
tional problems are hard today, and which encryption schemes unbroken. But it
is very difficult to make more than an educated guess as to which cryptographic
schemes will be secure, say, ten years from now. Key length recommendations
(e.g., [1,2,3]) can only be made based on the assumption that progress continues
at a similar rate as today; unexpected algorithmic progress and future technolo-
gies like quantum computers can render even the most paranoid choices for the
key length obsolete.

This situation is very problematic if we wish to run cryptographic protocols
on highly sensitive data such as medical or financial data or government secrets.
Such data often has to stay confidential for many decades. But an adversary
might intercept messages from a protocol that is secure today, store them, and
some decades later, when the underlying cryptosystems have been broken, de-
crypt them. For highly sensitive data, this would not be an acceptable risk.

One way out is to use protocols with unconditional (information-theoretical)
security that are not based on any computational hardness assumptions. For
many tasks, however, unconditionally secure protocols simply do not exist (in
particular if we cannot assume an majority of honest participants). A compro-
mise is the concept of everlasting security. In a nutshell, a protocol is everlastingly



secure if it cannot be broken by an adversary that becomes computationally un-
limited after the protocol execution. This guarantees that all assumptions need
only to hold during the protocol execution, sensitive data is not threatened by
possible future attacks on today’s schemes. We only need to reliably judge the
current state of the art, not future technologies.

Unfortunately, also for everlasting security, we have strong impossibility re-
sults. It is straightforward to see that everlastingly secure public key encryption
is not possible, symmetric encryption needs keys as long as the transmitted mes-
sages, and most secure multi-party computations (MPC) are impossible (e.g.,
oblivious transfer, see Section 3).

Quantum cryptography. Since the inception of quantum key distribution
(QKD) by Bennett and Brassard [4], it has been known that quantum cryp-
tography can achieve tasks that are impossible in a classical setting: a shared
key can be agreed upon between two parties such that even a computationally
unlimited eavesdropper does not learn that key. Classically, this is easily seen
to be impossible. Crépeau and Kilian [5] showed how, given only a commitment
scheme, we can securely realize an oblivious transfer (OT), which in turn, us-
ing ideas from Kilian [6] can be used to implement arbitrary unconditionally
secure MPC. Classically, given only a commitment, it is impossible to construct
arbitrary unconditionally secure MPC (or even everlastingly secure ones, see
Section 3). Initial enthusiasm was, however, dampened by strong impossibility
results. Mayers [7] showed that it is impossible to construct an unconditionally
secure commitment from scratch. Similar impossibilities hold for OT and many
other function evaluations (Lo [8]). So the goal to get unconditionally secure
MPC is not achievable, even with quantum cryptography.

Also, the usefulness of QKD has been challenged (e.g., by Bernstein [9], who
also raises other concerns than the following). To run a QKD protocol, an au-
thenticated channel is needed. But how to implement such a channel? If we use
a public key infrastructure for signing messages, we lose unconditional security
and thus the main advantage of QKD. If we use shared key authentication, a key
needs to be exchanged beforehand. (And, if we exchange an authentication key
in a personal meeting, why not just exchange enough key material for one-time
pad encryption – storage is cheap.)

Everlasting quantum security. A simple change of focus resolves the prob-
lems described in the previous paragraph. Instead of seeing the goal of quantum
cryptography in achieving unconditional security, we can see it as achieving ev-
erlasting security. For example, if we run a QKD protocol and authenticate all
messages using signatures and a public key infrastructure, then we do not get
an unconditionally secure protocol, but we do get everlasting security: only the
signatures are vulnerable to unlimited adversaries, but breaking the security of
the signatures after the protocol execution does not help the adversary to recover
the key. (Experience and the discussion on composition below show that one has
to be careful: we need to check that signatures and QKD indeed play together
well and compose securely. We answer this positively in Section 4: we achieve
everlastingly secure universally composable security.)



What about secure MPC? Recall that for constructing unconditionally secure
MPC in the quantum setting, the only missing ingredient was a commitment.
Once we have a commitment, unconditionally secure MPC protocols exist [10].
Unconditionally secure commitments do not exist, but everlastingly secure ones
do! Consider a statistically hiding commitment. That is, the binding property
may be subject to computational assumptions, but the hiding property holds
with respect to unlimited adversaries. Such a scheme is in fact everlastingly
secure. Being able to break the binding property of a commitment after the
protocol end is of no use – the recipient of the commitment is not listening any
more. And the hiding property, i.e., the secrecy of the committed data, holds
forever. So a statistically hiding commitment is in fact everlastingly secure. It
seems that we have all ingredients for everlastingly secure quantum MPC. The
next paragraph, however, shows that the situation is considerably more subtle.

We stress that the neither the concept of everlasting security nor the idea of
combining it with quantum cryptography is original to this paper. For example,
[11] already suggested to combine QKD with computational authenticated, albeit
without proof or analysis of composition problems.

Everlasting security and composition – a cautionary tale. As discussed
above, statistically hiding commitments are in fact everlastingly secure, and there
are quantum protocols that construct unconditionally secure OT (among other
things). Thus, composing a statistically hiding commitment with such a proto-
col will give us an everlastingly secure OT in the bare model (i.e., not using any
trusted setup). But it turns out that this reasoning is wrong! Lo’s impossibility of
OT [8] can be easily modified to show that unconditional OT is impossible, even
if we consider only passive (semi-honest) adversaries. But everlasting security
implies unconditional security against passive adversaries: A passive adversary
is one that during the protocol follows the protocol (and thus in particular is
computationally bounded) but after the protocol may perform unlimited com-
putations. Thus Lo’s impossibility excludes the existence of everlastingly secure
OTs.

What happened? The problem is that although statistically hiding commit-
ments are everlastingly secure on their own, they lose their security when com-
posed. Composition problems are common in cryptography, but we find this case
particularly instructive: The commitment does not lose its security only when
composed with some contrived protocol, but instead in a natural construction.
And not only does a particular construction break down, we are faced with a
general impossibility. And the resulting protocol is insecure in a strong sense:
an unlimited adversary can guess either Alice’s or Bob’s input. (As opposed to
a situation where the “break” consists solely of the non-existence of a required
simulator.)

One may be tempted to suggest that the failure is not related to the everlast-
ing security, but to the non-composability of the commitments. Damgård and
Nielsen [12] present commitment schemes that are universally composable (we
elaborate on this notion below, it is a security notion that essentially guarantees
“worry-free” composition), that only need a predistributed common reference



strings (CRS), and that are statistically hiding.1 Yet, when using these commit-
ments to get everlastingly secure OT, we run into the same problem again: We
would get an everlastingly secure OT using a CRS, but a generalization of Lo’s
impossibility shows that no everlastingly secure OT protocols exist even given a
CRS (see Section 3).2 (See also page 12 for another view on the problem in the
quantum case.)

Quantum everlasting universal composability. The preceding paragraph
shows that, in the setting of everlasting security, it is vital to find definitions that
guarantee composability. One salient approach is the Universal Composability
(UC) framework by Canetti [14]. In the UC framework, we compare a protocol π
against a so-called ideal functionality F which describes what π should ideally
do. (E.g., F could be a commitment functionality that registers the value Alice
commits to, but forwards it to Bob only when Alice requests an open.) We say π

UC-emulates F if for any adversaryAdv (that attacks π) there is a simulator Sim
(that “attacks” F) we have that no machine Z (the environment) can distinguish
π running with Adv (real model) from F running with Sim (ideal model). The
intuition behind this is that Adv can perform only attacks that can be mimicked
by Sim. Since F is secure by definition, Adv can perform no “harmful” attacks.
A salient property of the UC framework is that UC secure protocols can be
composed in arbitrary ways (universal composition). By tweaking the details
of the definition, we get various variants of UC: If Z, Sim, Adv are polynomial-
time, we have computational UC. If they are unlimited, statistical UC (modeling
unconditional security). Unlimited quantum machines lead to the definition of
statistical quantum-UC [10].

Müller-Quade and Unruh [13] showed that the UC framework can also be
adapted to the setting of everlasting security: We quantify over Z, Sim, Adv that
are polynomial-time, but we say that Z distinguishes the real and ideal model
if the distribution of Z’s output is not statistically indistinguishable. That is, a
protocol is considered insecure if one can distinguish real and ideal model when
being polynomial-time during the protocol, but unlimited afterwards (statistical
indistinguishability means that no unlimited machine can distinguish).

The ideas from [13] can be easily adapted to the quantum case. In Section 2,
we introduce everlasting quantum UC (eqUC). Here Z, Sim, Adv are quantum-
polynomial-time machines (representing the fact that adversaries are limited
during the protocol run), but we require that the quantum state output by Z in
the real and ideal model is trace-indistinguishable (two quantum states are trace-
indistinguishable if no unlimited quantum machine can distinguish them). The
eqUC security notion inherits all composability properties from the UC notion.
Also, protocols that are secure with respect to statistical classical or statistical
quantum UC are also eqUC-secure. In particular, known quantum protocols for

1 The schemes given in [12] were only shown secure classically. But we think it likely
that similar protocols can be constructed in the quantum setting, too.

2 That Damgård and Nielsen’s commitment does not compose well in an everlasting
security setting was already observed in [13]. Their example, however, only shows
insecurity when composing with contrived protocols.



constructing MPC from commitments [10] are also eqUC secure. Thus, if we find
an eqUC-secure commitment protocol, we immediately get eqUC-secure MPC
protocols by composition.

Everlasting quantum-UC commitments. The problem of everlasting UC
commitments in the classical setting was already studied in [13]. Their protocol
uses a signature card as trusted setup.3 Here a signature card is a trusted device
(modeled as a functionality) such that the owner of the card can sign messages,
everyone can access the public key, and no-one (not even the owner) can get the
secret key.4 Their protocol is, however, only known to be secure in the classical
setting. In fact, when we try to prove the protocol secure in a quantum setting, we
stumble upon an interesting difficulty in the interplay of zero-knowledge proofs
of knowledge and signature schemes.

A core step in the protocol is that Alice performs a proof of knowledge P

showing that she knows a certain signature σ. In the security proof, we then
show that Alice must have obtained σ from the signature card: Assume Alice
successfully performs P without requesting σ first. Since P is a proof of knowl-
edge, there is an extractor E (using Alice and indirectly the signing oracle as a
black box) that returns a valid witness, i.e., the signature σ. Since E returns the
signature without requesting it from the signing oracle, we have a contradiction
to the unforgeability of the signature scheme.

It seems that the same reasoning applies against quantum adversaries if we
use quantum proofs of knowledge instead. Unfortunately, this is not the case.
In a quantum proof of knowledge (as defined by Unruh [17]), an extractor with
black box access to the prover executes both the prover (modeled as a unitary
operation) as well as its inverse (i.e., the inverse of that unitary). This is the
quantum analogue of classical rewinding. So the extractor E will invoke not only
the signing oracle, but also its inverse! But unforgeability will not guarantee
that there are no forgeries when the adversary accesses the inverse of the signing
oracle. Hence the security proof fails.

To avoid this problem, we need a new protocol which does not require rewind-
ing in the same places of the security proof where we use the unforgeability of
the signature scheme. We present such a protocol; it is considerably more in-
volved than the one from [13]. We believe that our approach is of independent
interest because it shows one way around the limitations of quantum proofs of
knowledge.

Bounded quantum storage model. We quickly compare the concept of ever-
lasting security in this paper with the bounded quantum storage model (BQSM;
[18]). The BQSM achieves very similar goals. Security in the BQSM guarantees
that the protocol cannot be broken by an adversary that has limited quantum
memory during the protocol execution and unlimited quantum memory after
the execution. The BQSM is thus analogous to everlasting security as discussed

3 It is impossible to construct UC commitments without using some trusted setup
such as a CRS [15]. [13] shows that for everlasting UC, even a CRS is not sufficient.

4 The last property is mandated, e.g., by the German signature card law [16].



here, except that it considers quantum memory where we consider computa-
tional power. The advantage of the BQSM over our model is that when using
a BQSM protocol, we only need to make assumptions about the power of the
adversary (its quantum memory). In contrast, in our model we need to assume
that the computational power is limited and that certain mathematical prob-
lems are hard. In our view, the main disadvantage of the BQSM is that it might
be useful only for a limited time: currently, we may assume a small limit on
the adversary’s quantum memory. Should quantum technology advance, though,
quantum memory might become cheap, and at that point BQSM protocols must
not be used any more. In contrast, with everlasting security as in this paper, if
an assumption we use in a protocol is broken, it is likely that there still are other
assumptions that can be used – we can then fix the protocol by switching the
underlying problem. Also, BQSM protocol tend to have a high communication
complexity, and composition is more involved (in particular when we wish for
universal composability [19]). Then again, our approach requires trusted setup
(signature cards). An interesting goal would be protocols that are simultaneously
secure in our model and the BQSM.

In the classical setting, the bounded storage model can also be used [20]
but has very high communication complexity (quadratic in the memory bound).
[21] shows that if we combine bounded storage with temporary computational
assumptions, then in the random oracle model we achieve lower communication
complexity (but they also show impossibilities when not using the random ora-
cle model). In contrast, our work uses quantum communication and temporary
computational assumptions, but no bounded storage.

Further related work. [22] also considers the problem of using an uncondi-
tionally hiding computationally binding commitment to construct a quantum
OT (as opposed to using directly a functionality). They show that with such a
commitment, OT can be realized (no impossibility results are given). However,
their OT protocol only computationally hides the sender’s inputs (although one
may be tempted to assume otherwise as the commitments that are used are
unconditionally hiding). In fact, our impossibility results imply that their OT
cannot be everlastingly secure.

Organization & contribution. In Section 2 we present the everlasting quan-
tum UC model and the corresponding composition theorem. In Section 3 we show
the impossibility of everlastingly secure OT in the classical and the quantum
setting using various functionalities. In Section 4 we show that using signature
cards or a public key infrastructure, an everlastingly quantum-UC-secure secure
channel can be implemented. In Section 5 we implement arbitrary everlastingly
quantum-UC-secure multi-party computation using signature cards. Many de-
tails and proofs are omitted for space reasons, these are given in the full version
[23].



2 Everlasting quantum UC

We now give a terse overview of the definition of everlasting quantum UC (eqUC).
Our definition is based on the modeling of UC in the quantum case from [10].
For a full definition, see [23]. The only difference between the definition from [10]
and ours is that we allow the environment to output a quantum state and that
we require that state to be trace-indistinguishable between real and ideal model.
See also [13] for additional discussion on how to model everlasting security in
the UC framework.

The basic concept is that of a network. A network N is a set of quantum
machines. Each machine maintains a quantum state and can send and receive
messages from other machines in the network. A message can be a quantum
state. In a network, there is a distinguished machine Z. This machine is initially
activated with some input z. When a machine is activated by an incoming mes-
sage, it can apply an arbitrary quantum operation to the message and its state,
producing a new state and an outgoing message. Then the recipient of that
message is activated. If a machine sends no outgoing message, Z is activated.
At any point, Z may terminate with some output quantum state. We denote by
QExec

N
(η, z) the state output by Z after an execution of the network N when Z

gets initial input z and the security parameter is η. We call two networks N,N′

trace-indistinguishable TD(QExec
N
(η, z),QExec

N′(η, z)) ≤ µ(k) is negligible for
all z ∈ {0, 1}∗ and k ∈ N where TD(ρ, ρ′) denotes the so-called trace-distance
between two quantum states.

A protocol π is a network without Z or adversary. We cannot execute π itself,
but given machines Adv and Z, we can run π∪{Adv,Z}. Given a set C of party
identities, let πC denote the result of replacing, for each id ∈ C, the party with
id id by the corruption party PC

id
. This corruption party just forwards all its

communication to the adversary and is controlled by it.
We can now specify everlasting quantum-UC-security. The fact that in this

definition, we require the networks to be trace-indistinguishable (i.e., even an
unlimited machine cannot distinguish the output states of Z in real and ideal
model), models the fact that in everlasting security, we allow unlimited computa-
tions after the protocol execution. During the protocol execution, environment,
adversary, and simulator are quantum-polynomial-time.

Definition 1 (Everlasting quantum-UC-security). Let protocols π and ρ

be given. We say π everlastingly quantum-UC-emulates (short eqUC-emulates)
ρ iff for every set C of party ids and for every quantum-polynomial-time adver-
sary Adv there is a quantum-polynomial-time simulator Sim such that for ev-
ery quantum-polynomial-time environment Z, the networks πC ∪ {Adv,Z} and
ρC ∪ {Sim,Z} are trace-indistinguishable.

We can now define security by comparing a protocol π with some ideal func-
tionality F . If we say that π eqUC-emulates a functionality F , we mean that π

eqUC-emulates ρF where the ideal protocol ρF is the protocol consisting of the
functionality F plus the so-called dummy-parties. For each party in π, there is



a dummy-party P̃ that just forwards messages between the environment Z and
the functionality F . The reason for introducing dummy-parties is that dummy-
parties can be corrupted. By corrupting Alice in the ideal protocol, the simulator
controls the dummy-party and thus effectively Alice’s inputs to F and also gets
the outputs from F to Alice.

If, e.g., we wish to express the fact that π is a eqUC-secure commitment, we
say that π eqUC-emulates FCOM where FCOM is the commitment functionality
defined below. We specify two functionalities that will be used in this paper.

Definition 2 (Commitment). Let A and B be two parties. The functionality

FA→B,ℓ
COM behaves as follows: Upon (the first) input (commit, x) with x ∈ {0, 1}ℓ(k)

from A, send committed to B. Upon input open from A send (open, x) to B.
All communication/input/output is classical.

We call A the sender and B the recipient.

Definition 3 (Signature card). Let S = (KG, Sign,Verify) be a signature

scheme. Let A be a party. Then the functionality FS,A
SC ( signature card for scheme

S with owner A) behaves as follows: Upon the first activation, FS,A
SC chooses a

verification/signing key pair (pk , sk) using the key generation algorithm KG(1λ).
Upon a message (getpk) from a party P or the adversary, it sends pk to P or

the adversary, respectively. Upon a message (sign,m) from A FS,A
SC computes

σ ← Sign(sk ,m) and sends (pk , σ) to A.
All communication/input/output is classical.

One of the salient features of the UC model is the universal composition
theorem. It says that if π eqUC-emulates F , then we can replace F by π in any
context. (Thus allowing for modular protocol design.) The proof of the following
theorem follows the lines of that for quantum UC [10].

Theorem 1 (Universal composition theorem). Let F and G be quantum-
polynomial-time functionalities. Let π and σF be quantum-polynomial-time pro-
tocols. Here the notation σF means that σ invokes (possibly many) instances
of F . Assume π eqUC-emulates F . Assume further that σF eqUC-emulates G.
Then σπ eqUC-emulates G. (Here σπ is the result of replacing F by the protocol
π in σF .)

3 Impossibilities

In Section 5, we show that by using signature cards and a quantum channel, we
can construct general everlastingly secure MPC protocols. The question arises
whether both signature cards and quantum channels are needed. We answer
this question positively by showing that (a) in the classical setting, most typical
trusted setup (including signature cards) is not sufficient to implement everlast-
ing OT and that (b) in the quantum setting, typical trusted setup such as a CRS
is not sufficient to implement everlasting OT. The impossibilities even apply if
we do not try to achieve UC security but only to implement a stand-alone OT.



For space reasons, we only give a short overview here. For precise statements
and proofs see [23].

Classical impossibilities. The basic observation underlying our impossibility
result is that a protocol that is everlastingly secure is also secure against unlim-
ited passive adversaries. This is due to the fact that a passive adversary follows
the protocol during the protocol execution (and is thus polynomial-time) and
only after the protocol execution performs an unlimited computation. Thus if
an unlimited passive adversary could break the protocol, the protocol would not
be everlastingly secure either.

We call a functionality F passively-realizable if there is a protocol that real-
izes F with respect to unlimited passive adversaries. We show that the following
functionalities are passively-realizable: the coin-toss FCT, the common reference
string FCRS, the public key infrastructure FPKI, the commitment FCOM, and
the signature card FSC.

Assume now an everlastingly secure OT protocol π that uses a passively-
realizable functionality F . Then π is also secure against passive unlimited adver-
saries. Let ρ be the protocol that realizes F (passively). Then π′, resulting from
replacing F by ρ, will still be an OT secure against passive unlimited adversaries.
(Here, of course, we have to be careful with our definition of passively realizing
a functionality – the notion needs to compose such that π′ is still secure.) But
π′ does not use any functionality, and we know that no OT protocol in the bare
model can be secure against unlimited passive adversaries.

Concluding, we get:

Theorem 2 (Simplified). There is no everlastingly secure OT protocol which
only uses arbitrarily many instances of FCT (coin-toss), FCRS (common refer-
ence string), FCOM (commitment), FPKI (public key infrastructure), and FSC

(signature cards).

Quantum impossibilities. The impossibility in the quantum case follows simi-
lar lines. However, the classical notion of passive adversaries does not make sense
in the quantum case. (A passive adversary copies all data, this is not possible in
the quantum case.) To solve this issue, we consider only protocols that perform
no measurements (unitary protocols). Any protocol can be transformed into such
a protocol at the expense of additional quantum memory. We call a functionality
F quantum-passively-realizable if there is a unitary protocol π that realizes F
with respect to passive unlimited adversaries (that follow the protocol exactly
and do not even copy information). Notice that the requirement that π has to
be unitary has the effect that the protocol cannot just throw away information.
Thus an adversary that is passive will still have some information left over after
the protocol execution. The following functionalities turn out to be quantum-
passively-realizable: coin toss FCT, predistributed EPR pairs FEPR, public key
infrastructure FPKI (assuming the secret key is uniquely determined by the pub-
lic key). However, signature cards and commitments are not! (The reason being
that signature cards and commitments do not allow to commit/sign superposi-



tions of messages and thus enforce measurements. This cannot be realized with
a unitary protocol.)

Then we can proceed as in the classical case: Assume an everlasting quantum
OT protocol π using a quantum-passively-realizable functionality F . This proto-
col is also secure against unlimited passive adversaries (in the above sense). By
replacing F by the protocol ρ that realizes F , we get a quantum OT protocol π′

not using any functionality that is secure against unlimited passive adversaries.
But Lo [8] shows that such protocols do not exist. Thus we get:

Theorem 3 (Simplified). There is no quantum-polynomial-time everlastingly
secure OT protocol which only uses arbitrarily many instances of FCT (coin-
toss), FCRS (common reference string), FEPR (predistributed EPR pair), FPKI

(public key infrastructure; assuming that the secret key is uniquely determined
by the public key).

4 Everlasting quantum key distribution

The first application of quantum everlasting security we present in this paper is a
new view on quantum key distribution (QKD). Instead of thinking of QKD as a
method for getting unconditionally secure message transmission (but then being
stuck with the problem of how to realize authenticated channels), we can combine
QKD with a computationally secure authenticated channel to get everlastingly
secure message transmission. This was already suggested in [11, Section 3.1], but
no formal statement or proof was given. We only give a short overview here, for
details see [23]. The first step is to implement an authenticated channel from,
say, a signature card. (All results in this section also hold with a normal public
key infrastructure instead of a signature card.)

Lemma 1 (Authenticated channels from signature cards). Let S be a
quantum existentially unforgeable signature-scheme. Then there is a polynomial-
time classical protocol π using one instance of FS,A

SC such that π eqUC-emulates
FA→B

auth . Here FA→B
auth denotes an authenticated channel from A to B.

The proof presents no surprises. Using FA→B
auth and FB→A

auth , we can implement
(with statistical quantum-UC-security) a bidirectional secure channel between
Alice and Bob using existing protocols from the literature [24,25,26].

Corollary 1 (Secure channels from signature cards). Let S be a quantum
existentially unforgeable signature-scheme. Then there is a polynomial-time pro-
tocol π using one instance of FA,S

SC and FB,S
SC each such that π eqUC-emulates

Fsecchan. (Here Fsecchan denotes a bidirectional secure channel between A and
B.)

5 Everlasting quantum multi-party computation

Classical everlasting UC commitments. In the classical setting, Müller-
Quade and Unruh [13] presented a protocol that everlastingly classical -UC-
emulates (called “long-term UC-emulates” there, ecUC-emulates in the following)



the commitment functionality FCOM and that uses a signature card FSC. There
protocol cannot be proven secure in the quantum setting (at least we do not
know how), but it is instructive to understand their protocol before we present
ours.5

In order for a commitment protocol to be everlastingly UC secure, we need
to achieve the following: Obviously, it needs to be statistically hiding and com-
putationally binding. Furthermore we need that the protocol is extractable: a
simulator who controls the signature card can find out what value Alice com-
mitted to. And the protocol needs to be equivocal: a simulator who controls the
signature card can cheat the binding property and open to a different value. The
simulators need to behave in a way that is statistically indistinguishable from
the honest behavior of the parties.

The difficulty lies in the extractability. If the committed value can be ex-
tracted by the simulator from the interaction, then it must be somehow contained
in that interaction, and an unlimited entity can extract it. But that would con-
tradict the statistical hiding property. The approach is to use the signature card
FA

SC. When Alice wishes to commit to a value m, we force her to obtain a signa-
ture on m. Since the simulator controls FSC, and since Alice can only sign using
FSC (even the owner of the signature card does not know the secret key), the sim-
ulator will learn m. How do we force Alice to sign m? First, Alice commits to m

using a commitment COM. Then Alice obtains a signature σ on (m,u) from FSC

where u is the opening information for COM(m). And then Alice proves that she
knows a signature σ on (m,u) for some u that opens COM(m) as m. (Here COM
is statistically hiding, and the proof is a statistically witness-indistinguishable
argument of knowledge.) Commit phase:

A B
c := COM(m)

Proof: I know signature σ on (m,u) s.t. u opens c as m
or I know the secret key of FSC

We now have extractability: Alice can only succeed in the proof if she gets a
signature on (m,u). But then all the simulator has to do is to check which query
(m,u) to FSC opens the commitment c, and then he knows m. (We explain the
“or I know the secret key”-part in a moment.) In the open phase, we cannot just
send u, then we would not have equivocality. Instead, Alice proves that she could
open c as m. Open phase:

A B
m

Proof: I know u that opens c as m
or I know the secret key of FSC

Now, if the simulator wishes to equivocate, he simply commits to 0, and later
he produces a fake proof that he can open c as m. To produce this fake proof, we

5 [13] actually first construct a ecUC zero-knowledge proof and use that one to con-
struct an ecUC commitment. For clarity, we present and discuss a direct construction
instead. An analogous discussion applies to their original zero-knowledge protocol.



have added the “or I know the secret key sk ”-part. Since the simulator knows sk
(he controls FSC), he can always perform the proof using sk as witness. (While
Alice, not knowing sk , is forced to prove the part of the statement before the
“or”.)

Another (quantum) view on the problem. It has been pointed out (by
an anonymous reviewer) that in the quantum case, the problem is actually the
following: Using a standard unconditionally hiding commitment scheme fails to
achieve everlasting security when using it to construct an OT. But this is not
due to composability issues, but to the fact that commitment schemes do not
force the committer to commit to a classical value, allowing commitments to
superpositions instead. In contrast, an ideal commitment functionality would
not allow the commit to occur in superposition. This also matches what we do
in our quantum-secure protocol below: The signature card forces the committed
message to be classical.

We believe this view to be correct, too. Indeed, our protocol would not work if
the signature card would allow the adversary to sign superpositions of messages.
Yet, this view only partially explains the situation: Even in the purely classical
case described above, standard commitments are not sufficient. But in the clas-
sical case, the possibility of committing to superpositions obviously cannot be
the reason for the problem, indicating that composition is at least part of the
problem. In fact, we believe that non-composition and the possibility to commit
to superpositions might actually be two sides of the same coin. For example,
composition usually requires extractability, i.e., the fact that the adversary can
only commit to values he knows. But if the adversary can commit to superposi-
tions, he cannot know what he commits to. It would be interesting (but beyond
the scope of this work) to explore this connection further.

Difficulties in the quantum case. Now assume we wish to prove the above
protocol secure in the quantum case. Then instead of an argument of knowledge,
we need to use a quantum argument of knowledge. But then we run into problems
when showing extractability. To show extractability, we need to show that Alice
cannot perform the first proof without first sending (m,u) to FSC. To do so,
consider an execution where Alice performs the proof without sending (m,u) to
FSC. We can then consider Alice as a prover AO with access to a signing oracleO.
Applying the extractor E from the argument of knowledge to Alice, we get that

EAO

outputs a witness to the statement that is proven. I.e., either a signature

on (m,u) or the secret key sk of O. Since EAO

has only black-box access to O,

and since AO and thus also EAO

never signs (m,u), both possibilities contradict
the existential unforgeability of the signature scheme. This reasoning works in
the classical case. In the quantum case (following [17]), however, the extractor

EAO

, while rewinding, does the following: It applies both U and U−1 where U

is the unitary transformation describing the operation of AO. Thus, indirectly

EAO

invokes not only O, but also its inverse. Existential unforgeability makes
no statement in this case. It could well be that given access to the inverse of O,
we can efficiently construct forgeries or even extract the secret key.



Setup:

A B
k0

ck := COMB(k0)

k1

k0

Proof 1: ck opens as k0 or I know a signature on msg1.

Commit to m:

A B
cm := COMH(m) (open info: um)

σ: Signature on (m,um)

cσ := COMX(crs, (σ,m, um)) csk := COMX(crs, 0)

Open:

A B
m

Proof 2: cσ contains (σ,m, um)

s.t. σ is signature on (m,um) and um opens cm as m.

Or: csk contains the secret key of FSC.

Fig. 1. The commitment protocol based on signature cards – overview. Proof 1 is
a witness indistinguishable argument of knowledge, proof 2 is a statistically witness
indistinguishable argument. COMH is a statistically hiding quantum-computationally
binding commitment. COMB is a quantum-computationally hiding perfectly binding
commitment. COMX is a dual-mode commitment.

Note: At a first glance, it might seem that invoking the inverse of O is not
a problem due to the following reasoning. An oracle O implementing a function
f(x) is usually modeled as a unitary mapping |x〉|y〉 to |x〉|y⊕f(x)〉. That unitary
is self-inverse, so applying O−1 is equivalent to applying O.

However, if the signing oracle O is modeled in this way, then it can be queried
on superposition. Instead, O should measure the message to be signed first. This
could be realised by copying the message (using CNOTs) into fresh ancillae bits.
But thenO is not self-inverse any more. Furthermore, to formulate the existential
unforgeability,O additionally needs to keep track of all messages that were signed
(otherwise it is not possible to define a “fresh” forgery). Applying the inverse of
O will remove messages from this list, making the notion of a fresh message
meaningless.

Our approach. To solve this problem, we need to construct a new protocol in
whose security proof we do not need to rewind the signing oracle. A protocol
overview is given in Figure 1. We now explain the intuition behind the protocol.
As explained above, the main challenge is the extractability of the protocol: Alice
commits to m using a commitment scheme COMB, the unveil information is um.
We need to make sure that Alice is forced to sign (m,um) in order to complete
the protocol. We cannot just perform a proof of knowledge that Alice knows
such a signature σ on (m,um) – it might be that Alice proves that she knows a
signatures without actually knowing it. To force Alice to actually know the sig-
nature, we use the following approach: During the commit phase, Alice commits
to (σ,m, um) using a commitment scheme COMX. (cσ := COMX((σ,m, um)).)



And additionally, we let Alice prove (“proof 2” in Figure 1) that the resulting
commitment cσ indeed contains a valid signature σ on (m,um). However, we
seem to have the same problem as before: How do we guarantee that Alice
knows the content of the resulting commitment cσ? We cannot use rewinding
for the same reason as before. Instead, we use a so-called dual-mode commit-
ment for cσ. A dual-mode commitment COMX depends on a public parameter
crs : If crs is honestly chosen, then COMX is statistically hiding (we need this
as otherwise the overall protocol would not be statistically hiding and thus not
everlastingly secure). But crs can also be chosen in a special way together with
a trapdoor td such that using td , we can efficiently compute (σ,m, um) given
cσ = COMX(crs , (σ,m, um)).

Then we can prove extractability of the eqUC commitment protocol roughly
as follows:

1. For extracting, the simulator looks at the list of signing queries to FSC and
finds a suitable pair (m,um). We need to show that if Alice opens successfully,
there must have been such a signing query for (m,um) during the commit
phase.

2. To show that, consider a game consisting of an execution with corrupted
Alice and that simulator. We change the game such that instead of picking
crs honestly, we pick it together with a trapdoor td . (We discuss below how
to do that.)
Note: the new game will only be computationally indistinguishable from the
preceding one. But this does not contradict everlasting security: we are in
a side-arm of the proof in order to bound the probability of a certain event
(“Alice opens without signing (m,um)”). The extracting simulator will still
be statistically indistinguishable from an honest recipient of the commitment
since the extracting simulator just passively looks at the signing queries.

3. We use the soundness of “proof 2” to show that cσ contains with overwhelming
probability a valid signature σ on (m,um). (In the full proof, we need to
additionally exclude that Alice proves the alternative option that csk contains
the secret key.)
Note: we do not claim at this point that Alice knows σ, we only show that
whatever is extracted from cσ using td is a valid signature on (m,um). In
particular, we do not use the unforgeability of the signature scheme in this
step.

4. Now we use the unforgeability: We have derived that extracting cσ using
td produces a signature on (m,um). If this would be the case without hav-
ing sent (m,um) to FSC, we would have produced a forgery, contradicting
unforgeability.

5. So Alice always signs (m,um), hence the simulator from Step 1 succeeds with
overwhelming probability in extracting.

One thing is missing in this description: How to pick crs in a way that we can
choose it together with a trapdoor in Step 2? For this, we have the setup phase
in Figure 1. Here crs is chosen using a coin toss that is designed such that Bob,
if he knows a signature on a special message msg1, can cheat and choose crs



arbitrarily. In Step 2, this allows us to pick crs together with a trapdoor by
requesting a signature msg1 from FSC. (Here msg1 is an arbitrary fixed bitstring,
but syntactically different from all other messages occurring in the protocol.)

Notice that “proof 1” in the coin toss protocol needs to be “of knowledge”
(more precisely, a witness-indistinguishable argument of knowledge). However,
we do not run into problems with the combination of rewinding and unforge-
ability this time, because during the execution of “proof 1”, the signature card
is not accessed by the honest verifier Alice. (And thus the signing oracle is not
accessed by the extractor at all.)

Thus, the protocol from Figure 1 is extractable.

Finally, we need to see how to achieve equivocality. Fortunately, this is easy:
The equivocating simulator commits to the secret key sk of FSC in the commit-
ment csk (he knows it since he controls FSC) and commits to 0 in cσ. Then, in
the open phase, to open as an arbitrary m, the simulator just performs “proof 2”
using the fact that csk indeed contains sk . Thus the protocol is equivocal, too.
(No fake CRS is needed in this case.)

5.1 The full protocol description

We fix the following notation for interactive commitment schemes: If COM
is a commitment scheme, we denote by (c, u) ← COMC,R(1

η,m) an execution
of the commit phase with sender C and recipient R where C commits to the
message m. After the protocol execution, both C and R know the value c (e.g., c
could be the protocol transcript), intuitively c represents the commitment itself.
Furthermore, C gets the value u, the opening information. We assume that the
opening phase consists of C sending (m,u), and R verifying the open phase via a
deterministic function COMVerify(c,m, u). For commitments that take a public
parameter crs , we add this parameter as an additional argument to COMC,R

and COMVerify.
We now give a definition of dual-mode commitments. The definition is close

to that of dual-mode commitments in [27]. The main difference is that we ad-
ditionally require that the honestly chosen CRS is uniformly chosen from a set
CRS . As discussed in [27], dual-mode commitments (also according to our defi-
nition) can be constructed from Regev’s cryptosystem [28].
Definition 4. A dual-mode commitment COM is an interactive commitment
with a public common reference string crs and which has the following properties:

– The common reference string crs is chosen from a set CRS such that one
can efficiently sample elements of CRS that are statistically indistinguish-
able from uniform, and such that CRS is endowed with an arbitrary group
operation ∗ (e.g., CRS could be {0, 1}n or Zn for some n). The operation ∗
is efficiently computable, and inverses with respect to ∗ are efficiently com-
putable.

– Statistical hiding: For crs chosen uniformly from CRS , COM is statistically
hiding.



– Fake-CRS: There is an algorithm (crs , td) ← COMFakeCRS(1η) such that
crs is quantum-computationally indistinguishable from being uniformly dis-
tributed on CRS .

– Extractability: There is an efficient algorithm COMExtract such that for
any quantum-polynomial-time A, we have that the following probability is
negligible:

Pr[∃u,m. (m 6= m′ ∧ COMVerify(crs , c,m, u) = 1) :

(crs , td)← COMFakeCRS(1η),

c← COMA,R(crs),m
′ ← COMExtract(td , c)]

Here c ← COMA,R(crs) stands, in abuse of notation, for a commit phase
between the adversary A and an honest recipient R. The value c is the value
R gets at the end of the commit phase.

Furthermore, we will need a signature scheme S that has some (very natural)
additional properties besides quantum existential unforgeability. First, we will
need deterministic verification. This just means that the verification algorithm is
not randomized. Second, we will need that S has a matchingKeys-predicate. This
means that there is a predicate matchingKeys that can be decided in determinis-
tic polynomial time, and such that for pk , sk chosen according to the key genera-
tion algorithm, we have matchingKeys(pk , sk) = 1 with overwhelming probabil-
ity. And given pk as chosen by the key generation, a quantum polynomial-time
algorithm outputs sk with matchingKeys(pk , sk) = 1 only with negligible proba-
bility. (Intuitively, this just means that there is a well-defined concept of whether
a given secret key matches a given public key.)

Theorem 4 (Commitments from signature cards). Let A and B be par-
ties. Let ℓ be an integer. Assume the existence of: quantum-computationally
witness-indistinguishable quantum arguments of knowledge, statistically witness-
indistinguishable arguments,6 statistically hiding quantum-computationally bind-
ing commitments, quantum-computationally hiding perfectly binding commit-
ments, dual-mode commitments. Assume that S is a quantum existen-
tially unforgeable signature scheme with deterministic verification and with
matchingKeys-predicate.

Then there is a protocol π using secure channels and one instance of FA,S
SC

such that π eqUC-emulates (FA→B,ℓ
COM )∗. (Here (FA→B,ℓ

COM )∗ is the functionality con-

sisting of many instances of FA→B,ℓ
COM . I.e., we can perform many commitments

using a single signature card.)

The protocol π is shown in Figure 1. A more precise description and a security
proof are given in [23].

6 Quantum-computational witness-indistinguishability is defined analogously to the
computational witness-indistinguishability (as in, e.g., [29]). Quantum arguments
and quantum arguments of knowledge are defined like quantum proofs [30] and
quantum proofs of knowledge [17], except that we consider only quantum-polynomial-
time provers instead of unlimited provers.



Corollary 2 (Everlasting two-party computation). Let A and B be par-
ties. Let G be a well-formed7 classical probabilistic-polynomial-time functionality
involving A and B. Under the conditions from Theorem 4, there is a protocol πG

using one instance of FA,S
SC such that πG eqUC-emulates G∗.

This corollary follows from combining Theorem 4 with known statistically se-
cure protocols from [31,32,10]. Analogously, we get everlasting multi-party com-
putation at the price of using more instances of FSC.
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